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Abstract 

Background  Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences 
millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut 
microbiota and host-microbiota interactions have been well documented to affect human health. However, inves-
tigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects 
of host genes and gut microbes associated with CAD through integrative genomic analyses.

Results  Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and per-
formed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients 
with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leverag-
ing the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish 
CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent 
associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed 
that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, 
MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., 
J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients 
were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, 
and Monoglobus.

Conclusions  Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host 
genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.
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Background
Coronary artery disease (CAD) mostly arising from ath-
erosclerosis is the most common type of heart disease, 
which affects millions of individuals worldwide [1]. The 
cause of CAD is multifactorial that involve complex envi-
ronmental and genetic factors [2–4]. CAD process can 
be effectively prevented by drug therapy, percutaneous 
coronary intervention (PCI), or coronary artery bypass 
graft (CABG) surgery [5, 6]. However, the early diagnosis 
of CAD remains substantially difficult due to lack of ade-
quate biomarkers. Although several biomarkers, such as 
Fibrinogen and C-reactive protein, have been reported to 
be associated with CAD [7, 8], these biomarkers gener-
ally lack sufficient specificity and significantly detectable 
changes appear mainly in the advanced stages of CAD 
[9]. Thus, the early diagnosis and intervention of CAD 
pose a significant public health challenge with enormous 
medical and societal consequences. There is an urgent 
requirement for new and effective biomarkers to assist 
in the early diagnosis, monitoring, and management of 
CAD.

Gut microbiota comprises the tens of thousands of 
intestinal bacteria and the biological activity in the 
human intestine [10–13], which is essential to the devel-
opment of human health [14–21]. Host-microbiota 
interactions, including inflammatory and metabolic pro-
cesses, have been well-documented to be involved in the 
etiology of multiple complex diseases [22, 23]. Multiple 
lines of evidence have shown that the gut microbiota can 
influence distant cells and organs via a variety of bio-
chemical signals or metabolites [24]. In particular, recent 
studies have indicated that gut microbiome potentially 
impact the cardiovascular system [25, 26]. An increased 
potential for several intestinal flora metabolites, includ-
ing lipopolysaccharides [27], grammabutyrobetaine [28], 
and trimethyllysine [29] biosynthesis in the microbiome, 
has been identified among CAD patients. Most notably, 
a growing number of studies have linked increased lev-
els of the gut microbe-derived trimethylamine-N-oxide 
(TMAO) to cardiovascular diseases [30, 31]. It has also 
recently been demonstrated that the composition of gut 
microbiota can induce the alterations in various serum 
metabolite concentrations that are significantly relevant 
to the severity of CAD [32]. Hence, integrating metagen-
omics with other omics approaches including transcrip-
tomics to investigate the host-microbiome interactions 
will allow for distinguishing effective biomarkers and 
developing precision medicine for the treatment of ath-
erosclerotic cardiovascular diseases [33, 34].

To date, investigating the contribution of gut microbi-
ome changes to CAD is insufficient, and the mechanism 
underlying synergistic interactions between host genes 
and gastrointestinal microbes remains unclear. Thus, we 

performed an integrative genomic analysis to uncover the 
synergy between host genes and gut microbes associated 
with CAD. Furthermore, we also conducted a series of 
bioinformatics analyses to explore the molecular func-
tions and potential mechanisms of microbe-associated 
host genes for the development of CAD, and give a clue 
of the potential biomarkers for diagnosing CAD.

Results
Overview of gut microbiota
A total of 52 fecal and 50 blood samples from CAD 
patients and matched controls were sequenced in the 
current study (Supplementary Tables S1 and S2). Clinical 
information, including baseline characteristics, medica-
tions, and laboratory data of the CAD and control group, 
is shown in Table 1. There was no significant difference 
in age, gender, background medication, or other base-
line characteristics between the two groups of subjects 
(P > 0.05). The degree of coronary artery stenosis was 
significantly different between the two groups (P < 0.05). 
At the same time, according to the results of coronary 
angiography, we judged that patients with CAD were in 
the same disease stage, that is, at least one main coronary 
artery stenosis ≥ 70%, but not AMI.

Through 16S rRNA sequencing, we obtained 964 Oper-
ational Taxonomic Units (OTUs) from all 52 fecal sam-
ples using Qiime2 software. Among them, there were 654 
(67.84%) shared OTUs between CAD and control sub-
jects, and 248 (25.73%) and 62 (6.43%) unique OTUs for 
CAD and control groups, respectively (Fig. 1a). Although 
no significant difference was observed in Shannon 
(Fig. 1b) and Phylogenetic Diversity (PD, Fig. 1c) indexes 
between CAD and control groups, beta-diversity analysis 
revealed that there was a significant difference in overall 
bacterial composition between two groups (Fig. 1d).

To provide a clearer understanding of the gut micro-
bial features in CAD patients, we summarized the rela-
tive abundance of gut microbes at different taxonomic 
levels. At phylum level, the major gut microbes belong to 
Firmicutes, Bacteroidota, Fusobacteriota, and Proteobac-
teria (Fig. 1e and g). At genus level, the top 10 abundant 
bacteria were Bacteroides, Prevotella_9, Lactobacillus, 
Limosilactobacillus, Fusobacterium, Ligilactobacillus, 
Escherichia-Shigella, Faecalibacterium, Klebsiella, and 
Alloprevotella (Fig. 1f ).

Difference in gut microbiota between CAD and control 
group
By performing differential abundant analysis, we iden-
tified 18 differential abundant genera between CAD 
patients and health controls (Fig. 2a and Supplementary 
Table S3). Genus Blautia, Fusicatenibacter, Monoglobus, 
and Eubacterium were depleted in CAD patients, while 
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Sutterella, Lachnospiraceae_NK4A136_group, UCG-002, 
UCG-005, [Eubacterium]_hallii_grou, Collinsella, Coli-
dextribacter, NK4A214_group, Negativibacillus, Fae-
calitalea, Family_XIII_AD3011_group, Peptoniphilus, 
Fructilactobacillus, and Solobacterium were enriched 
in CAD patients. Among them, eight of these identi-
fied microbes, including Blautia, Fusicatenibacter, 

Monoglobus, Eubacterium, UCG-002, UCG-005, Col-
linsella, and NK4A214_group, have been reported to be 
associated with CAD, acute myocardial infarction, or 
CAD complicated with non-alcoholic fatty liver disease 
in previous studies [27, 35–42]. For example, Hu et  al. 
[37] reported that the decreased abundances of Fusi-
catenibacter was identified in CAD patients, and Ahrens 

Table 1  Clinical characteristics of patients with CAD and non-CAD

* P < 0.05

CAD Control p
(n = 31) (n = 23)

Age (years) 63.97 ± 8.33 62.28 ± 6.84 0.419

Males (n, %) 16 (51.61) 12 (52.17) 0.977

Smoker (n, %) 15 (48.39) 9 (39.13) 0.614

Alcohol (n, %) 14 (45.16) 12 (52.17) 0.713

Arterial hypertension (n, %) 18 (58.06) 16 (69.57) 0.598

Diabetes mellitus (n, %) 9 (29.03) 5 (21.74) 0.603

Hyperlipidemia (n, %) 4 (9.68) 3 (13.04) 0.989

Family history of CAD (n, %) 6 (19.35) 2 (8.70) 0.314

Syncope (n, %) 1 (3.23) 0 (0) 0.389

Atrial fibrillation (n, %) 2 (6.45) 4 (17.39) 0.233

Peripheral arterial disease (n, %) 1 (3.23) 1 (4.35) 0.832

Leukocyte (× 109/L) 6.26 ± 1.62 6.07 ± 1.91 0.782

Neutrophil (%) 63.14 ± 7.51 61.82 ± 9.81 0.571

Lymphocyte (%) 27.58 ± 6.57 29.08 ± 8.06 0.445

Hemoglobin (g/L) 134.77 ± 16.11 137.04 ± 15.39 0.596

Platelet (× 109/L) 217.94 ± 43.19 217.80 ± 60.99 0.992

Albumin (g/L) 39.03 ± 3.23 39.33 ± 2.21 0.694

ALT (U/L) 22.81 ± 11.30 18.25 ± 5.31 0.074

AST (U/L) 23.55 ± 7.27 23.63 ± 4.45 0.962

Creatinine (umol/L) 76.74 ± 18.39 73.03 ± 19.73 0.475

Uric acid (umol/L) 310.35 ± 85.91 305.35 ± 81.14 0.829

Triglyceride (mmol/L) 2.06 ± 1.87 1.53 ± 1.33 0.253

Cholesterol (mmol/L) 4.13 ± 0.87 4.21 ± 0.93 0.736

High-density lipoprotein (mmol/L) 1.05 ± 0.25 1.17 ± 0.27 0.099

Low-density lipoprotein (mmol/L) 2.17 ± 0.68 2.24 ± 0.83 0.722

CKMB (U/L) 14.26 ± 9.46 14.83 ± 4.91 0.788

cTNI (ug/L) 0.05 ± 0.14 0.01 ± 0.00 0.168

Echocardiography

  LVEF (%) 64.53 ± 4.63 63.27 ± 8.30 0.494

Medication

  ACEI (n, %) 7 (22.58) 3 (13.04) 0.421

  ARB (n, %) 10 (32.26) 9 (39.13) 0.674

  ARNI (n, %) 3 (9.68) 4 (17.39) 0.436

  β-blocker (n, %) 24 (77.42) 12 (25.25) 0.261

  Ivabradine (n, %) 0 (0.00) 2 (8.70) 0.101

  MRA (n, %) 7 (22.58) 2 (8.70) 0.217

  Antiplatelet drugs/A (nticoagulants (n, %) 31 (100.00) 23 (100.00) 1.000

  Lipid lowering agents (n, %) 28 (90.32) 20 (86.96) 0.897

  Coronary artery stenosis (%) 84.58 ± 6.58 15.71 ± 1.35  < 0.01*
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Fig. 1  Overview of intestinal flora composition in control and CAD patients. A OTU Difference Venn diagram between Con and CAD; The 
Operational Taxonomic Units (OTUs) were generated by using the Uparse. B and C The Shannon and PD indexes; D beta-diversity analysis; The blue 
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et al. [42] documented that Monoglobus was significantly 
decreased in CAD patients, which are in line with our 
findings as shown in Fig. 2a (P = 0.049 for Fusicatenibac-
ter, and P = 0.021 for Monoglobus). We found that Blautia 
exhibited significantly low-abundances in CAD patients, 
whereas the enrichment of Blautia was observed in 
CAD patients with in-stenosis in a previous study [38]. 
Notably, several microbes, including Sutterella, Colidex-
tribacter, Negativibacillus, Faecalitalea, Peptoniphilus, 
Fructilactobacillus, and Solobacterium, were identified 
to be associated with CAD in the current investigation 
(Fig.  2a). Detailed taxonomic abundance differences of 
gut microbiota at all taxonomic levels are shown in the 
Supplementary Fig. 1a-d.

By applying the Random Forest procedure, we found 
that 20 bacteria biomarkers can distinguish CAD patients 
from health controls with a good performance. The over-
all AUC was 0.81 using genus-level abundance as input 
(Fig. 2b). By overlapping genera identified from two inde-
pendent methods of Mean Decrease Accuracy (Fig.  2c) 
and Mean Decrease Gini (Supplementary Fig.  1e), we 
emphasized the importance of Rikenellaceae_RC9_gut_
group, Coprobacter, Blautia, and Faecalibaculum on 
CAD, of which several have been reported to be associ-
ated with CAD or its comorbidities [38, 43, 44]. Of note, 
the biomarker genus Blautia was also identified to be sig-
nificantly differential genera.

Functional implications of gut microbiota dysbiosis in CAD
To further explore gut microbial functional dysbiosis 
of CAD patients, we performed functional annotation 
and differential analyses based on bacterial profiles. We 
observed a depletion of three biological pathways, includ-
ing beta − Lactam resistance, cationic antimicrobial pep-
tide (CAMP) resistance and viral proteins functions, and 
an up-regulation of 10 biological pathways, including 
nitrogen and methane metabolism, microRNAs in can-
cer and tropane, piperidine and pyridine alkaloid biosyn-
thesis in CAD patients comparing with health controls 
(P < 0.05, Fig. 3a and Supplementary Table S4).

Furthermore, we measured the associations of dif-
ferential abundant bacteria between CAD and health 
groups with 23 clinical indices, including blood rou-
tine, heart, liver, and kidney functions. There were a 
series of significant associations between gut microbes 
and clinical indices relevant to heart functions. Genus 
Sutterella, Fructilactobacillus, and Peptoniphilus were 
positively associated with cardiac troponin I (cTNI), 
the cardiac regulatory proteins that control the calcium 
mediated interaction between actin and myosin. Brain 
natriuretic peptide (BNP) was significantly associ-
ated with genus Negativibacillus. Creatine kinase (CK) 
showed significantly positive correlations with genus 
Fusicatenibacter, Blautia, and [Eubacterium]_hallii_
group. In addition, C-reactive protein (CRP) is a widely 

Fig. 2  Difference of gut microbiota between CAD and Control group. A The differential abundant genera between CAD and control group. 
The abundance of microbe was log-transformed. The significant level of each microbe was calculated by using Student’s t-test. B The AUC 
of genus-level abundance. C The top 10 differential genera between CAD and control group
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used marker of inflammation [45], and elevated CRP 
levels are involved in the development and progression 
of thrombosis and CAD [46]. Our results indicate that 
CRP exhibit a significantly positive association with 
genus Peptoniphilus and Fructilactobacillus (Fig. 3b).

Transcriptional analysis revealed genes associated with gut 
microbes
To reveal transcriptome difference between CAD 
patients and health controls, we further performed differ-
ential gene expression analysis on PBMC transcriptomic 

Fig. 3  Function annotation and differential analyses of gut microbiota dysbiosis. A Functional implications of gut microbial dysfunction in patients 
with CAD; The x axis indicates the log2-transformed fold change of each functional annotation. P value for each functional annotation was showed 
in the plot. The functional information of bacterial genomes from the KEGG database, annotated using the UProC and PAUDA methods, 
was mapped to the SILVA database. B The association of differential abundant bacteria with clinical indices. Significances tested by Pearson 
correlation analysis. * FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001. Color bar indicates the level of correlation coefficients (corr)
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profiles. Comparing with health controls, there were 409 
up-regulated and 762 down-regulated genes in CAD 
patients (P < 0.05; Fig.  4a and Supplementary Table S5), 
including APOE and OLFML3, which have been well-
documented to be associated with CAD in previous stud-
ies [47, 48]. GSEA analysis showed that CAD group is 
characterized by depletion in interferon signaling-related 
pathways, including interferon gamma signaling path-
way and interferon alpha/beta signaling pathway, and is 
enriched in several immune-regulated and inflammation-
related pathways, including TNFs bind their physiologi-
cal receptors, Rap1 signaling, and TNFR2 non-canonical 
NF-kB pathway (Fig. 4b). Random Forest procedure iden-
tified that differentially expressed genes distinguished 
CAD patients from health controls with an AUC value of 
0.84. Moreover, combining gene and microbial biomark-
ers increased performance of the Random Forest model, 
with an AUC value of 0.92 (Fig. 4c).

Considering that the significantly dis-regulated gut 
microbes might be associated with host gene abnormal 
expression and biological functions, we performed a cor-
relation analysis on differentially abundant gut microbes 
(n = 18) and differentially expressed genes (P < 0.01, 
n = 347). We obtained a total of 697 suggestive or signifi-
cant correlations (P < 0.05, Fig.  4d). Among them, there 
were seven significant correlations with g_Fusicatenibac-
ter with FDR-adjusted P < 0.05, including six positively 
correlated genes of GBP2, MLKL, GPR65, SLK, ETV6, 
and AFF1, and one negatively correlated gene of CD70 
(Fig.  4e). Among these genes, several have been docu-
mented to be implicated in the development of CAD [49, 
50]. For example, a network-based prioritization analy-
sis identified the interferon-induced guanylate-binding 
protein 2 (GBP2) as a key regulator orchestrating bio-
logical processes relevant to CAD [49]. MLKL, which can 
directly induce necroptosis [51], has been reported to be 
involved in different inflammatory diseases, including 
tumor necrosis factor-induced shock [52], ischemia–rep-
erfusion injuries [53], and obesity [54]. Recently, Kamal 
and coworkers have found that MLKL is associated to 
hallmarks of atherosclerosis with and without type II 

diabetes mellitus, which could be a potential drug tar-
get for treating atherosclerotic patients [50]. Thus, these 
g_Fusicatenibacter-host gene interactions may play an 
important role in CAD.

Different gene programs associated with gut microbes
We further performed differential gene program analy-
sis to explore whether there exist distinct gene sets with 
different functions associated with gut microbes. Based 
on the unsupervised clustering analysis, these differen-
tial genes were grouped into two clusters (Fig. 4d). Clus-
ter 1 (highlighted in red) were positively correlated with 
genera that were depleted in CAD patients (e.g., Blautia, 
Eubacterium, Fusicatenibacter, and Monoglobus). Clus-
ter 2 (highlighted in blue) were positively correlated with 
genera that were enriched in CAD patients. Pathway 
enrichment analysis demonstrated that genes in clus-
ter 1 showed significant enrichments in immune-related 
pathways (FDR-adjusted P < 0.05), including regulation of 
RUNX1 expression and activity, interferon gamma sign-
aling, DDX58/IFIH1-mediated induction of interferon-
alpha/beta and interferon signaling. This highlighted a 
set of genes involved in interferon signaling pathway, 
such as BP2, GBP4, GBP5, GBP6, PML, STAT1, CASP10, 
IFIH1, TRAF6, UBA7, and UBE2L6 (Fig.  4d). Although 
no significant enrichment was observed for genes in 
cluster 2 (FDR-adjusted P < 0.05), we identified that sev-
eral pathways exhibited suggestive enrichments for genes 
in cluster 2 (P < 0.05), including GRB7 events in ERBB2 
signaling, sodium-coupled sulphate, di- and tri-carbox-
ylate transporters, and PI3K events in ERBB4 signaling. 
Together, these two distinct gene programs relevant to 
gut microbes potentially have different biological func-
tions contributing to CAD.

Discussion
The role of gut microbes in CAD is still not fully under-
stood. Deciphering correlation of gut microbes with 
CAD related gene functions and clinical indices contrib-
ute in understanding the underlying pathophysiological 
mechanism of CAD. In the current study, we performed 

(See figure on next page.)
Fig. 4  The transcriptome difference between CAD and control group. A The volcano map of differential genes between CAD patients and controls; 
Red color indicates the significantly up-regulated genes, blue color indicates the significantly down-regulated genes, and gray indicates 
non-significant genes. B The pathway enrichment analysis of differential genes by using GSEA. The x axis indicates the normalized enrichment 
score. Dark blue or dark orange indicates FDR-adjusted P value ≤ 0.05, and light blue or light orange indicates FDR-adjusted P value > 0.05. C 
The ROC plot showing the performance of the combination of gene and microbial biomarkers based on Random Forest model. The blue line 
indicates the performance of using gene expression biomarker alone, and the red line indicates the performance of combining gene and microbial 
biomarker. D Heatmap showing the correlation analysis on differentially abundant gut microbes and differentially expressed genes. * indicates 
the significant correlation (P < 0.05). Color bar in indicate the correlation coefficient (corr). E Representative example demonstrating the correlation 
of g__Fusicatenibacter (log-transformed abundance) with the log-transformed expression of seven genes. There were one negatively correlated 
gene of CD70 and six positively correlated genes (i.e., AFF1, GPR65, MLKL, GBP2, SLK, and ETV6)
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Fig. 4  (See legend on previous page.)
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16S rRNA sequencing to comprehensively elucidate dif-
ference in profiles of gut microbiome in CAD patients 
and health controls. Our results exhibited that structure 
of gut microbiome differed in CAD and health group. 
In the CAD patients, 4 genera such as Blautia, Eubacte-
rium, and Fusicatenibacter were depleted, and 14 genera 
such as Sutterella, and Collinsella were enriched.

Accumulating evidence has been documented that 
remarkably disturbed gut microbiota were detected in 
patients with cardiovascular diseases [25–28]. Mitra 
et  al. [55] indicated that host microbiome associated 
families, such as Porphyromonadaceae, Bacteroidaceae, 
Micrococcacaea, and Streptococcacaea, were increased 
in asymptomatic atherosclerotic plaques patients than 
symptomatic atherosclerotic plaques patients. Based on 
these findings, we particularly focused on the relation-
ship of altered Blautia, Eubacterium, and Fusicateni-
bacter with CAD. These three microbes were major 
producers of short chain fatty acids (SCFAs), which are 
important secondary metabolites capable of regulating 
cardiometabolic health [56, 57]. Previous studies [58, 59] 
have reported a reduced abundance of SCFA produc-
ers in CAD patients in different population and resolu-
tion. A recent study by Guo et  al. [60] indicated that 
SCFA was significantly lower in AMI group than in con-
trol group. In addition, bacteria that can produce SCFA, 
such as Ruminococcus and Bacteroides, were significantly 
reduced in CAD patients [61].

Butyrate and other SCFAs produced by gut microbes 
serve as signaling molecules to modulate blood pressure, 
inflammatory responses and other metabolic functions. 
There are increasing evidence indicates the importance 
of SCFAs in regulating cardiac function [61, 62]. Consid-
erable studies have demonstrated the parasympathetic 
activation effects of the SCFA propionate [61]. Park and 
coworkers reported that butyrate potentiates lipoteichoic 
acid-induced inflammasome activation through the 
inhabitation of histone deacetylase (HDAC) [63]. Kib-
bie et al. [64] have demonstrated that butyrate is enable 
to directly reduce CD4 + T cell activation and prolifera-
tion via HDAC inhibition and GPR43 signaling. Recently, 
Zhong et  al. [65] uncovered that butyrate attenuates 
vascular calcification, a common pathological change 
in cardiovascular tissues, via its dual effects on HDAC 
inhibition and NFκB activation based on cellular and ani-
mal models. Also, they found that knockdown of Gpr41 
could attenuated butyrate-induced vascular smooth mus-
cle cells calcification. Zhou et al. [66] demonstrated that 
oral propionate supplementation improve MI therapy by 
parasympathetic activation based on the gut-brain axis. 
Moreover, a study of malonate intervention in the treat-
ment of myocardial infarction in mice has showed that 
malonate enable to shift the cardiac metabolic pattern of 

oxidative phosphorylation to glucose metabolic pattern 
and promote cardiomyocyte proliferation, hemodialysis 
and cardiac regeneration in adult mice after myocardial 
infarction [67]. Jiang et al. [68] reported that intramem-
branous butyrate injection improved cardiac function 
by promoting macrophage differentiation and inhibiting 
inflammation and sympathetic remodeling after myocar-
dial infarction. Our results emphasized the importance of 
gut microbial functions involved in cationic antimicrobial 
peptide (CAMP) resistance in CAD. CAMPs are hybrid 
peptides playing an important role in defensing against 
invasive bacterial infection for host. However, in addition 
to antimicrobial effect, CAMPs were believed to be an 
important link between inflammation and atherosclerotic 
cardiovascular disease [69]. For example, elevated plasma 
α-defensin is associated with an increased risk for cardio-
vascular morbidity [70]. PR-39, a proline-arginine-rich 
cationic antimicrobial peptide, has been reported to play 
a cardioprotective role in myocardial I/R injury through 
inhibition of tumor necrosis factor-α (TNF-α)-induced 
degradation of the NFκB inhibitor IκBα [71].

The correlation of gut microbiome with CAD indicated 
that it could be early diagnostic marker for the risk of 
CAD. In this study, the AUC for gut microbiome-based 
diagnostic RF model was 93.9%. This was supported by 
a previous study [39], which has reported that predic-
tive model based on gut microbiome is able to provide 
a robust prediction of CAD (AUC = 87.7%). Moreo-
ver, combining gut microbiome with clinical variables 
increased power of prediction model, generating an AUC 
of 90.4%. These results reinforced the capacity of gut 
microbiome as diagnostic biomarkers for CAD.

To investigate the interactional functions of gut 
microbes and host genes on CAD, we performed cor-
relation analysis of the abundances of gut microbes and 
the expression levels of host genes. We observed signifi-
cant reduction of interferon signaling pathways in CAD 
patients, as well as strong association of depleted bacte-
ria with genes involved in interferon signaling pathways. 
Our result suggested that depletion of SCFA-producing 
bacteria (Blautia, Eubacterium, and Fusicatenibacter) 
may contribute to the decrease of interferon signaling 
pathways in CAD patients. One mechanism by which 
microbes can modulate the host disease is through regu-
lation of cytokine signaling [72]. Interferons (IFNs) are 
classified into three families (type I, type II, and type 
III) based on sequence homology. Among them, IFN-γ 
is a key cytokine implicated in both innate and adap-
tive immunity, and studies on the involvement of IFN-γ 
in multiple stages of the atherosclerotic process, play-
ing different roles, have been carried out for decades. 
In  vitro and in  vivo studies [73] have shown that IFN-γ 
has both pro- and anti-atherogenic properties and plays 
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a large role in all stages of CAD progression. Mean-
while, the type I interferons have the capacity to regulate 
the development or function of virtually every immune 
effector cell, contributing to the anti-inflammatory and 
anti-tumor responses, which is essential in the process of 
CAD [74–76].

Some limitations in the present study are warranted 
to comment. First, it’s worth noting that the functional 
profiling of the gut microbiome was computationally 
inferred from amplicon sequencing data, and it could 
differ from that measured by transcriptomic sequencing 
techniques. According to a previous study [77], there can 
be significant genomic and phenotypic diversity among 
strains of the same species. This diversity has important 
implications for the ecological function of an organism, 
as well as the conditions required to culture it. Thus, it is 
impossible to reliably assess whether a microbe is “cultur-
able” based on 16S rRNA gene sequence. Second, current 
study only curated a moderate sample size to establish 
the link between microbiome and host transcriptomic 
profiles for uncovering the pathology of CAD. The identi-
fied links does not imply causality but may reflect indi-
rect discovery of causal associations. Future studies 
with more large-scale samples are needed to conduct 
for validating the identified relationships and exploring 
the underlying causality. Additionally, in light of mul-
tiple lines of evidence [78–83] have documented that 
integrating multi-omic datasets including GWAS, sin-
gle-cell sequencing data, and epigenetic data contribute 
to uncover the molecular etiology of complex diseases. 
More integrative genomic analyses of microbiome with 
other omics are warranted for distinguishing the pathol-
ogy of CAD.

Conclusions
In summary, our results provide evidence to support that 
gut microbes play critical roles in CAD mediated by host 
genes. Reduction of SCFA-producing bacteria and inter-
feron signaling genes are associated with CAD. Depletion 
of SCFA-producing bacteria, e.g. Blautia, Eubacterium, 
and Fusicatenibacter, may contribute to dysfunction of 
interferon signaling and cardiovascular functions. These 
identified microbes may have potential for diagnosis or 
therapy of CAD.

Methods
Study participants and sample collection
In the current cross-sectional study, 31 patients with 
CAD and 21 healthy controls were recruited from the 
Department of Cardiology, Hangzhou First People’s 
Hospital, Zhejiang University School of Medicine. This 
study was reviewed and approved by the Ethics Commit-
tee of Zhejiang University. The enrolled patients signed 

a written informed consent form. All patients’ medical 
history and baseline data were obtained from the elec-
tronic medical records system. To obtain high-quality 
samples, patients with CAD included in this study were 
required to meet the following criteria: 1) age > 25 years 
and < 80  years; 2) show ≥ 70% stenosis in at least one 
major branch of the coronary artery. The healthy control 
group population should meet the following criteria: 1) 
age > 45  years and < 70  years; 2) all three coronary ves-
sels ≤ 20% stenosis. Besides, individuals without coro-
nary angiography testing or with one of follow disorders, 
including cancer, AMI, antibiotic exposure, and any 
other cardiac-related disease or systemic disease were 
excluded.

During the hospitalization period, these 52 subjects 
were educated how to properly collect midcourse fecal 
samples to reduce the possibility of environmental bacte-
rial contamination. One morning fasting fecal sample was 
taken for the first time within 24 h of admission for each 
patient. All fresh fecal samples were stored in − 80 °C for 
subsequent processing and sequencing. Pre-operative 
blood samples for 50 of these participants were drawn 
and stored in PAXgene blood RNA tubes at -80 °C before 
further processing [84].

16S rRNA sequencing
Total genomic DNA was extracted from fecal samples. 
The V3-V4 region of bacterial 16S rRNA gene was ampli-
fied using primers (341F: 5′-CCT​ACG​GGNGGC​WGC​
AG-3′, 806R: 5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′) 
with barcodes. The mixed PCR products were purified 
using the Qiagen Gel Extraction Kit (Qiagen, Germany). 
Sequencing libraries were generated using the TruSeq® 
DNA PCR-Free Sample Preparation Kit (Illumina, USA). 
The library quality was assessed using the Qubit@ 2.0 
Fluorometer (Thermo Scientific) and the Agilent Bioana-
lyzer 2100 system. Finally, the library was sequenced on 
an Illumina NovaSeq 6000 platform, generating 250  bp 
paired-end reads.

Raw sequences were demultiplexed based on barcodes. 
After trimming off the barcodes and primers, paired-end 
sequences were assembled with FLASH (v1.2.7). The 
assembled raw tags were quality controlled with Fastp 
(v0.23.1) [85] to obtain high-quality clean tags (Sup-
plementary Table S1). Chimeric sequences were fur-
ther removed from clean tags using vsearch (v2.22.1) 
[86]. The filtered sequences were clustered based on 
97% identity to generate Operational Taxonomic Units 
(OTUs). The Uparse (v7.0.1001, http://​www.​drive5.​
com/​uparse/) method was applied to cluster the filtered 
sequences into OTUs at 97% identity threshold. Repre-
sentative sequences were extracted and annotated with 
Mothur (v1.48.0) [87] and SILVA (v138.1) database [88]. 

http://www.drive5.com/uparse/
http://www.drive5.com/uparse/
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The MUSCLE (v3.8.31) [89] tool was leveraged to per-
form sequence alignment for obtaining phylogenetic rela-
tionships of all OTU representative sequences. Finally, 
the data for each sample were normalized based on the 
sample with the lowest number of sequences by rrarefy() 
function in the vegan (v2.6–4) R package [90], which gen-
erates on randomly rarefied community data frame based 
on the given sequencing depth to remove the effects of 
different sample sizes. Subsequently, alpha and beta 
diversity analyses were based on the normalized data.

Transcriptomic sequencing
Total RNA was extracted from the isolated PBMCs using 
the QIAzol and miRNeasy Mini Kit (Qiagen, CA, USA). 
The RNA integrity (average RIN: 7.05; standard devia-
tion (SD): 1.27, Supplementary Table S2) was tested using 
the Bioanalyzer 2100 system with the RNA Nano 6000 
Assay Kit (Agilent Technologies, CA, USA). Poly-T oligo-
attached magnetic beads were used to purify mRNA from 
the total RNA, which was subsequently used to establish 
cDNA libraries for RNA sequencing. Quality-controlled 
cDNA library was sequenced on Illumina Novaseq plat-
form (Beijing, China), producing paired-end sequences 
(150 bp).

Raw transcriptomic sequencing data were qualified 
using the FastQC (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/). Ensembl human reference 
genome (http://​asia.​ensem​bl.​org/​info/​data/​ftp/​index.​
html, file name: Homo_sapiens.GRCh37.75.cdna.all.
fa) was used for alignment and annotation. The Hisat2 
(v2.0.5) tool [91] was used to establish index for refer-
ence genome, and align reads to the reference genome. 
The FeatureCounts (v1.5.0-p3) method [92] was used 
to summarize read counts for each gene.

Functional enrichment analysis
We performed differential gene expression (DGE) analy-
sis using the DESeq2 (v1.36.0) [93] (Supplementary Table 
S5). P-values were evaluated by the Student’s t-test [94], 
and multiple testing corrections were carried out using 
the Benjamini & Hochberg false discovery rate (FDR) 
method [95]. Gene set enrichment analysis (GSEA) and 
over representative analysis (ORA) were performed by 
using the WEB-based Gene Set AnaLysis Toolkit (Web-
Gestalt, https://​www.​webge​stalt.​org/) [96]. Pathways in 
the Reactome database [97] were used as a reference.

Bioinformatics and statistical analyses
Qiime (v1.9.1) [98] was used to calculate alpha diver-
sity indexes and Unifrac distance and sample clustering 
tree. Unifrac distance measures the evolutionary branch 
weight of different OTUs in the sample OTU table to 
assess the differences between OTUs. After obtaining the 

Unifrac distance matrix, the UPGMA algorithm was used 
to construct a sample clustering tree. PCoA analyses was 
conducted with ade4 package in R (v2.15.3). Differences 
in alpha diversity indexes between groups were analyzed 
by the Wilcoxon rank-sum test [99] in R (v2.15.3).

Tax4Fun [100] was applied to predict functional pro-
files. Specifically, it extracted the full-length 16S rRNA 
gene sequences of prokaryotic genomes from the KEGG 
database [101] and used the BLASTN algorithm to align 
them to the SILVA SSU Ref NR database [102] (with a 
BLAST bitscore > 1500) to establish a relevant matrix. 
The functional information of bacterial genomes from 
the KEGG database, annotated using the UProC and 
PAUDA methods, was then mapped to the SILVA data-
base [88] for functional annotation. OTUs were clustered 
based on the SILVA database reference sequences.

Differences in log-transformed bacterial abundance 
and predicted functional profiles between groups were 
analyzed by the Student’s t-test in R (v2.15.3), analogue to 
previous studies [103, 104]. Additionally, we applied the 
Random Forest method [105] to recognize bacterial bio-
markers that classify CAD patients from health controls. 
R package “randomForest” (RF) was used to perform ran-
dom forest classification with default “mtry” parameters. 
Variable importance was measured by permuting each 
predictor variable and measuring the decrease in model 
accuracy. We adopted a nested cross-validation proce-
dure [106] in which the least important variables were 
sequentially removed until the mean error rate of the 
model reached two standard deviations above the lowest 
error rate. We calculated the area under the ROC curve 
(AUC) with the “ROCR” package [107] in R (v2.15.3). To 
select biomarkers, we sorted gut microbes according to 
their RF importance and calculated the AUC using differ-
ent numbers of top gut microbes. The gut microbes with 
the highest AUC were selected as biomarkers.

To assess the correlations of bacterial abundances with 
level blood indicators and expression levels of genes in 
paired peripheral blood, the Pearson correlation test was 
applied, and FDR-adjusted P < 0.05 was considered to be 
significant. All the plots were visualized in R (v2.15.3).
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