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Abstract
Background Little is known about susceptibility of Staphylococcus lugdunensis to antiseptics. The objective of this 
study was to evaluate, at the molecular and phenotypic level, the susceptibility of 49 clinical S. lugdunensis strains 
(belonging to the seven clonal complexes [CCs] defined by multilocus sequence typing) to two antiseptics frequently 
used in healthcare settings (chlorhexidine digluconate [CHX] and chloride benzalkonium [BAC]).

Results The minimum inhibitory concentrations (MICs), by broth microdilution method, varied for BAC from 
0.25 mg/L to 8 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L) and for CHX from 0.5 mg/L to 2 mg/L (MIC50 = 1 mg/L, 
MIC90 = 2 mg/L). The BAC and CHX minimum bactericidal concentrations (MBCs) varied from 2 mg/L to 8 mg/L 
(MBC50 = 4 mg/L, MBC90 = 8 mg/L) and from 2 mg/L to 4 mg/L (MBC50 and MBC90 = 4 mg/L), respectively. A reduced 
susceptibility to CHX (MIC = 2 mg/L) was observed for 12.2% of the strains and that to BAC (MIC ≥ 4 mg/L) for 4.1%. 
The norA resistance gene was detected in all the 49 isolates, whereas the qacA gene was rarely encountered (two 
strains; 4.1%). The qacC, qacG, qacH, and qacJ genes were not detected. The two strains harboring the qacA gene had 
reduced susceptibility to both antiseptics and belonged to CC3.

Conclusion The norA gene was detected in all the strains, suggesting that it could belong to the core genome of S. 
lugdunensis. S. lugdunensis is highly susceptible to both antiseptics tested. Reduced susceptibility to BAC and CHX was 
a rare phenomenon. Of note, a tendency to higher MICs of BAC was detected for CC3 isolates. These results should be 
confirmed on a larger collection of strains.
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Background
S. lugdunensis is a particularly virulent species of coag-
ulase-negative staphylococci (CoNS) [1]. This microor-
ganism is a skin commensal but is also an opportunistic 
pathogen able to cause potentially severe community-
acquired infections as well as healthcare-associated 
infections [2, 3].

Several molecular typing methods, including multi-
locus sequence typing (MLST) and fbl-typing, revealed 
a clonal population structure, with no phylogenetic lin-
eage associated with invasive infections [4, 5]. To date, 
seven clonal complexes (CCs) have been described 
(http://bigsdb.web.pasteur.fr/staphlugdunensis/). Strains 
isolated worldwide from hospitalized patients mainly 
belong to CC1 and CC3 [6–8]. Even if some methicillin 
resistant clones are circulating in Asia [8–10], this spe-
cies currently remains highly sensitive to antibiotics [3]. 
Predominance of some CCs could then be explained 
by the low genetic diversity of the species [11] or by an 
increased ability of these CCs to survive in the hospital 

environment by biofilm formation [1] and/or resistance 
to antiseptics.

Two antiseptics, chlorhexidine digluconate (CHX) and 
benzalkonium chloride (BAC), are widely used in health 
care settings including skin and wound antisepsis [12, 
13]. Antiseptic resistance of Staphylococcus aureus and 
CoNS is mediated by efflux pumps: NorA and QacA 
belonging to the major facilitator superfamily, and QacC, 
QacG, QacH and QacJ belonging to the multidrug resis-
tant transporter family [14–16]. This resistance is phe-
notypically characterized by high minimum inhibitory 
concentrations (MICs) to antiseptics, even if there is 
no consensual definition [17, 18]. Antiseptic resistance 
can be associated with the presence of resistance genes, 
which can belong to the core genome such as the norA 
gene in S. aureus [19], or be encoded by a plasmid like 
qac genes, identified in S. aureus and various species of 
CoNS [14].

So far, little is known about S. lugdunensis resistance to 
antiseptics [20, 21]. Therefore, the aim of this study was 
to investigate the prevalence of resistance to the widely 
used antiseptics BAC and CHX by using both phenotypic 
and genotypic methods, in a collection of S. lugdunensis 
clinical isolates representing the seven CCs described to 
date.

Results
Antimicrobial susceptibility test results
The antibiotic susceptibility results of the 49 S. lugdunen-
sis strains are shown in Table  1. Eleven strains (22.4%) 
were resistant to penicillin G. The rate of strains resis-
tant to kanamycin, tobramycin, fusidic acid and tetracy-
clin was 4.1% (2/49 strains) and that of strains resistant 
to gentamicin, erythromycin and clindamycin was 2% 
(1/49 strains). One strain (2%) was resistant to methicillin 
(methicillin-resistant S. lugdunensis, MRSL). This strain 
was multidrug resistant and belonged to CC3.

Determination of minimum inhibitory concentration and 
minimum bactericidal concentration
The MICs of CHX ranged from 0.5 to 2 mg/L and those 
of BAC from 0.25 to 8  mg/L (Table  2). The MIC50 and 

Table 1 Antibiotic susceptibility testing for the 49 S. lugdunensis 
strains
Antibiotic
(49 strains)

Susceptible
No. (%)

Resistant
No. (%)

penicillin G 38 (77.6) 11 (22.4)
kanamycin 47 (95.9) 2 (4.1)
tobramycin 47 (95.9) 2 (4.1)
gentamicin 48 (98) 1 (2)
erythromycin 48 (98) 1 (2)
clindamycin 48 (98) 1 (2)
quinupristin/
dalfopristin

49 (100) 0 (0)

cefoxitin 48 (98) 1 (2)
norfloxacin 49 (100) 0 (0)
trimethoprim/
sulphamethoxazole

49 (100) 0 (0)

fusidic acid 47 (95.9) 2 (4.1)
rifampicin 49 (100) 0 (0)
levofloxacin 49 (100) 0 (0)
tetracyclin 47 (95.9) 2 (4.1)
minocyclin 49 (100) 0 (0)
linezolid 49 (100) 0 (0)

Table 2 Susceptibility testing of the 49 S. lugdunensis strains to CHX and BAC
Antiseptic resistance genes in strains
(n = 49)

CHX MIC (mg/L) BAC MIC (mg/L)
0.5 1 2 0.25 0.5 1 2 4 8

norA
(n = 49)

1 42 6 2 3 24 18 1 1

qacA
(n = 2)

0 0 2* 0 0 0 0 1* 1*

qacC/qacG/qacH/qacJ
(n = 0)

0 0 0 0 0 0 0 0 0

CHX, chlorhexidine digluconate; BAC, benzalkonium chloride; *Clonal complex 3.

Strains with a reduced susceptibility are in bold text.

http://bigsdb.web.pasteur.fr/staphlugdunensis/
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MIC90 were 1  mg/L and 2  mg/L respectively, for both 
CHX and BAC. Reduced susceptibility to CHX and BAC 
was observed for 12.2% (6/49) and 4.1% (2/49) of strains, 
respectively.

The minimum bactericidal concentrations (MBCs) 
ranged from 2 to 4 mg/L and 2 to 8 mg/L for CHX and 
BAC, respectively. The MBC50 and MBC90 of CHX were 
4 mg/L. The MBC50 and MBC90 of BAC were 4 mg/L and 
8 mg/L, respectively.

MIC and MBC distribution of CHX and BAC accord-
ing to the CC is shown in Table 3. BAC MICs tended to 
vary according to the CC of the strains. The BAC MICs 
of the CC5 and singleton (belonging to any of the CC 
described) strains (mean of 0.55  mg/L and 0.81  mg/L, 
respectively) appeared to be lower than those of the other 
CCs. On the contrary, strains belonging to CC3 had the 
highest MIC values (mean of 2.18). No noticeable trend 
was highlighted regarding the MBC distributions of 
either CHX or BAC.

Detection ofnorAandqacgenes.
The norA gene was detected by PCR in all S. lugdu-

nensis strains (Table 2). Two strains were positive for the 
qacA gene. Interestingly, these two strains had decreased 
susceptibility to both antiseptics (CHX and BAC) 
(Table  2) and belonged to CC3. The qacC, qacG, qacH 
and qacJ genes were not detected. To rule out false nega-
tive PCR in the highly variable qac genes, their absence 
was confirmed by blastn in the 11 strains whose genome 
sequences were available (SL_13, SL_29, SL_55, SL_117, 
SL_118, SL_122, 22FJ, 25AC, 27HJ, 33RM, 37BH).

Discussion
S. lugdunensis is recognized as a virulent species of CoNS 
responsible for severe infections. In hospital settings, 
predominant clones (CC1 and CC3) have been described 
[5, 6, 8], suggesting a potential adaptation to this envi-
ronment. With the widespread use of antiseptics in 
healthcare facilities, there are concerns about antiseptic 

tolerance and resistance [17]. However, little is known 
about S. lugdunensis susceptibility to antiseptics.

Only two previous studies on antiseptic susceptibility 
have included a small number of S. lugdunensis strains: 
one in Sommer et al.’s work [22] and eight in the study 
of Addetia et al. [20]. Our study is the first to investigate 
the antiseptic susceptibility of such a large collection of 
S. lugdunensis strains from different clinical settings and 
geographical origins and representing the seven CCs 
described to date. Resistance was assessed by determin-
ing MIC and MBC by broth microdilution for the two 
commonly used antiseptics CHX and BAC. Standard-
ized methods to determine MIC/MBC and consensus to 
define antiseptic resistance are missing [23]. Therefore, 
we applied protocols and MIC breakpoints widely used 
in literature for Staphylococcus spp. and defined reduced 
susceptibility to CHX and BAC when MIC > 1.5  mg/L 
and > 3 mg/L, respectively [18].

In our study, lower BAC MICs were observed 
(0.25  mg/L to 8  mg/L) compared to previous studies 
using broth microdilution. Indeed, they have shown that 
BAC MICs for clinical CoNS strains and S. aureus varied 
similarly between 0.25  mg/L and 64  mg/L [24–28]. The 
only two S. lugdunensis strains with reduced susceptibil-
ity to BAC in our study belonged to the CC3. In contrast, 
the CC5 and singleton ST strains tended to have lower 
MICs. For S. aureus, Kernberger-Fisher et al. have simi-
larly showed that strains belonging to the major human 
lineages CC22 and CC5 had significantly higher CHX 
MIC values than the main animal lineage ST398 [29].

S. lugdunensis strains exhibited here low CHX MICs 
(MIC90 = 2  mg/L) with a narrow value distribution, 
similar to that obtained by Addetia et al. for eight S. 
lugdunensis strains (CHX MICs determined by broth 
microdilution ranging from 0.5 to 1 mg/L) [20]. In con-
trast, in literature, CHX MICs vary from 0.125 mg/L to 
32 mg/L for other CoNS species [20, 24, 25, 28, 30], and 
from 0.25 mg/L to 8 mg/L for S. aureus [24, 25].

Table 3 MIC and MBC values of CHX and BAC according to the CC
Clonal Complex
(n = 49 strains)

CHX BAC
MIC range 
(mg/L)

MIC mean 
(mg/L) (SEM)

MBC range 
(mg/L)

MBC mean 
(mg/L) (SEM)

MIC range 
(mg/L)

MIC mean 
(mg/L) (SEM)

MBC range 
(mg/L)

MBC mean 
(mg/L) (SEM)

1 (n = 11) 1–2 1.27 (0.14) 2–4 0.82 (0.30) 1–2 1.45 (0.16) 2–4 3.82 (0.18)
2 (n = 5) 1 1.00 (0) 2–4 3.60 (0.40) 1–2 1.60 (0.24) 2–4 3.60 (0.40)
3 (n = 11) 1–2 1.18 (0.12) 2–4 2.91 (0.31) 1–8 2.18 (0.64) 4–8 5.09 (0.56)
4 (n = 4) 1 1.00 (0) 2–4 3.00 (0.58) 1–2 1.50 (0.29) 4–8 5.00 (1.00)
5 (n = 5) 1–2 1.20 (0.2) 2–4 2.80 (0.49) 0.25-1 0.55 (0.12) 2–4 3.60 (0.40)
6 (n = 5) 1 1.00 (0) 2–4 3.20 (0.49) 1–2 1.60 (0.24) 4–8 5.6 (0.98)
7 (n = 4) 1 1.00 (0) 2–4 3.50 (0.50) 1–2 1.50 (0.29) 4–8 5

(1.00)
singleton ST
(n = 4)

0.5-1 0.88 (0.13) 2–4 3.00 (0.58) 0.25-1 0.81 (0.19) 4 4
(0)

BAC, benzalkonium chloride; CHX chlorhexidine digluconate; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
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The CHX and BAC MBC determined here were close 
to MIC values, and remained much below the antiseptic 
concentration used in practice. Considering the epidemi-
ological cut-off values (ECOFFs) defined for S. aureus by 
Morissey et al. (i.e. MIC = 8 mg/L and MBC > 64 mg/L for 
CHX, and MIC = 16 mg/L and MBC = 32 mg/L for BAC), 
all the 49 S. lugdunensis strains tested would be consid-
ered as wild-type [31].

In addition, resistance to CHX and BAC was assessed 
by a genotypic method. The norA gene was detected in 
all strains of our collection, suggesting that it belongs to 
the core genome of S. lugdunensis. Similarly, Costa et al. 
showed that norA is part of the core genome of S. aureus, 
but exists as multiple alleles [19]. Increased antiseptic 
resistance of S. aureus strains has been associated with 
NorA-mediated efflux via the overexpression of the norA 
gene [32, 33]. Thus, it would be interesting to compare 
norA expression levels of the strains in our collection.

On the contrary, the prevalence of the qacA gene was 
low (4.1%) in this study. This result contrasts with the 
variations of the qacA prevalence previously described 
for CoNS (42.4–62.4%) [24, 25, 34] and for S. aureus 
(from 10.5 to 21.8% for methicillin-susceptible strains 
and from 8,3 to 83.3% for methicillin-resistant strains) 
[18, 24, 25, 34–36]. Here, the qacC, qacG, qacH and qacJ 
genes were not detected by PCR. Due to lack of DNA 
conservation, some of the PCR primers described in the 
literature may fail to detect qac genes [14]. However, blast 
analysis confirmed the absence of qac gene sequences in 
the 11 whole genome sequences available. The prevalence 
of these genes in other CoNS species and in S. aureus 
varies greatly between studies (0–44.2% of isolates) [18, 
24, 34–36]. The low prevalence of these plasmid-encoded 
qac genes observed for S. lugdunensis could be explained 
by the multiple barriers of this species genome that pre-
vent horizontal gene transfer by mobile genetic elements 
[11, 37].

Interestingly, the two S. lugdunensis strains positive for 
the qacA resistance gene had reduced susceptibility for 
both CHX and BAC. This could suggest a relationship 
between qac genes and reduced susceptibility to antisep-
tics, as demonstrated in several studies for S. aureus and 
CoNs [20, 22–24] but to be confirmed on a larger num-
ber of strains. Whole genome studies of S. lugdunensis 
strains with reduced susceptibility to antiseptics could 
lead to identify mechanisms contributing to a reduced 
susceptibility to antiseptics in this species.

Cross-resistance to antibiotics and antiseptics remains 
controversial. Some studies have reported cross-resis-
tance between CHX and antibiotics (e.g. cefoxitin, peni-
cillin, ciprofloxacin, trimethoprim-sulfamethoxazole, 
clindamycin, tetracyclin), especially for S. epidermidis, S. 
warneri and S. aureus [25, 38, 39]. The only MRSL strain 
in our study showed reduced susceptibility to both CHX 

and BAC. MRSL, more prevalent in Asia [9, 10, 40], could 
represent a major health issue worldwide. Analysis of a 
larger number of MRSL strains would therefore be nec-
essary to track such a putative link between methicillin 
resistance and reduced susceptibility to antiseptics.

Conclusions
This study conducted on a large collection of strains 
shows that, unlike other CoNS, S. lugdunensis is highly 
susceptible to CHX and BAC. However, the first descrip-
tion of a reduced susceptibility to these antiseptics in two 
CC3 strains, highlights a potential risk for infection con-
trol in healthcare settings.

Materials and methods
Bacterial strains
Forty-nine clinical strains of S. lugdunensis isolated from 
49 patients were included in this study [see Additional 
file 1]. They were recovered from carriage (n = 12) or 
infections (n = 37) and collected in seven French regions 
(Strasbourg, Rouen, Tours, Nancy, Montpellier, Nantes, 
Bordeaux) and Sweden (one strain from Kronoberg) 
between 2013 and 2016. All 49 strains were identified 
by matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) mass spectrometry (Bruker Dal-
tonik GmbH, Bremen, Germany). Strains were previously 
characterized by MLST and/or fbl-typing [5]. Forty-five 
strains belonged to the seven CCs described [(CC1, 
n = 11), (CC2, n = 5), (CC3, n = 11), (CC4, n = 4), (CC5, 
n = 5), (CC6, n = 5) and (CC7, n = 4)], three were single-
ton STs [(ST13, n = 1) and (ST28, n = 2)] and for one strain 
data were not obtained. S. aureus ATCC 25923 was used 
as a quality control strain for all the susceptibility tests 
[20, 41].

Antibiotic susceptibility testing
Antimicrobial susceptibility was assessed by the disk 
diffusion method on Mueller-Hinton agar (Bio-Rad, 
Marnes-la-Coquette, France) according to the Euro-
pean Committee on Antimicrobial Susceptibility Test-
ing recommendations (https://www.eucast.org/) [41]. 
The following antibiotic disks were tested: penicillin G (1 
UI), kanamycin (30 µg), tobramycin (10 µg), gentamicin 
(10 µg), erythromycin (15 µg), clindamycin (2 µg), quinu-
pristin/dalfopristin (15 µg), cefoxitin (30 µg), norfloxacin 
(10 µg), trimethoprim/sulphamethoxazole (25 µg), fusidic 
acid (10 µg), rifampicin (5 µg), levofloxacin (5 µg), tetra-
cyclin (30 µg), minocyclin (30 µg), and linezolid (10 µg) 
(I2A, Montpellier, France).

Minimum inhibitory concentration and minimal 
bactericidal concentration determination
The MIC of CHX (Sigma-Aldrich, Saint Louis, USA) and 
BAC (Sigma, Saint Louis, USA) was determined by broth 

https://www.eucast.org/
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microdilution method according to the Clinical and 
Laboratory Standards Institute guidelines [42]. The con-
centration range tested for CHX and BAC varied from 
0.25 mg/L to 128 mg/L. Strains with MIC below or equal 
to 1 mg/L were categorized susceptible to CHX ; reduced 
susceptibility was defined for strains with MIC between 
1.5 mg/L and 3 mg/L. Strains with MIC below or equal to 
3 mg/L were considered susceptible to BAC and strains 
with MIC values higher than 3  mg/L exhibited reduced 
susceptibility [18].

For MBC determination, 10 µL of the suspension in 
MIC wells without visible microbial growth were subcul-
tured onto Mueller-Hinton agar and incubated at 37  °C 
for 24  h. The MBC was noted as the lowest antiseptic 
concentration for which no growth was observed [33].

All MIC and MBC experiments were carried out in 
triplicate. MIC and MBC obtained twice were recorded 
as the final values.

Molecular detection of antiseptic resistance genes
DNA extraction was performed using the InstaGene™ 
Matrix kit (Bio-Rad), according to the manufacturer’s 
recommendations. Each strain’s DNA was screened by 
PCR for the presence of norA, qacA, qacC, qacG, qacH, 
and qacJ genes using primers presented in Table 4 [43]. 
PCR reaction was composed of 0.25 µL (0.50 µM) of each 
primer, 12.5 µL of Go Taq® G2 Green Master Mix, 5 µL 
of DNA and 7 µL of sterile water, for a final volume of 25 
µL. PCRs were performed, using a Veriti Thermal Cycler 
(Applied Biosystems, Foster City, CA, USA), as follows: 
initial denaturation step at 94  °C for 3 min, 30 cycles of 
94 °C for 1 min, 50 °C for 1 min, 72 °C for 1 min, and final 
extension step at 72  °C for 5  min. PCR products were 
visualized under UV after migration for 45 min at 110 V 
on 1.5% gel containing 0.005 mg/L ethidium bromide.

Research ofqacgenes in whole genomes.
We collected the 11 whole genomes of strains 

used in this study available on NCBI (accession 

numbers: GCA_008728755.1, GCA_008728775.1, 
GCA_008728795.1, GCA_008728815.1, 
GCA_008728715.1, GCA_008728735.1, 
GCA_002097035.1, GCA_002096135.1, 
GCA_002096155.1, GCA_002104555.1, 
GCA_002096075.1) and the reference sequences of the 
qacA, qacC, qacG, qacH and qacJ genes (NCBI accession 
numbers: NC_007931.1, GQ900464.1, NG_051904.1, 
NC_019081.1, NG_048046.1) cited in the publication by 
Worthing KA et al., 2018 [44]. Each qac gene reference 
sequence was searched for in the whole genomes of the 
strains using blastn.

Abbreviations
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CHX  Chlorhexidine digluconate
CoNS  Coagulase-negative staphylococci
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MBC  Minimum bactericidal concentration
MIC  Minimum inhibitory concentration
MLST  Multilocus sequence typing
MRSL  Methicillin-resistant S. lugdunensis
PCR  Polymerase chain reaction
QAC  Quaternary ammonium compound
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