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Abstract 

The immunogenicity and effectiveness of oral rotavirus vaccines (ORVs) against severe rotavirus‑associated gastroen‑
teritis are impaired in low‑ and middle‑income countries (LMICs) where the burden of disease is highest. Determining 
risk factors for impaired ORV response may help identify strategies to enhance vaccine effectiveness. In this study, we 
use metagenomic sequencing to provide a high‑resolution taxonomic analysis of stool samples collected at 6 weeks 
of age (coinciding with the first ORV dose) during a prospective study of ORV immunogenicity in India and Malawi. 
We then analyse the functional capacity of the developing microbiome in these cohorts. Microbiome composition 
differed significantly between countries, although functional capacity was more similar than taxonomic composition. 
Our results confirm previously reported findings that the developing microbiome is more diverse in taxonomic com‑
position in ORV non‑seroconverters compared with seroconverters, and we additionally demonstrate a similar pattern 
in functional capacity. Although taxonomic or functional feature abundances are poor predictors of ORV response, 
we show that skews in the direction of associations within these microbiome data can be used to identify consistent 
markers of ORV response across LMIC infant cohorts. We also highlight the systemic under‑representation of refer‑
ence genes from LMICs that limit functional annotation in our study (7% and 13% annotation at pathway and enzyme 
commission level, respectively). Overall, higher microbiome diversity in early life may act as marker for impaired ORV 
response in India and Malawi, whilst a holistic perspective of functional capacity may be hidden in the “dark matter” 
of the microbiome.
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Introduction
The global roll-out of oral rotavirus vaccines (ORVs) 
has formed a cornerstone of public health efforts to 
mitigate the morbidity and mortality associated with 
infant diarrhoeal disease. Since the licensure of RotaTeq 
and Rotarix in 2006 and 2008, respectively, ORVs 
have been introduced into the national immunisation 
programme of over 100 countries. In conjunction 
with improvements in sanitation infrastructure, ORV 
implementation has helped bring about a reduction 
in rotavirus-associated mortality from over 500,000 
in the year 2000 to approximately 130,000 in 2016 [1]. 
However, the potential impact of ORV is constrained 
by the impaired effectiveness of available vaccines in 
low- and middle-income countries (LMICs), where 
the vast majority of rotavirus-associated deaths occur 
[2, 3]. As of 2016, the estimated rotavirus-associated 
mortality burden stood at 31.2, 9.2, and 0.1 per 100,000 
in Malawi, India, and England, respectively [4].

Much uncertainty remains regarding the mechanisms 
underpinning the ORV effectiveness gap. Early 
microbial exposures play a key role in shaping immune 
system development. Accordingly, several recent 
studies have applied high-throughput 16S ribosomal 
RNA (rRNA) gene sequencing to explore the extent 
to which infant gut microbiota development might 
influence ORV response. While some have yielded 
significant associations [5], others have not [6], and 
consistent microbial signatures associated with ORV 
response remain elusive. In one of the largest studies 
of this phenomenon to date, we applied standardised 
methods to explore the link between microbiota 
development (assessed via 16S rRNA sequencing in 
multiple longitudinal samples) and ORV response 
across cohorts in India, Malawi, and the UK [7]. 
Notably, while we did not identify clear associations 
between taxonomic abundances and ORV outcome, 
microbiota diversity at 6 weeks of age (the timing of 
the first dose of ORV) was negatively correlated with 
rotavirus seroconversion status in both Indian and 
Malawian infants.

Compared with 16S-based methods, metagenomic 
sequencing has the potential to offer more granular 
insight into the taxonomic composition and functional 
capacity of the developing microbiome. Herein, 
we applied standardised metagenomic sequencing 
methods to stool samples collected at 6 weeks of age 
in India and Malawi. Our study highlights a more 
diverse functional and taxonomic profile in ORV 
non-responders compared with responders in both 
countries, confirming and extending our previous 
findings based on 16S sequencing [7].

Methods
Study population
The Rotavirus Vaccine Immunogenicity (RoVI) study was 
a multi-site observational cohort study that explored the 
impact of maternal antibodies, microbiota development, 
and environmental enteric dysfunction (EED) on infant 
ORV response (CTRI/2015/11/006354). Details regarding 
study design, sample handling, and primary outcomes 
of the RoVI study have been described previously [7, 
8]. Pregnant women were enrolled in Blantyre (Malawi; 
n = 187), Vellore (India; n = 395), and Liverpool (UK; 
n = 82). Routine immunisations were administered 
according to the national immunisation schedule at each 
study site, including two doses of Rotarix (GSK) at weeks 
of life 6 and 10 (India and Malawi) or weeks of life 8 
and 12 (UK). In India and Malawi, infants received oral 
poliovirus vaccine at birth (Table  1). Recruitment (by 
month of birth) spanned December 2015 to November 
2016 in India and November 2016 to April 2018 in 
Malawi. Rotavirus-specific IgA (RV-IgA) was measured 
in infant blood samples collected pre-vaccination (before 
dose 1) and post-vaccination (4 weeks after dose 2). 
Seroconversion was defined as detection of RV-IgA 
at ≥ 20 IU/ml post-vaccination among infants who were 
seronegative at baseline or a 4-fold increase in RV-IgA 
concentration among infants who were seropositive at 
baseline. Rotavirus shedding was assessed in six stool 
samples per infant via a pan-rotavirus quantitative PCR 
assay targeting the VP6 gene of group A rotaviruses (at 
weeks of life 1, 4, 6, 7, 10, and 11 in India and Malawi) 
and a vaccine-specific assay targeting the Rotarix NSP2 
gene (at weeks of life 7 and 11 in India and Malawi, 
corresponding to samples collected 1 week after each 
ORV dose). See Supplementary Fig. 1 for a summary of 
overall study design.

For the metagenomic follow-up study, we focused on 
stool samples collected at 6 weeks of age in India and 
Malawi given the significant negative correlation between 
microbiota diversity and rotavirus seroconversion that 
was evident at this time point in both cohorts.

Sample processing and sequencing
DNA extraction from stool was carried out using the 
QIAamp DNA stool mini kit (Qiagen) according to the 
manufacturer’s instructions, with a number of modifica-
tions as described previously. Extracted DNA was stored 
at -70°C until library preparation. Overall, 16S rRNA 
gene sequencing was carried out for a total of 2,137 sepa-
rate stool samples across the three cohorts. Stool samples 
were selected based on the following eligibility criteria: 
(i) the sample yielded a high-quality 16S rRNA micro-
biota profile (≥ 25,000 sequences after quality filtering); 
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(ii) the infant met the primary study endpoint (measure-
ment of seroconversion or dose 1 shedding); and (iii) suf-
ficient volume of extracted DNA (> 1 μl) was available to 
proceed with metagenomic library preparation. A total 
of 355 samples fulfilled these eligibility criteria (288 and 
67 from India and Malawi, respectively). Library prepa-
ration and sequencing was performed at the Centre for 
Genomic Research (University of Liverpool). Sample 
order was randomised. Libraries were prepared using the 
NEBNext® Ultra™ II FS DNA Library Prep Kit for Illu-
mina and sequenced via two lanes of 2 × 150bp paired-
end sequencing on an Illumina NovaSeq 6000 instrument 
with S4 chemistry (with all samples included in both 
lanes).

Pre‑processing of reads
Adapter sequences were removed from reads using Cuta-
dapt [9] (version 1.2.1), trimming the 3’ end of any reads 
which match the adapter sequence for 3 bp or more. 
Sickle (version 1.200) was then used for further trimming 

of reads, with a minimum window quality score of 
20. Any reads shorter than 15 bp after trimming were 
removed. Human DNA was removed from all paired-end 
reads using the MetaWRAP [10] read_qc module, which 
makes use of BMTagger [11] to remove human contami-
nation, via alignment to the T2T consortium complete 
human genome (GCF_009914755.1) and human mito-
chondria (NC_012920.1).

Taxonomic assignment
Taxonomy was assigned to reads by Kraken2 [12] (version 
2.1.2), using a custom database that included RefSeq 
complete genomes and proteins for archaea, bacteria, 
fungi, viruses, plants, and protozoa, as well as RefSeq 
complete plasmid nucleotide and protein sequences, 
and a subset of the NCBI UniVec database. A confidence 
threshold of 0.1 was set for read assignments, and reports 
were generated for downstream biom file generation. 
Read counts assigned to taxonomies in each sample 
were then re-estimated using the average read length of 

Table 1 Baseline characteristics of study cohorts

Data are n (%) unless otherwise stated. Seroconversion was defined as detection of RV‑IgA at ≥ 20 IU/ml post‑vaccination among infants who were seronegative at 
baseline or a fourfold increase in RV‑IgA concentration among infants who were seropositive at baseline. Neonatal rotavirus infection was defined as the detection of 
wild‑type rotavirus shedding in week of life 1 and/or baseline seropositivity (pre‑vaccination RV‑IgA ≥ 20 IU/ml)

GM geometric mean, IPV inactivated poliovirus vaccine, OPV oral poliovirus vaccine, ORV oral rotavirus vaccine, RV rotavirus
a Enrolment spanned the global transition from trivalent to bivalent OPV in April 2016
b A sequentially recruited cohort in India received IPV instead of OPV at 6 and 10 weeks of age
c Among 149 Indian infants with neonatal infection, 120 (80.5%) were positive for wild‑type rotavirus shedding in week of life 1, 90 were seropositive for RV‑IgA at 
week of life 6 (60.4%), with an overlap of 61 (40.9%) positive via both methods
d Infants with missing data excluded
d Among neonatally infected infants, RV‑IgA GM (95% CI) was 23.8 (18.0–31.7) before vaccination

India Malawi

N 283 58

Caesarean delivery 62/283 (21.9) 0 (0.0)

Birthweight (kg), mean (s.d.) 2.96 (0.43) 3.02 (0.45)

Female 152 (49.5) 60 (50.4)

Polio vaccine schedule

 Trivalent OPV 51 (18.0) –

 Mixed trivalent/bivalent  OPVa 56 (19.8) –

 Bivalent  OPVa 84 (29.7) 58 (100.0)

  IPVb 92 (32.5) –

Exclusive breastfeeding up to 11 weeks of life 243 (85.9) 53 (91.4)

Exposed to antibiotics up to 14 weeks of life 204 (72.1) 43 (74.1)

HIV status

 Exposed 0 (0.0) 15 (25.9)

 Unexposed 275 (97.2) 41 (70.7)

 Unknown 8 (2.8) 0 (0.0)

Neonatal rotavirus  infectionc 149/281d (53.0) 6/47d (12.8)

Seroconverted to ORV 78/282d (27.7) 10/56d (17.9)

Shed ORV at week of life 7 (1 week after dose 1) 74/281d (26.3) 21/47d (44.7)

RV‑IgA at week of life 6 (before dose 1), GM (95% CI) 7.3 (5.9–9.1)e 3.4 (2.5–4.6)

RV‑IgA at week of life 14 (4 weeks after dose 2), GM (95% CI) 18.9 (14.9–23.9) 6.4 (4.0–10.2)
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that sample, using Bracken [13] (version 2.0). Kraken-
biom (version 1.0.1) was then used to generate biom file 
in json format, using Bracken reports. Biom (version 
2.1.6) was then used to assign tabulated metadata to this 
biom file. Reflecting the filtering steps applied to the 16S 
sequencing data, species were retained for the analysis 
if they were bacterial and detectable at an abundance 
of ≥ 0.1% in at least two samples.

Functional assignment
Gene pathway and enzyme commissions (ECs) were 
assigned to reads using HUMAnN [14] (version 3.0.0) 
with default parameters. Pathway assignments were 
produced as a default output of HUMAnN, whilst ECs 
were assigned using the utility scripts humann_rename_
table and humann_regroup_table to rename gene family 
table features. Reads that were unmapped (mapped to 
gene families without UniRef90 identifiers), unintegrated 
(reads that were assigned to a gene family but could not 
be grouped into pathways), or ungrouped (reads that 
were assigned to a gene family but could not be assigned 
to an EC) were retained in the analysis. For each analysis 
level (pathway and EC), unstratified outputs were merged 
into a feature table and renormalised to copies per 
million (cpm) within HUMAnN. Renormalised feature 
tables served as input data for downstream statistical 
analysis.

Statistical analysis
All analyses were performed in the programming 
language R (version 4.2.1). To assess the consistency 
of 16S versus metagenomic sequencing, we compared 
genus-level relative abundances and richness estimates 
between the pipeline outputs via Spearman’s rank 
correlation coefficient (rho) with two-sided hypothesis 
testing. These comparisons were performed at a 
rarefaction depth of 25,000 reads per sample for 16S 
data (as per our prior analyses of these data) and 1 
million reads per sample for metagenomic data. All 
subsequent analyses were performed in parallel for four 
modules of input data: (i) metagenomic taxonomy based 
on species-level relative abundances; (ii) metagenomic 
taxonomy based on genus-level relative abundances; 
(iii) metagenomic relative pathway abundances; and 
(iv) metagenomic relative EC abundances. Genus- and 
species-level relative abundances were determined 
at a rarefaction depth of 1 million reads per sample. 
Pathway and EC relative abundances were calculated 
based on renormalised counts in cpm. Primary outcomes 
of interest included country, seroconversion status, 
dose 1 shedding status, and post-vaccination RV-IgA 
concentration. For ORV outcomes, we performed 
separate analyses for Indian and Malawian infants to 

account for significant geographic differences in baseline 
microbiome composition. For Indian infants, we also 
stratified analyses by neonatal rotavirus infection status – 
defined as the detection of wild-type rotavirus shedding 
in week of life 1 and/or baseline seropositivity (pre-
vaccination RV-IgA ≥ 20 IU/ml) – given the impact of 
this exposure on microbiota-related associations in our 
prior analyses [7, 8].

Differences in alpha diversity (feature richness at 
species, genus, pathway, or EC level) were assessed 
via Wilcoxon rank-sum test for binary outcomes and 
Spearman’s rank correlation coefficient for RV-IgA. 
Differences in beta diversity were assessed based on 
unweighted Bray–Curtis distances via permutational 
analysis of variance (PERMANOVA) with 999 
permutations. Multivariate linear-regression analysis 
via MaAsLin2 [15] (version 1.8.0) was used to identify 
differentially abundant features for each outcome of 
interest. For ORV outcomes, we adjusted for the following 
covariates given their potential relevance as confounders: 
age at sample collection (in days); antibiotic exposure 
(any exposure up to 14 weeks of age); birthweight (in 
kg); breastfeeding status (exclusive, partial, or none up 
to 11 weeks of age); and delivery mode (caesarean or 
vaginal; only included in India given that all births in 
Malawi were via vaginal delivery). We also compared 
feature prevalence (presence/absence) in relation to each 
outcome of interest via Fisher’s exact test (for binary 
outcomes) and Wilcoxon rank-sum test (comparing 
RV-IgA in infants with versus without the feature of 
interest, excluding features with a prevalence of < 5% 
or > 95%). P values for differential abundance testing were 
adjusted by Benjamini–Hochberg false discovery rate 
(FDR) correction and a significance threshold of < 0.2 
applied for the purposes of this exploratory analysis. 
For adjusted MaAsLin2 outputs, covariate-associated 
P values were excluded prior to FDR correction to 
ensure that the adjusted P value distribution related 
specifically to the outcome of interest. As a complement 
to differential feature selection via FDR P value threshold, 
we assessed potential skew in the associations for each 
outcome of interest using Wilcoxon’s rank-sum test 
(with the null hypothesis that positive and negative 
associations occur at equal frequency). We also explored 
the strongest associations (top 10% per data module) 
with ORV outcome to determine consistency of selected 
features across countries.

We applied the Random Forests algorithm to predict 
country, seroconversion, or shedding status (classification 
approach), or post-vaccination log-transformed RV-IgA 
(regression approach) based on feature abundances, as 
described previously [7]. For each model, 20 iterations 
of 5-fold cross-validation were performed. Baseline 
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accuracy in classification models was standardised at 50% 
by fitting each iteration of 5-fold cross-validation on a 
random subset of 50 samples per group (or the number 
of samples in the minority group if this was < 50). For 
regression models, out-of-bag  R2 values for predicted 
vs observed RV-IgA values were determined via linear 
regression. Variable importance was determined based 
on Gini index (classification) or mean squared error 
(regression). Features were included in differential 
abundance analyses and Random Forests models if they 
were detected with a prevalence of > 5% in at least one 
analysis group.

To supplement the primary outcome analyses, we 
performed an exploratory analysis of demographic 
covariates associated with metagenome composition and 
function. We report on variables associated with alpha 
diversity (assessed via Wilcoxon rank-sum test for binary 
covariates and Spearman’s rho for linear covariates) or 
beta diversity (assessed via PERMANOVA of unweighted 
Bray–Curtis distances), applying a significance threshold 
of < 0.2 after FDR adjustment.

Results
A total of 341 samples (283 and 58 from India and 
Malawi, respectively) yielded high-quality metagenomic 
taxonomy profiles (≥ 1 million sequences after quality 
filtering) and were retained in the final analysis. Baseline 
characteristics and ORV outcomes are summarised for 
each cohort in Table  1. Indian infants were more likely 
than Malawian infants to be born by caesarean delivery 
and exhibited high rates of neonatal wild-type rotavirus 
infection, while Malawian infants were more likely to be 
HIV exposed. Exclusive breastfeeding predominated in 
both cohorts, and antibiotic exposure across the study 
period was reported at a similar rate (72% vs 74% in India 
vs Malawi).

Metagenomic taxonomic profiles closely matched 16S 
profiles
Genus-level richness estimates generated by 16S and 
metagenomic sequencing were strongly correlated 
(Spearman’s rho = 0.80; Supplementary Fig. 2A), as were 
the relative abundances of the 10 most abundant genera 
(rho > 0.8 for 8 of 10; Supplementary Fig.  2B). However, 
the genus Bifidobacterium tended to be more abundant 
following metagenomic versus 16S sequencing, while 
the reverse was true of Veillonella, Streptococcus, and 
Collinsella (Supplementary Fig.  2B and C). Several 
genera that were rare or absent from 16S data were 
present in ≥ 20% of samples based on metagenomic 
sequencing (e.g., Phocaeicola, Enterocloster, and 
Coprococcus; Supplementary Fig.  2D), potentially 
reflecting discrepancies in reference database alongside 

removal of 16S-related biases such as primer mismatch. 
Overall, these findings point to a consistent taxonomic 
profile across the pipelines, with higher representation of 
some rarer taxa following metagenomic sequencing.

Taxonomic differences between Indian and Malawian 
infants were more substantial than functional differences
Consistent with our previous findings based on 16S data 
[7], Malawian infants harboured a more diverse micro-
biota than Indian infants based on genus-level rich-
ness at 6 weeks of age (mean [s.d.] of 56.0 [12.1] vs 45.6 
[14.0], respectively; Wilcoxon P value < 0.001; Fig.  1A). 
This difference in alpha diversity was also evident based 
on species-level taxonomic profile (149.2 [27.7] vs 123.8 
[32.2], respectively; Wilcoxon P value < 0.001). Functional 
profiles yielded low relative abundances of mapped reads 
in Malawi and India at both pathway level (6.6% [1.0] 
vs 6.7% [1.1], respectively) and EC level (12.8% [2.1] vs 
13.0% [2.0], respectively). Nonetheless, a diverse range 
of pathways and ECs were assigned in each country. In 
contrast to the taxonomic profiles, we observed no sig-
nificant differences in feature richness between Malawian 
and Indian infants at pathway level (315.6 [44.2] vs 318.3 
[51.7], respectively; Wilcoxon P value = 0.145) or EC level 
(1,444.8 [185.5] vs 1,452.2 [210.6], respectively; Wilcoxon 
P value = 0.396). Significant differences in beta diversity 
based on unweighted Bray–Curtis distances were evi-
dent at genus, species, and EC level (PERMANOVA  R2 
of 3.4%, 5.8%, and 1.2%, respectively; P values < 0.05) but 
not pathway level  (R2 of 0.5%; P = 0.178). Consistent with 
these findings, Random Forests models were more accu-
rate based on taxonomic profiles than functional profiles 
(Fig. 1B), although all models outperformed the baseline 
accuracy of 50%.

Large numbers of discriminant features were 
evident across all data modules whether considering 
their abundance as a continuous variable (via linear 
regression using MaAsLin2) or presence or absence as 
a binary variable (via Fisher’s exact test; Supplementary 
file 1). At genus level, 31 features (of 85 tested) were 
discriminant (FDR P < 0.2) based on feature abundance, 
of which 25 were enriched in Malawi. Findings were 
similar when considering feature prevalence, wherein 
39 genera differed significantly by country, of which 
24 were more prevalent in Malawi (Fig. 1C and D). The 
ten top-ranking genera (based on feature importance) 
selected by Random Forests included nine that were 
enriched in Malawi (Microcococcus, Phocaeicola, 
Acinetobacter, and Bacteroides, among others; Fig.  1C 
left panel) and Bifidobacterium, which was significantly 
more abundant in India (mean [s.d.] abundance of 
59.8% [30.0] and 33.5% [28.6] in India and Malawi, 
respectively; Supplementary file 1A). Findings were 
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consistent at species level, with 118 discriminant features 
(of 249 tested) identified by MaAsLin2, of which 97 were 
enriched in Malawi. The top-ranking species selected by 
Random Forests were consistent with the genus-level 
selections (e.g. Micrococcus spp., Acinetobacter spp., and 
Phoaceicola spp., all of which were enriched in Malawi; 
Supplementary file 1B) while offering greater taxonomic 
resolution of these discriminant taxa.

A total of 273 discriminant pathways (of 403 tested) 
were identified by MaAsLin2, of which 169 were enriched 
in Malawi. Among the top-ranking pathways selected by 
Random Forests, photosynthetic carbon assimilation 
(PWY-241), L-glutamine biosynthesis (PWY-6549), and 
L-histidine degradation (PWY-5030) were enriched 
in Malawi, while O-antigen biosynthesis (PWY-7328), 
L-ornithine biosynthesis (GLUTORN-PWY), and 
L-arginine biosynthesis (ARGSYNBSUB-PWY) were 
enriched in India (Supplementary file 1C), indicative of 
distinct country-specific metabolic profiles associated 

with the developing microbiome. EC abundances 
were the most feature-rich data module. Among 2,035 
enzymes tested, 1,366 differed significantly by country 
based on MaAsLin2, of which 827 were enriched in 
Malawi. Again, the top-ranking features selected by 
Random Forests indicated the emergence of distinct 
country-specific metabolic profiles, with chitinase 
(3.2.1.14) and lysozyme (3.2.1.17) enriched in Malawi, 
and adenine dimethyltransferase (2.1.1.184), fructokinase 
(2.7.1.4), and 2,6-β-fructan 6-levanbiohydrolase (3.2.1.64) 
enriched in India (Supplementary file 1D). In each data 
module, Random Forests importance scores were highly 
correlated with MaAsLin2 P values (rho of 0.61, 0.67, 
0.35, and 0.39 for genus, species, pathway, and EC data, 
respectively; P values < 0.001), suggesting that features 
with the most significant abundance discrepancies 
underpinned the predictive accuracy of these models. 
Together, these findings demonstrate the developing 
microbiome of Malawian and Indian infants to be highly 

Fig. 1 Geographic discrepancies in taxonomic and functional composition of the microbiome. A Comparison of feature richness for each data 
module. Groups were compared by Wilcoxon rank‑sum test. B Cross‑validation accuracy of Random Forests for prediction of country. Median 
out‑of‑bag accuracy (proportion correctly assigned) and interquartile range across 20 iterations of fivefold cross‑validation are displayed. A random 
subset of 50 samples per country was used for each iteration. C The 10 most important genera selected by Random Forests for discriminating 
infants by country. D Volcano plots for feature enrichment by country. CV, cross‑validation; EC, enzyme commission; FDR, false discovery rate; IND, 
India; MLW, Malawi; n.s., not significant; *** p < 0.0005
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distinct in terms of both taxonomic composition and (to 
a somewhat lesser extent) functional capacity, though 
suboptimal annotation of functional pathways and 
ECs may undermine the identification of discriminant 
features in the latter data modules.

Breastfeeding status, gut inflammation, and HIV exposure 
status are associated with taxonomic and functional profile 
of the developing microbiome
We performed an exploratory analysis of alpha and 
beta diversity to identify cofactors associated with the 
taxonomic and functional profile of the developing 
microbiome in each cohort, analogous to our previous 
exploratory analysis of 16S data [7]. In Indian infants, 
25 demographic and clinical covariates were assessed, 
including several markers of environmental enteric dys-
function (EED). PERMANOVA of unweighted Bray–
Curtis distances revealed microbiome composition to 
be significantly correlated with breastfeeding status 

(exclusive vs non-exclusive) across every data module  (R2 
values of 1.9%, 2.4%, 2.4%, and 2.2% for genus, species, 
pathway, and EC data, respectively; FDR P values < 0.2), 
with exclusive breastfeeding associated with lower fea-
ture richness in each instance (Fig. 2 and Supplementary 
file 2). No other covariates were significantly correlated 
with pathway or EC profile. However, both genus and 
species composition were significantly associated with 
mode of delivery, sex, maternal education, and the EED 
marker α1-antitrypsin.

In Malawi, fewer demographic covariates were 
measured in the cohort and several covariates (e.g., 
breastfeeding status and delivery mode) lacked sufficient 
variability for inclusion in this exploratory analysis. 
Nonetheless, across both taxonomic and functional data 
modules, microbiome composition was significantly 
associated with HIV exposure status, markers of EED 
(including α1-antitrypsin and myeloperoxidase), 
maternal age, and maternal serum RV-IgA concentration 

Fig. 2 Exploratory analysis of covariates associated with microbiome composition. Factors associated with beta diversity at week of life 6 in Indian 
and Malawian infants. PERMANOVA was performed using unweighted Bray–Curtis distances for each data module. A1AT, α1‑antitrypsin; A1AG, α1 
acid glycoprotein; IND, India; MLW, Malawi; MPO, myeloperoxidase; ORV, oral rotavirus vaccine; RV, rotavirus; * FDR p < 0.05
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(Fig. 2 and Supplementary file 2). Significant associations 
with feature richness were generally absent, except for 
maternal RV-IgA concentration, which was positively 
correlated with EC richness.

Taxonomic and functional richness is negatively correlated 
with ORV seroconversion
Based on 16S profiles, we previously reported genus-level 
alpha diversity to be significantly higher in ORV non-
seroconverters than seroconverters in Malawian infants 

and Indian infants lacking neonatal rotavirus exposure 
[7]. We observed the same associations here based on 
genus- and species-level metagenomic profiles (Fig.  3A 
and B), suggesting these trends to be robust to sequenc-
ing method and taxonomic resolution. Pathway and EC 
richness was also negatively correlated with ORV sero-
conversion (Fig.  3C and D), although the associations 
were statistically significant only in Indian infants. In 
contrast to the genus- and species-level associations, dis-
crepancies in pathway and EC richness were significant 

A

B

C

D

n.s. n.s.

n.s.n.s.

n.s.

N 204 78 104 45 99 33 46 10

n.s.

Non-seroconverters Seroconverters

G
enus

Species
Pathw

ay
EC

Fig. 3 Association between microbiome composition and oral rotavirus vaccine seroconversion. Data are shown for (A) genus, (B), species, (C) 
pathway, and (D) enzyme commission data. The left panels display comparisons of feature richness by seroconversion. Groups were compared 
by Wilcoxon rank‑sum test. The middle panels display the cross‑validation accuracy of Random Forests for prediction of seroconversion. Median 
out‑of‑bag accuracy (proportion correctly assigned) and interquartile range across 20 iterations of fivefold cross‑validation are displayed. Each 
iteration included an equal number of responders and non‑responders (50 per group where possible, or else the number in the minority group 
if this was < 50). The right panels display the number of enriched features based on prevalence (Fisher’s exact test) and abundance (MaAsLin2). 
Analyses for Indian infants are reported for the overall cohort and stratified by neonatal wild‑type rotavirus exposure. CV, cross‑validation; EC, 
enzyme commission; FDR, false discovery rate; IND, India; MLW, Malawi; n.s., not significant; neo + , infected with rotavirus neonatally (defined 
by detection of rotavirus shedding in week of life 1 or baseline seropositivity); neo‑, uninfected with rotavirus neonatally; * p < 0.05; ** p < 0.005; *** 
p < 0.0005
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in the subset of Indian infants with neonatal rotavirus 
exposure.

Random Forests models exhibited poor predictive 
accuracy for seroconversion across all modules of 
input data in all cohorts (cross-validation accuracies 
of < 60%; baseline accuracy 50%; Fig.  3A to D, middle 
panels). While a small proportion of genera, species, and 
pathways exhibited differential prevalence or abundance 
according to seroconversion status (FDR P values < 0.2; 
Figs.  3A to D  right panels; Supplementary file 3), these 
were specific to Indian infants and FDR-adjusted P 
values were typically close to the significance threshold 
(e.g. of 107 differentially abundant pathways in Indian 
infants with neonatal rotavirus exposure, none had an 
FDR-adjusted P value of < 0.1). We identified no ECs 
with differential prevalence or abundance according 
to seroconversion status in any cohort. Together, these 

findings suggest that individual taxonomic or functional 
features did not exhibit marked discrepancies according 
to ORV seroconversion status, which is consistent with 
our prior findings based on 16S data.

Given the lack of clear discrepancies in feature abun-
dance or prevalence profile, we sought to identify the 
taxonomic and functional features underpinning the sig-
nificant differences in richness between seroconverters 
and non-seroconverters in each cohort. Indeed, while 
associations for individual features tended not to be 
statistically significant, there was a clear skew towards 
features being more prevalent in non-seroconverters 
than seroconverters (P < 0.0005 for all data modules in 
all cohorts for test of skew in negative vs positive asso-
ciations; Fig.  4). Notably, this skew was highly signifi-
cant even in comparisons in which all FDR P values were 

Fig. 4 Volcano plots of feature enrichment by oral rotavirus vaccine seroconversion. Italicised numbers display the number of features 
with a prevalence difference of < 0 (left of vertical dotted line) or ≥ 0 (right of vertical dotted line), highlighting features enriched 
in non‑seroconverters and seroconverters, respectively. The horizontal dotted line indicates an FDR p value of 0.2. The significance tests 
below the italicised numbers indicate the results of a Wilcoxon rank‑sum test assessing skew in the distribution of associations (with a null 
hypothesis that negative and positive associations occur with equal frequency). Analyses for Indian infants are reported for the overall cohort 
and stratified by neonatal wild‑type rotavirus exposure. EC, enzyme commission; FDR, false discovery rate; IND, India; MLW, Malawi; neo + , infected 
with rotavirus neonatally (defined by detection of rotavirus shedding in week of life 1 or baseline seropositivity); neo‑, uninfected with rotavirus 
neonatally; sero + , seroconverters; sero‑, non‑seroconverters; ** p < 0.005; *** p < 0.0005
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above > 0.2 (e.g. pathway and EC analyses in Malawian 
infants).

For each data module, we therefore compared the 
strongest associations according to seroconversion 
status between Malawian and Indian infants. We 
assessed the top 10% of association per module (10, 
20, 25, and 125 for genus, species, pathway, and EC 
data, respectively). To enhance comparability across 
cohorts, we focused on the subset of Indian infants with 
no neonatal rotavirus exposure. This revealed several 
notable consistencies between cohorts, as summarised 
in Supplementary file 4. At genus level, 3 of the 10 
strongest associations (Flavonifractor, Odoribacter, and 
Olsenella) were consistent in India and Malawi – all 
three genera were more prevalent (by 25–36%) among 
non-seroconverters than seroconverters in both cohorts. 
At species level, five of the 20 strongest associations 
were consistent in India and Malawi – Intestinimonas 
butyriciproducens, Flavonifractor plautii, Olsenella 
sp. GAM18, Parabacteroides merdae, and Phocaeicola 
coprophilus. Again, all were more prevalent (by 22–42%) 
among non-seroconverters versus seroconverters in 
both cohorts. At pathway level, four of the 25 strongest 
associations were consistent in India and Malawi (purine 
nucleobases degradation I [P164-PWY], peptidoglycan 
biosynthesis V [beta-lactam resistance; PWY-6470], 
isopropanol biosynthesis [PWY-6876], and beta-(1,4)-
mannan degradation [PWY-7456]). Finally, at EC level, 
31 of the 125 strongest associations were consistent 
across cohorts. These included enzymes associated with 
adhesion, cell wall degradation, and efflux, among others. 
The majority of enzymes (27 of 31 [87%]) were more 
prevalent among non-seroconverters than seroconverters 
in both cohorts.

Post-vaccination RV-IgA concentration and dose 1 
shedding status were considered as alternative measures 
of ORV response. In contrast to seroconversion status, we 
documented no significant associations between alpha 
diversity and ORV response for these endpoints in either 
country (Supplementary Figs. 3 and 4). Random Forests 
models exhibited poor predictive accuracy for these 
outcomes, and few discriminant features were identified 
based on prevalence- or abundance-based tests. Despite 
the lack of significant associations with feature richness, 
we documented a significant skew towards negative 
associations in Malawian infants and Indian infants 
lacking neonatal rotavirus exposure (Supplementary 
Figs. 5 and 6; Supplementary files 5 and 6).

For post-vaccination RV-IgA, 1/10, 3/20, 3/25 and 
14/125 of the strongest associations were consistent 
across cohorts at genus, species, pathway and EC level, 
respectively (Supplementary file 6). Corresponding rates 
for dose 1 shedding were 1/10, 1/20, 4/25, and 14/125. 

Notably, these rates do not deviate substantially from the 
degree of correspondence expected by chance (10%), and 
there was minimal overlap in the strongest associations 
selected for different ORV outcomes.

Discussion
The infant gut microbiome exists in a state of dynamic 
flux, and host–microbe interactions in this critical 
developmental window may have long-term ripple effects 
for immune system development. We used metagenomic 
sequencing to profile the gut microbiome among Indian 
and Malawian infants at the time of their first dose of 
ORV. We observed clear differences between countries 
in  the taxonomic and (to a lesser extent) functional 
composition of the developing microbiome. While the 
abundances of genera, species, pathways, and enzymes 
– either individually or collectively – served as poor 
predictors of ORV response, there was a clear trend 
towards higher microbiome diversity in ORV non-
responders compared with responders. Notably, this 
trend was consistent across Indian and Malawian infants, 
and was evident whether considering taxonomic diversity 
(at genus or species level) or functional capacity (at 
pathway or enzyme level).

The geographic differences in taxonomic composition 
reported here (e.g. enrichment of Bifidobacterium, 
Klebsiella, and Enterococcus in India vs enrichment of 
Escherichia, Streptococcus, and Bacteroides in Malawi) 
are generally consistent with our prior study based on 
16S sequencing [7]. However, several discriminant genera 
were detected only via metagenomic sequencing (e.g. 
enrichment of Micrococcus, Phocaeicola, and Moraxella 
in Malawi), likely reflecting the greater sequencing depth 
obtained in the current study and the reduction in biases 
(e.g. primer mismatch) when applying metagenomic as 
opposed to 16S sequencing.

The proportion of reads assigned at pathway or enzyme 
level was low (7% and 13%, respectively), consistent with 
prior studies applying the HUMAnN pipeline to samples 
from LMICs [16]. This highlights the significant under-
representation of reference genes necessary for precise 
functional annotation of LMIC samples in UniRef90. This 
is an ongoing, pervasive issue in microbiome analysis [17, 
18], underpinned by a systemic lack of representation in 
human microbiome databases. Recent work highlighting 
this issue demonstrated that 0.7% of all microbiome 
data in the Sequence Read Archive, DNA Data Bank 
of Japan and European Nucleotide Archive is derived 
from India and Malawi [19]. As such, the levels of read 
assignment observed in our metagenomic dataset is 
unsurprising. Attempts to improve equity in genomic 
research capacity, such as H3Africa [20], have begun to 
address this issue. This caveat notwithstanding, there 
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was greater consistency between countries when viewing 
the microbiome with a functional rather than taxonomic 
lens, as typified by the lower predictive accuracy of 
Random Forests models and the strong overlap in 
abundant pathways and enzymes between Indian and 
Malawian samples.

Several previous studies have explored the link 
between infant oral vaccine response and microbiome 
composition. A metagenomics study in Zimbabwe 
documented no significant associations between ORV 
seroconversion and either the composition or function of 
the microbiome [19], which is consistent with the lack of 
discriminatory features based on genus, species, pathway, 
or enzyme abundance in the present study. Among 
infants in Ghana, Rotarix immunogenicity was positively 
correlated with the relative abundance of 16S-based 
sequence variants assigned to the genus Streptococcus 
and the family Enterobacteriaceae [21], partially 
recapitulating earlier findings from the same cohort [5]. 
We did not identify similar taxonomic discrepancies 
according to seroconversion status here, although several 
taxa (e.g. Flavonifractor plautii and Parabacteroides 
merdae) were among the top-ranking associations in 
both India and Malawi and may merit further causal 
exploration if validated elsewhere. Likewise, several 
pathways (e.g. beta-(1,4)-mannan degradation and 
peptidoglycan biosynthesis V) and ECs (e.g. Xaa-Xaa-
Pro tripeptidyl-peptidase and blood group B branched 
chain alpha-1,3-galactosidase) were enriched in non-
seroconverters versus seroconverters in both countries, 
highlighting functional components of the developing 
microbiome that may be pertinent to ORV response. 
As the body of literature exploring the link between the 
developing microbiome and ORV response expands, 
robust taxonomic or functional associations across 
independent cohorts remain elusive, and those identified 
lack causal validation. Although this does not preclude 
the possibility of microbiota-directed therapeutic to 
enhance ORV immunogenicity, the selection of potential 
candidates for such an intervention have thus far 
failed to emerge from observational studies in affected 
populations.

A key finding in the present study was the higher 
diversity of the microbiome among non-seroconverters 
compared with seroconverters, which was apparent 
in both Malawian and Indian infants. We previously 
observed the same association in both cohorts using 
16S-based methods [7]. The present study therefore 
serves as a validation of the robustness of this association, 
both to sequencing method (16S vs metagenomics) and 
annotation type (taxonomic vs functional). Notably, other 
studies of ORV in LMICs have not reported a significant 
association between alpha diversity and seroconversion 

[5, 22], although we previously documented a negative 
correlation between microbiota diversity and oral 
poliovirus vaccine shedding among Indian infants 
aged 6–11 months [23]. A causal link between greater 
microbiome diversity and impaired oral vaccine response 
is possible and merits further consideration. For example, 
differences in innate immune responses between children 
from different regions can be partly recapitulated via 
transfer of stool microbiomes to germ-free mice [24], 
and microbiome diversity may be among the key factors 
shaping innate immune development in the intestinal 
epithelium. However, we previously found microbiota 
diversity at the time of the first ORV dose to be similar 
among infants in Malawi, India, and the UK [9]. Given 
the high shedding and seroconversion rates observed in 
the latter, the diversity levels observed in these infants are 
clearly compatible with a robust vaccine response.

Our findings sit somewhat at odds with a growing 
body of literature highlighting the beneficial effects of a 
taxonomically diverse microbiome [24, 25]. It is worth 
noting that much of the existing microbiome literature 
is biased towards conditions affecting adult populations 
in high-income countries, whereas we focused on 
risk factors for impaired oral vaccine response in 
LMICs. While we do not discount the broad health 
benefits of a diverse microbiome, it may be that diverse 
microbial stimulation in early life is protective against 
some conditions (e.g. autoimmune and inflammatory 
disorders) while contributing to others, such as the 
blunting of oral vaccine responsiveness in LMICs. 
Moving forward, the search for markers of a ‘healthy 
microbiome’ should be tuned to population- and 
age-specific morbidity indicators, and may not yield 
consistent answers as a result.

The strengths of this study lie in the use of standardised 
methods across diverse LMIC cohorts, randomised order 
to reduce batch effects, and validation of prior findings 
using novel sequencing and bioinformatic methods, 
lending robustness to the reported trends. However, 
this work has several limitations, including sub-
optimal annotation, which left much of the functional 
landscape uncharted. As reference databases become 
more representative, it may be that future analyses of 
our metagenomic data yield additional insights. We 
also experienced recruitment and sample collection 
challenges in Malawi, limiting our statistical power to 
detect relevant associations in this cohort (particularly 
given the small number of seroconverters). This may 
limit the precision and generalisability of our findings. 
Finally, our pipeline and methods were tailored to 
the bacterial microbiome, so may miss an important 
role of other branches of the developing microbiome, 
such as the virome [26] or eukaryome. Given the 
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increased accessibility and affordability of metagenomic 
sequencing, future work should consider expanding 
these methods to larger cohorts, applying longitudinal 
sampling and pipelines with less bacterial bias where 
possible.

Overall, we applied metagenomic sequencing to 
validate and extend findings of a multi-centre cohort 
study exploring risk factors for impaired ORV response. 
We found the developing microbiome to be more 
diverse – both in terms of its taxonomic composition 
and functional capacity – among non-seroconverters 
compared with seroconverters in India and Malawi. By 
confirming this trend across multiple LMIC cohorts, 
our findings suggest that higher microbiome diversity 
in early life may act as marker for impaired oral vaccine 
response. While a metagenomics-first approach may be 
challenging in LMICs in the short term, this will become 
more viable as sequencing costs decline and standardised 
bioinformatic pipelines become more accessible. Our 
study demonstrates that functional analysis reveals 
significant differences in microbiome composition, going 
beyond taxonomy and surpassing the limitations of 16S 
data.
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