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Abstract 

Background  Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease resulting from dys‑
regulation of the mucosal immune response and gut microbiota. Crohn’s disease (CD) and ulcerative colitis (UC) are 
difficult to distinguish, and differential diagnosis is essential for establishing a long-term treatment plan for patients. 
Furthermore, the abundance of mucosal bacteria is associated with the severity of the disease. This study aimed 
to differentiate and diagnose these two diseases using the microbiome and identify specific biomarkers associated 
with disease activity.

Results  Differences in the abundance and composition of the microbiome between IBD patients and healthy 
controls (HC) were observed. Compared to HC, the diversity of the gut microbiome in patients with IBD decreased; 
the diversity of the gut microbiome in patients with CD was significantly lower. Sixty-eight microbiota members 
(28 for CD and 40 for UC) associated with these diseases were identified. Additionally, as the disease progressed 
through different stages, the diversity of the bacteria decreased. The abundances of Alistipes shahii and Pseudodes-
ulfovibrio aespoeensis were negatively correlated with the severity of CD, whereas the abundance of Polynucleobac-
ter wianus was positively correlated. The severity of UC was negatively correlated with the abundance of A. shahii, 
Porphyromonas asaccharolytica and Akkermansia muciniphilla, while it was positively correlated with the abundance 
of Pantoea candidatus pantoea carbekii. A regularized logistic regression model was used for the differential diag‑
nosis of the two diseases. The area under the curve (AUC) was used to examine the performance of the model. The 
model discriminated UC and CD at an AUC of 0.873 (train set), 0.778 (test set), and 0.633 (validation set) and an area 
under the precision-recall curve (PRAUC) of 0.888 (train set), 0.806 (test set), and 0.474 (validation set).

Conclusions  Based on fecal whole-metagenome shotgun (WMS) sequencing, CD and UC were diagnosed using 
a machine-learning predictive model. Microbiome biomarkers associated with disease activity (UC and CD) are 
also proposed.

Keywords  Gut microbiome, Inflammatory bowel disease, Crohn’s disease, Ulcerative colitis, Machine learning, Whole 
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Introduction
Inflammatory bowel disease (IBD) is a multifactorial dis-
ease that results in chronic intestinal inflammation due 
to the dysregulation of immune responses. More than 
3.5 million patients in the United States and Europe have 
IBD, which is becoming more common worldwide [1].

The human gut microbiome plays an important role in 
nutrient metabolism, pathogen protection, and immune 
system development. It is generally accepted that the 
development and progression of IBD are more closely 
associated with the gut microbiome [2–6]. In IBD, genetic 
and environmental factors such as an altered gut micro-
biome and enhanced intestinal permeability play roles in 
deregulating intestinal immunity, eventually leading to 
gastrointestinal damage [7, 8]. IBD includes Crohn’s dis-
ease (CD) and ulcerative colitis (UC). Although the dis-
tribution, location, and histology of the inflammatory site 
vary between these two diseases, approximately 10–15% 
of patients exhibit the same pattern [9, 10]. Moreover, it 
is difficult to classify the state of the disease because the 
clinical and pathological characteristics overlap [9]. A 
clear differentiation between these two disorders must be 
made to develop an effective treatment plan.

As CD and UC are progressive conditions, determin-
ing their severity is essential for selecting the best course 
of treatment [11, 12]. According to Swidsinski et al., the 
concentration of mucosal-associated bacteria was related 
to the severity of the disease [13, 14]. Potential variations 
in the microbial composition related to disease activity 
may serve as markers for disease monitoring. This study 
investigated biomarkers for differential diagnosis and 
identified distinctive microbiomes associated with dis-
ease activity.

Results
Clinical statistics of the study population
In this study, 482 samples were obtained from 50 healthy 
controls (HC), 173 patients with CD, and 259 patients 
with UC. The demographic and clinical characteris-
tics of the participants are presented in Table  1. There 
were differences in sex, age, and body mass index (BMI) 
between CD and UC patients, but no differences in fam-
ily history. Table  2 shows the basic characteristics of 
patients with CD according to disease activity groups. 
Of the 173 patients, we excluded 82 who received bio-
logics, 4 who underwent surgery, and 18 who underwent 

Table 1  Clinicopathological characteristics used in this study

Group HC CD UC p-value

Number 50 173 259

Gender  < 0.001

  Male 17 (34.0%) 133 (76.9%) 155 (59.8%)

  Female 33 (66.0%) 40 (23.1%) 104 (40.2%)

Age, median years (range) 38 (19—70) 30 (14—83) 49 (19—84)  < 0.001

BMI, median BMI (range) 23.7 (16.2—32.8) 20.4 (12.4—36.5) 22.68 (14.06—38.2)  < 0.001

Family history - 0.493

  Yes 6 (3.5%) 15 (5.8%)

  No 149 (86.1%) 221(85.3%)

  Un-known 18 (10.4%) 23 (8.9%)

Smoking history  < 0.001

  Never 36 (72.0%) 102 (59.0%) 125 (48.3%)

  Past smoker 11 (22.0%) 26 (15.0%) 96 (37.1%)

  Current smoker 3 (6.0%) 26 (15.0%) 18 (6.9%)

  Un-known 0 (0.0%) 19 (11.0%) 20 (7.7%)

Table 2  A basic characteristic of CD patients according to 
disease activity groups

Group Mild Moderate p-value

Number 49 19

Gender 0.153

  Male 36 (73.5%) 17 (89.5%)

  Female 13 (26.5%) 2 (10.5%)

Age, median years (range) 30 (19–83) 29 (14–56) 0.341

BMI, median BMI (range) 22.2 (14.5–36.5) 20.1 (13.1–31.5) 0.110

Family history 0.446

  Yes 2 (4.1%) 0 (0.0%)

  No 41 (83.7%) 18 (94.7%)

  Un-known 6 (12.2%) 1 (5.3%)

Smoking history 0.774

  Never 27 (55.1%) 13 (68.4%)

  Past smoker 7 (14.3%) 2 (10.5%)

  Current smoker 9 (18.4%) 2 (10.5%)

  Un-known 6 (12.2%) 2 (10.5%)
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both biologics and surgery. Of the 69 patients with CD, 
49 had mild CD, 19 moderate CD, and one severe CD. 
There were no differences in sex, age, BMI, family his-
tory, or smoking status between the mild and moderate 
patient groups. Table  3 shows the basic characteristics 
of the patients with UC according to their disease activ-
ity. Of the 259 patients, 61 who received biologics were 
excluded. Of 198 patients with UC, 162 had mild UC, 25 
had moderate UC, and 11 had severe UC. Sex, age, BMI, 
and smoking status were not significantly different in the 
mild, moderate, and severe groups of patients, but there 
was a significant difference in family history (Table 3).

Association of the enterotypes with IBD
Enterotypes are used to categorize people according to 
their gut microbiomes and as potential biomarkers of 
the healthy human intestine. Enterotypes have recently 
attracted attention in predicting their relationships with 
diseases [15]. So, we examined the relationships between 
enterotypes and the health status of our cohort. Princi-
pal Coordinate Analysis (PCoA) of the gut microbiome 
of 50 HC and 432 IBD patients revealed three groups 
(Fig. S1A). The abundance of Bifidobacterium was similar 
between enterotype 2 and 3, although that of Bacteroides 
was higher in enterotype 2 than in enterotype 1, and that 

of Faecalibacterium was similar between enterotype 1 
and 3 (Fig. S1B). 42.5% of the samples were grouped into 
the enterotype 2 cluster (Faecalibacterium), followed 
by 32.1% of the enterotype 1 cluster (Bifidobacterium) 
and 25.3% of the enterotype 3 cluster (Bacteroides). The 
analysis showed that their distribution in HC and IBD 
was significantly different, as shown in Table S1 (Fisher’s 
exact test, p < 0.05). The enterotype with a Faecalibacte-
rium predominance was underrepresented in the HC 
(74% vs 37% vs 40%).

Differences in the taxonomic composition of the gut 
microbiome in patients with CD and UC
The abundance tables were rarefied to 1,222,561 
sequences per sample by random subsampling using the 
phyloseq R package [16]. To evaluate the alpha diversity, 
we calculated the Chao1 diversity index, which considers 
the number, uniformity, and abundance of taxa observed 
in each sample. The alpha diversity indices were lower in 
patients with IBD than healthy controls. The Chao1 diver-
sity index was significantly lower in patients with UC and 
CD than in HC and was significantly lower in patients 
with CD than in UC patients (Fig.  1A). Beta diversity 
was measured as the Bray–Curtis distance, which was 
visualized using principal coordinate analysis (PCoA) 

Table 3  A basic characteristic of UC patients according to disease activity groups

Group Mild Moderate Severe p-value

Number 162 25 11

Gender 0.520

  Male 102 (63.0%) 13 (52.0%) 6 (54.5%)

  Female 60 (37.0%) 12 (48.0%) 5 (45.5%)

Age, median years (range) 49 (19–84) 43 (21–71) 47 (24–67) 0.396

BMI, median BMI (range) 22.8 (14.5–38.2) 23.9 (16.9–30) 19.7 (17.6–26.4) 0.176

Family history 0.020

  Yes 8 (4.9%) 0 (0.0%) 3 (27.3%)

  No 138 (85.2%) 22 (88.0%) 7 (63.6%)

  Un-known 16 (9.9%) 3 (12.0%) 1 (9.1%)

Smoking history 0.806

  Never 77 (47.5%) 14 (56.0%) 4 (36.4%)

  Past smoker 59 (36.4%) 7 (28.0%) 4 (36.4%)

  Current smoker 13 (8.0%) 1 (4.0%) 1 (9.1%)

  Un-known 13 (8.0%) 3 (12.0%) 2 (18.2%)

Fig. 1  Diversity and distribution of microbiomes in healthy control (HC) and IBD (CD and UC) patient groups. A Alpha diversity was calculated 
as the Chao1 index; (B) Beta diversity was calculated as Bray–Curtis dissimilarity. PCoA was used to display the microbiome space 
among the groups. C, D, E Comparison of relative taxa abundance among HC, CD, and UC at the phylum (C), genus (D), and species (E) levels. 
The taxonomic biomarkers were identified using LinDA (FDR <  = 0.05, |log2FC|> = 1). F Volcano plot of the composition of the intestinal microbial 
community at the species level. G Taxon Set Enrichment Analysis (TSEA) results showing the network modules of enriched terms. H Taxon set terms 
representing the association of human diseases with the known composition of the groups (p <  = 0.05)

(See figure on next page.)
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(Fig. 1B). The relative abundance of the gut microbiome 
was compared among the groups (HC, CD, and UC). The 
following percentages in parentheses are in the order of 
HC > CD > UC. Compared to HC, IBD patients had sig-
nificantly higher abundances of phylum Actinobacteria 
(15.22, 22.77, and 27.13%). It is also more abundant in 
patients with UC than those with CD. In contrast, Fir-
micutes (43.60, 33.75, and 39.14%) decreased in patients 
with IBD compared to HC and were more reduced in 
patients with CD than in UC patients (Fig.  1C and Fig. 
S2A). At the genus level, Escherichia (0.64, 9.48, and 
2.67%) increased in patients with IBD compared to HC 
and was significantly higher in patients with CD than in 
UC patients. In contrast, Faecalibacterium (18.13, 10.04, 
and 17.54%) was reduced in patients with IBD compared 
to that in HC; it decreased significantly in patients with 
CD compared to that in UC patients (Fig.  1D and Fig. 
S2B). At the species level, Lachnospiraceae bacterium 
GAM79 (7.53, 2.37, and 2.97%) was lower in patients 
with IBD than in HC, and patients with CD than in UC 
patients. E. coli (0.67, 9.45, and 2.68%) was more abun-
dant in patients with IBD and significantly more abun-
dant in CD patients (Fig. 1E and Fig. S2C). Linear models 
for differential abundance analysis (LinDA) was used to 
compare the predominance of communities between 
groups, and significant differences in microbial abun-
dance were observed between the CD and UC groups. 
Sixty-eight microbiotas were identified at the species 
level, among which 28 were over-represented in the CD 
group and 40 were over-represented in the UC group 
(Fig.  1F, FDR <  = 0.05, absolute log2FC >  = 1). Shigella 
dysenteriae, Erysipelotrichaceae bacterium|46, E.  coli, 
and Escherichia marmotae were more abundant in the 
CD group, whereas Bacillus vallismortis, Lactobacil-
lus ruminis, Alicycliphilus dentirficans, and Lachnospira 
eligens were more abundant in the UC group (Table S2). 
Taxon set enrichment analysis (TSEA) was performed to 
identify the taxon sets associated with host intrinsic fac-
tors. We identified 23 disease-related terms that were 
significant in the curated set of host intrinsic factors, 
including decompensated hepatitis B virus cirrhosis, IBD, 
type 2 diabetes, chronic heart failure, excessive silver ion 
intake, and familial Mediterranean fever (Fig. 1G and H).

Metabolic functions of the different gut microbiome
The HUMAnN3 tool was used to explore the potential 
functions of the microbial community. Subsequently, 
we compared the differentially enriched MetaCyc path-
ways and KEGG Orthology (KO) terms using LinDA. A 
significant difference in the MetaCyc pathway and KO 
terms was observed between patients with CD and UC. 
Sixty-eight differentially abundant MetaCyc pathways 
were identified. Among these, 66 pathways (phytate 

degradation I, mannosylglycerate biosynthesis I, and 
2-methylcitrate cycle I etc.) were enriched in CD patients. 
In comparison, only two pathways (super pathways 
of polyamine biosynthesis II and superpathway ofme-
naquinol-8 biosynthesis II) were enriched in UC patients 
(FDR <  = 0.05 and |log2FC|> = 1) (Table S3). In the KOs, 
1,242 differentially enriched KO terms were found, and 
1153 KO terms (FKBP-type peptidyl-prolyl cis–trans 
isomerase SlpA, biopolymer transport protein ExbD, 
and trehalose 6-phosphate phosphatase [EC:3.1.3.12]) 
were enriched in CD patients. In contrast, 89 KO terms 
(hypothetical protein, stage V sporulation protein AB, 
and multidrug/hemolysin transport system permease 
protein) were enriched in UC patients (FDR <  = 0.05 and 
|log2FC|> = 1) (Table S4).

Alteration in gut microbiome according to the activity 
of CD
The analysis was performed using the same pipeline 
as in the previous analysis. The alpha diversity index of 
the mild and moderate CD groups decreased more than 
that of the HC group. However, the difference between 
the mild and moderate groups was not significant. By 
analyzing beta diversity using Bray–Curtis and PCoA, 
we found significant differences in the microbial com-
munities among the HC, mild, and moderate groups 
(Fig.  2A and B). The microbial composition of relative 
abundance differed between HC and CD but was similar 
in the mild and moderate groups. The following percent-
ages in parentheses are in the order of HC > mild > mod-
erate groups. Verruciomicrobia (0.27, 0.05, and 0.01%) 
and Cyanobacteria (0.04, 0.03, and 0.02%) at the phy-
lum level were lower in the mild and moderate CD 
groups than in the HC group (Fig. 2C and Fig. S3A). At 
the genus level, Escherichia coli (0.64, 5.97, and 8.03%) 
increased in the mild and moderate groups compared to 
the HC group, but the difference between the mild and 
moderate groups was not significant (Fig.  2D and Fig. 
S3B). At the species level, E. coli (0.67, 5.99, and 8.07%) 
increased in the mild and moderate groups compared 
with the HC group, but the difference between the mild 
and moderate groups was not significant (Fig.  2E and 
Fig. S3C). Subsequently, differential abundance analysis 
was performed. First, the microbial compositions of the 
HC and CD groups were compared using LinDA. Dif-
ferential abundance tests revealed that 554 species were 
differentially abundant between HC and CD groups. 
Fifty microbiotas were over-represented in HC, whereas 
504 microbiotas were over-represented in CD (Fig.  2F, 
FDR <  = 0.05 and |log2FC|> = 1) (Table S5). Then, TSEA 
was performed and identified numerous terms related 
to colorectal cancer and 17 other terms (Fig.  2G and 
H). Second, in patients with CD, the mild and moderate 
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Fig. 1  (See legend on previous page.)
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groups were compared at the species level. Eight bacte-
ria (Fig. 2I, p <  = 0.001 and |log2FC|> = 1) were identified 
(Table S6), but among them, bacteria that did not differ 
between the HC and CD groups were excluded. Three 
bacterial species were identified. Alistipes shahii and 
Pseudodesulfovibrio aespoeensis were over-represented in 
the mild group, whereas Polynucleobacter wuianus was 
over-represented in the moderate group (Fig. 2J). Third, 
a correlation between the CD activity and bacterial abun-
dance was identified (Table S7). The abundance of A. sha-
hii (R = -0.57, p = 1.41E-11) and P. aespoeensis (R = -0.46, 
p = 1.59E-07) were negatively correlated with CD activity. 
In contrast, the abundance of Polynucleobacter wianus 
(R = 0.35 and p = 8.77E-05) showed a positive correlation.

Alteration in gut microbiome according to the activity 
of UC
The alpha diversity index decreased in patients with mild, 
moderate, and severe disease compared to the HC group. 
Furthermore, the alpha diversity in patients with mild 
disease differed significantly from those with moderate or 
severe disease. In contrast, there were no differences in 
the Chao1 index between the patients with moderate and 
severe disease. PCoA based on the Bray–Curtis dissimi-
larity index identified significant differences in microbial 
composition among the HC, mild, moderate, and severe 
groups (Fig.  3A and B). The composition of relatively 
abundant microbiomes differed between the HC and UC 
groups. Among patients with UC, the mild and moder-
ate groups were similar, but the mild and severe groups 
differed. The following percentages are in the order of 
HC > mild > moderate > severe groups. At the phylum 
level, Actinobacteria (15.22, 26.00, 25.97, and 33.16%) 
increased in the mild and severe groups compared with 
the HC group. However, Spirochaetes (0.03, 0.02, 0.01, 
and 0.01%) and Cynobacteria (0.04, 0.03, 0.02, and 0.02%) 
decreased (Fig. 3C and Fig. S4A). At the genus level, Bifi-
dobacterium (11.42, 19.80, 20.84, and 30.44%) increased 
in patients with mild, moderate, and severe UC, respec-
tively, compared to HC. However, there were no signifi-
cant differences between the patients with UC (Fig.  3D 
and Fig. S4B). At the species level, the abundance of the 
Lachnospiraceae bacterium GAM79 (7.53, 3.47, 2.45, and 

2.19%) was lower in the UC group than in the HC group, 
but the difference between the moderate and severe 
groups was insignificant (Fig. 3E and Fig. S4C). Differen-
tial abundance between HC and UC was then compared 
using LinDA. Between the HC and UC groups, 332 spe-
cies were differentially abundant. In the HC group, 170 
bacteria were over-represented, whereas 162 were over-
represented in the UC group (Fig.  3F, FDR < 0.05 and 
|log2FC|> = 1). (Table S8). These bacteria are associated 
with many diseases, including irritable bowel syndrome 
(IBS), colorectal cancer, enterocolitis, and UC (Fig.  3G 
and H). Second, we compared patients with mild and 
severe UC at the species level and identified 30 bacte-
rial species. Among them, bacteria that did not change 
between patients with HC and UC were omitted (Fig. 3I, 
p < 0.001 and |log2FC|> = 1) (Table S9). Therefore, a total 
of four microbial communities were discovered. Pantoea 
Candidatus Pantoea carbekii increased in the severe 
group, whereas Porphyromonas asaccharolytica, Akker-
mansia muciniphila, and A. shahii decreased (Fig.  3J). 
Third, a correlation between UC disease activity and spe-
cies abundance was identified (Table S10). UC activity 
was negatively correlated with the abundance of A. sha-
hii (R = -0.42, p = 2.97E-12), P. asaccharolytica (R = -0.30, 
p = 9.08E-07), and A. muciniphila (R = -0.37, p = 2.00E-
09). However, P. candidatus Pantoea carbekii exhibited a 
positive correlation (R = 0.31, p = 4.51E-07).

Classification of IBD by machine learning with microbiome
After establishing that CD and UC have different micro-
bial compositions, we attempted to develop a microbi-
ota-based diagnostic model to distinguish between these 
two diseases. Lazy predict was used to compare clas-
sification models to get the best-performing method. 
Regarding the classification accuracy for CD and UC, 
ridge logistic regression had the highest accuracy, F1 
score and area under the curve (AUC), followed by Lin-
earSVC, RidgeClassifiter, and LinearDiscriminantAnaly-
sis (Fig. S5A, B). Therefore, a penalized (regularized) 
logistic ridge regression model was used with tenfold 
cross-validation to select the best method. The optimal 
lambda (log [λ] = -2.016529) and accompanying regres-
sion coefficients were selected as the location where the 

(See figure on next page.)
Fig. 2  Diversity and distribution of microbiomes in CD subgroups. A Measurement of the Chao1 index of community richness. B PCoA showing 
differences in microbial composition by the Bray–Curtis index. C, D, E Taxonomic composition of the gut microbiome in the levels of CD-active 
group at the phylum (C), genus (D), and species (E). F Difference in microbial abundances between HC and CD (FDR <  = 0.05, |log2FC|> = 1). G 
TSEA network modules displayed by TSEA. H The TSEA results show 17 host-intrinsic terms (p <  = 0.05). I Comparison of the microbial composition 
between mild and moderate (p <  = 0.001, absolute log2FC >  = 1) at the species level. J Signatures of the gut microbiota related to CD activity. 
Box plots represent the median and interquartile range. The significances are represented as follows: ****p <  = 0.0001; ***p <  = 0.001; **p <  = 0.01; 
*p <  = 0.05; and ns, p > 0.05
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mean square error (MSE) was the lowest (Table S11 and 
Fig. S6A). Using the ROC analysis, criterion-related cut-
off values were generated to predict IBD. Based on the 
ideal cut-off threshold (0.59) of the training set, sensitiv-
ity and specificity were determined for each data set. We 
obtained the AUCs of 0.873 and 0.778 for the training 
and test sets. The model was validated in an independent 
cohort of 50 IBD patients based on the logistic regres-
sion coefficients of the selected predictors. As a result, 
an AUC of 0.633 was confirmed in the validation cohort 
(Fig. 4A). PRAUC of 0.888, 0.806 and 0.474 were achieved 
for the training, test and validation sets (Fig. 4B). In a test 
set of 128 IBD, the accuracy, sensitivity, specificity, preci-
sion, and F1 scores were 0.781, 0.765, 0.792, 0.709, and 
0.736. In a validation cohort of 50 IBD, the accuracy, sen-
sitivity, specificity, precision, and F1 scores were 0.625, 
0.600, 0.667, 0.750, and 0.667 (Table 4).

Finally, when we compared the 68 microbes with those 
in previous studies, we found three overlapping species 
(Morganella morganii, Faecalibacterium prausnitzii, and 
Haemophilus parainfluenzae) [17] (Fig. S6B).

Discussion
In recent decades, considerable progress has been made 
in the diagnosis and treatment of IBD and our knowledge 
of the gut microbiome [18]. The gut microbiome contains 
many potential biomarkers associated with disease activ-
ity and treatment efficacy in patients with IBD. Using 
machine learning classification based on gut microbi-
ome analysis of fecal samples, we provide a non-invasive 
approach to IBD diagnosis that is practical and effective 
compared to invasive procedures like colonoscopy.

We identified 68 microbiomes from 3,323 species using 
LinDA to compare the dominance of each community in 
CD and UC. Of the 68 microbiomes, 6 species belonged 
to Citrobacter, 4 species belonged to Escherichia, and 3 
species belonged to Shigella. The microbiomes known 
to cause inflammation were abundant in CD. Especially, 
the abundance of E. coli and S. dysenteriae was signifi-
cantly higher in CD. Adherent invasive E. coli can invade 
and attach to intestinal epithelial cells and prolifer-
ate inside macrophages [19]. On the other hand, in UC, 
anti-inflammatory bacteria were more abundant. Eight 

species were identified as belonging to Prevotella and 2 
species belonging to Comamonas. Prevotella, through its 
antibacterial effect, can prevent the proliferation of other 
pathogens, significantly alleviating the severity of IBD 
[20]. Furthermore, three species of the gut microbiome, 
P. mirabilis, M. morganii, and C. amalonaticus, showed 
a significant increase in patients with CD and UC com-
pared to that in HC. This result is consistent with pre-
vious literature [21–23]. The metabolic activity of M. 
morganii produces indolimins that cause DNA damage. 
M. morganii increased intestinal permeability and exac-
erbated colon tumorigenesis in gnotobiotic mice [21].

In previous studies, a machine learning model for IBD 
diagnosis was trained using information from genomic 
databases [24], the gut microbiome [25, 26], and histo-
logical and endoscopic findings [27]. We applied machine 
learning methods to the microbiome data to distinguish 
between CD and UC. Our results showed that the model 
performed better than previous models. For instance, a 
previous study in which ML models were trained with 
data from bacterial genus and operational taxonomic 
unit (OTU) data from only 20 patients with CD and 19 
with UC, achieved 0.79 AUC and 0.72 AUC, respectively 
[28]. Our study achieved predictive performance with 
0.873 AUC in the train set and 0.778 AUC in the test set. 
Additionally, when we validated our model using an inde-
pendent cohort, we attained performance of an AUC of 
0.633. We suggest that the AUC of 0.633 in an independ-
ent cohort is reasonably good, considering the differences 
in cohorts (Korean vs. American) and sequencing plat-
forms (MGI vs. Illumina), which may cause batch effects.

We identified patterns in which some bacteria changed 
continuously as the disease progressed in patients with 
CD and UC. This result suggests that assessing the sever-
ity of a disease utilizing specific microbial biomarkers 
(anti- and pro-inflammatory bacteria) may help predict 
and monitor the effectiveness of an intervention [29]. 
By analyzing their association with CD activity, A. sha-
hii, P. aespoeensis and P. wuianus were identified. In 
contrast, the microbiota associated with disease activ-
ity in UC includes P. candidatus pantoea carbekii, A. 
shahii, A. muciniphila, and P. asaccharolytica. Inter-
estingly, A. shahii was common in both diseases. The 

Fig. 3  Diversity and distribution of microbiomes in the subgroups of UC according to disease severity. A Alpha diversity measured by the Chao1 
index. B Bray–Curtis-based Beta diversity. Relative abundance of the gut microbiome of the levels of UC activity groups at the phylum (C), genus 
(D) and species (E) levels. F The difference in microbial abundances between HC and UC (FDR <  = 0.05, |log2FC|> = 1). G Network modules 
produced by the microbiota. H The microbiota between HC and UC have been implicated in various human diseases (p <  = 0.05). I Comparison 
of the microbial composition between the mild and severe groups at the species level (p <  = 0.001, log2FC|> = 1). J Biomarkers of bacteria 
associated with the severity of UC. Box plots represent the median and interquartile range. The significances are represented as follows: 
***p <  = 0.0001; ***p <  = 0.001; **p <  = 0.01; *p <  = 0.05; and ns, p > 0.05

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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depletion of Alistipes is an important indicator of a gut 
microbiome imbalance, although A. shahii has a less 
clearly defined metabolic role in the gut microbiota [30]. 
Recent research has highlighted the significant function 
of A. shahii as an inhibitory regulator of tumor develop-
ment and its protective activity against various disorders 
[31, 32]. Like A. shahii, A. muciniphila acts as an immu-
nomodulator in the intestine through regulatory T cells 
that produce IL-10 [33]. A. muciniphila reduces inflam-
matory cytokines and chemokines (TNF-, IL1-, IL6, 
IL12A, MIP-1A, G-CSF, and KC) in the serum and tis-
sues [34]. The known colitis-causing bacteria Clostridium 
difficile, Ruminococcus gnavus, Bacteroides fragilis and 
E. coli, were not associated with disease activity in any of 
the diseases.

Most previous studies on various gut microbiomes, 
including IBD, have used 16S ribosomal RNA gene 
sequencing, which can accurately identify microbi-
omes at the phylum level but is limited at the species 
level [35]. In contrast, the whole-metagenome shot-
gun (WMS) sequencing method allows taxonomy to be 
defined more accurately at the species level and identify 
specific genes [36, 37]. Our study is more accurate than 
previous studies in identifying and comparing species 
levels using WMS sequencing. Another strength was 

the large sample size. IBD research using WMS tech-
nology has been carried out on a small scale, but our 
study used a large sample size, resulting in a better per-
formance of the diagnostic model.

The present study had a few limitations. First, con-
founders, including BMI, age, drug use, lifestyle, and 
enterotypes, were not controlled for, which may affect 
the microbiome. Second, while we validated our model 
in an independent cohort of 80 Western patients, 
another validation in a larger cohort will strengthen the 
usefulness of our microbiome markers. Nonetheless, 
identifying fecal microbiomes associated with disease 
phenotypes and activity at the species level will advance 
our knowledge in the field.

Conclusions
CD and UC had significant differences in microbial 
diversity and gut microbial community composition. 
We classified the two diseases using shotgun metagen-
omics and machine learning approaches. A potential 
biomarker for predicting disease progression has been 
proposed by comparing the activity of each disease. 
These analyses could aid in developing novel prognostic 
and therapeutic strategies for CD and UC using the gut 
microbiome.

Fig. 4  The performance of discriminating CD from UC using 68 microbiome biomarkers using a ridge regression model. A Receiver operating 
characteristic (ROC) curve. B Precision-recall (PR) curve

Table 4  A summary of the diagnostic performance of the microbiome-based biomarker panel in the test set and validation cohorts

Data set Accuracy Sensitivity Specificity Precision F1 score

Test set 0.781
95% CI: (0.700, 0.850)

0.765 0.792 0.709 0.736

Validation set 0.625
95% CI: (0.510, 0.730)

0.600 0.667 0.750 0.667
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Materials and methods
Data collection
Two hospitals (Chungnam National University Hospi-
tal and Daejeon St. Mary’s Hospital) participated in this 
study. The biospecimen and data used in this study were 
provided by the Biobank of Chungnam National Univer-
sity Hospital, a member of the Korea Biobank Network. 
We collected the clinical data from newly diagnosed and 
monitored patients with CD and UC). Patients with CD 
and UC were divided into three subgroups according to 
disease activity (mild, moderate, or severe). To charac-
terize the microbiome associated with disease severity 
in each group, we excluded patients who used drugs that 
could affect the gut microbiome and those who under-
went disease-related surgery.

Public data processing
Metagenomics data and clinical data generated through 
the Inflammatory Bowel Disease Multiomics Database 
website (IBDMDB http://​ibdmdb.​org) were downloaded 
from the Sequence Read Archive (SRA). Among them, 
the Shotgun metagenome sequencing data was down-
loaded by default, and the microbial abundance file was 
used as an alternative to the original Shotgun metagen-
ome sequencing fastq file. If the host_id was the same, 
samples from the initial fecal collection date were used. 
Thus, CD (n = 50) and UC (n = 30) were used to validate 
the machine learning model. MBECS (https://​github.​
com/​rmolb​rich/​MBECS) was used to correct for the 
batch effect between the two studies.

DNA shotgun sequencing
Fecal samples were collected between 2019 and 2020, and 
DNA was extracted from the fecal sample and stored at 
-80 °C until use. gDNA (1 mg) was sheared using an S220 
Ultra Sonicator (Covaris, Woburn, MA, USA). Library 
preparation was performed using the MGIEasy DNA 
Library Prep Kit (MGI, China), according to the manu-
facturer’s instructions. Briefly, after size selection of the 
fragmented gDNA using AMPure XP magnetic beads, 
the fragmented gDNA was end-repaired and A-tailed at 
37 °C for 30 min and 65 °C for 15 min. The index adapter 
was ligated to the ends of the DNA fragments at 23  °C 
for 60 min. After the adapter-ligated DNA was removed, 
PCR was performed to enrich the DNA fragments with 
adapter molecules. Thermocycler conditions were as fol-
lows: 95 °C for 3 min, 7 cycles at 98 °C for 20 s, 60 °C for 
15 s, and 72 °C for 30 s, with a final extension at 72 °C for 
10 min. The double-stranded library was quantified using 
the QauntiFluor ONE dsDNA system (Promega, Madi-
son, WI, USA). The library was circularized at 37 °C for 
30 min and then digested at 37  °C for 30 min, followed 

by cleanup of the circularization product. The library was 
incubated at 30  °C for 25  min using the DNA nanoball 
(DNB) enzyme to make the DNB. Finally, the library was 
quantified using the QuantiFluor ssDNA System (Pro-
mega). The prepared DNB was sequenced on the MGIseq 
system (MGI) with 150  bp paired end reads at a single 
run.

Processing of sequence data
Quality control of the raw sequences of each sample 
was performed using the FastQC software (ver. 0.11.9). 
Primer sequences were removed using Cutadapt, and 
low-quality sequences were trimmed using Trim Galore 
(ver. 0.6.4). Human host reads were subtracted by map-
ping them to the human reference genome (GRCh38) 
using the Burrows-Wheeler Aligner (BWA) (ver. 0.7.17). 
After mapping, the FASTQ-paired files were sorted using 
Samtools Sort (ver. 1.10). Taxonomic classification was 
performed using the standard taxonomic sequence clas-
sification tool Kraken2 (ver. 1.1.1), and relative abun-
dance was estimated using Bayesian Reestimation of 
Abundance with KrakEN (Bracken) (ver. 2.6.2). After 
removing low-abundance reads, the data was normalized 
in several ways (rarefaction and centered log ratio) using 
R (ver. 4.1.1). Based on the MetaCyc database, HMP Uni-
fied Metabolic Analysis Network 3 (HUMAnN3) (ver. 
3.0.0) was used to describe the metabolic potential of 
individuals within a microbial population. The data were 
then combined using a join table script. An unstratified 
table was obtained using the split_stratified_table script. 
LinDA was used to compare variations in the MetaCyc 
pathway abundance. The regrouped_table script was 
used to translate the gene table to uniref90_ko. The KO 
term was renamed using the rename_table script. Then, 
using the same procedure as above, an unstratified table 
was created, and the abundances of KO were compared.

Enterotypes identification using sample clustering 
between healthy control and IBD individuals
The enterotype classification was performed using the 
genus of relative abundance table based on the Jensen-
Shannon branch clustering of samples published by the 
MetaHIT consortium in 2011 in the enterotyping pipe-
line (https://​enter​otype.​embl.​de/#) [38]. Clustering 
results were visualized in Principal Coordinates Analysis 
(PCoA) plots using the ade4 package.

Statistical analysis of metagenome data
R software (ver. 4.1.1) was used for statistical analyses 
and visualization. Chi-square and Fisher’s exact tests 
were used to assess the association between clinical char-
acteristics and microbiome composition. The Wilcoxon 
rank-sum test and Student’s t-test were used to evaluate 

http://ibdmdb.org
https://github.com/rmolbrich/MBECS
https://github.com/rmolbrich/MBECS
https://enterotype.embl.de/#
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the significance of differences in microbiomes between 
groups. The abundance table was rarefied to 1,222,561 
sequences per sample by random subsampling to analyze 
microbial diversity in R. Permutation analysis of vari-
ance (PERM3ANOVA) was performed using the adonis2 
function of the vegan package in R (ver. 4.1.3). LinDA 
were used to identify significant differences in relative 
abundance between the two groups at the species level 
[39]. The analysis codes are provided at https://​github.​
com/​kangd​y9801/​Diagn​osis-​of-​Crohn-s-​Disea​se-​and-​
Ulcer​ative-​Colit​is-​Using-​the-​Micro​biome.

From a given list of taxa of interest, TSEA examines 
whether any patterns exist that are biologically or eco-
logically significant. Each node represents a taxon set 
with color based on the p-value and size based on the 
number of hits. An edge connects two taxa if the shared 
hits are > 20% of the combined taxa [40]. Spearman’s rank 
correlation analysis was used to evaluate the correlation 
between microbiota and disease activity.

Supervised machine learning: Classification
Utilizing Lazy Predict (https://​github.​com/​shank​arpan​
dala/​lazyp​redict), 27 classification models were trained 
to diagnose diseases based on the microbiota identified 
by differential abundance analysis. All hyperparameters 
were set to default. Samples were divided at random 
into 70% and 30%. The model was trained on 70% of the 
total sample, and the remaining 30% comprised the test 
set. The reported results used a ridge logistic regres-
sion model and performed the best. After selecting the 
most optimal model, the performance of the supervised 
machine learning model utilizing only the training sam-
ples was evaluated during the training phase using ten-
fold cross-validation. Data shuffling and splitting were 
performed in ten independent iterations. ROC curve 
analysis was performed to establish the ideal cut-off 
threshold, sensitivity, and specificity. To overcome the 
class imbalance problem, we conducted the precision-
recall (PR) curve [41, 42]. Seven performance indica-
tors, including accuracy, sensitivity, specificity, precision, 
AUC, PRAUC and F1 score, were used to assess the mod-
els’ performance when tested on the dataset.
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