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Abstract 

The bacterial growth rate is important for pathogenicity and food safety. Therefore, the study of bacterial growth 
rate over time can provide important data from a medical and veterinary point of view. We trained convolutional 
neural networks (CNNs) on manually annotated solid medium cultures to detect bacterial colonies as accurately 
as possible. Predictions of bacterial colony size and growth rate were estimated from image sequences of independ-
ent Staphylococcus aureus cultures using trained CNNs. A simple linear model for control cultures with less than 150 
colonies estimated that the mean growth rate was 60.3 µm/h for the first 24 h. Analyzing with a mixed effect model 
that also takes into account the effect of culture, smaller values of change in colony size were obtained (control: 51.0 
µm/h , rifampicin pretreated: 36.5µm/h ). An increase in the number of neighboring colonies clearly reduces the col-
ony growth rate in the control group but less typically in the rifampicin-pretreated group. Based on our results, CNN-
based bacterial colony detection and the subsequent analysis of bacterial colony growth dynamics might become 
an accurate and efficient tool for bacteriological work and research.
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Introduction
Bacteria reproduce by simple division, the rate of which 
is fundamentally influenced by the environment and the 
characteristics of the bacterium. The rate of bacterial 
multiplication is important for pathogenicity [1, 2] and 
food safety [3]. Therefore, the study of bacterial growth 
(multiplication rate) per unit of time can provide impor-
tant data from a medical and veterinary point of view. 
Several developments for the automated monitoring of 
the growth rate exist. In liquid cultures, the quantifica-
tion of turbidity (optical density), electrical conductiv-
ity, or redox potential can be used for this purpose [4, 

5]. As a result of these methods, data can be derived on 
the growth characteristics of the entire culture. However, 
we do not obtain information on the growing differences 
of individual bacteria, colony-forming units, which may 
be important in certain cases (e.g. persister cells) [6]. 
When bacteria are cultured on solid media, the growth 
rate is estimated from the change in bacterial colony size, 
which also allows differences in the growth characteris-
tics of the colony-forming units to be studied. The most 
common solutions [7–11] involve digital image analy-
sis, used to detect colonies and then measure their size 
relying on a threshold-based approach. A limitation of 
these approaches is that objects in the image that are not 
colonies (e.g., pieces of the wall of a Petri dish, air bub-
bles) may also appear in the result as colonies [12]. More 
recently, the potential of laser speckle imaging (LSI) for 
the study of bacterial colony growth has been demon-
strated by Balmages et al. [13]. This approach allows the 
identification of pixels in images of cultures that do not 
change over time and those that do, using the laser as 

*Correspondence:
Norbert Solymosi
solymosi.norbert@gmail.com
1 Centre for Bioinformatics, University of Veterinary Medicine, 
1078 Budapest, Hungary
2 Autovakcina Ltd, 1171 Budapest, Hungary
3 Department of Physics of Complex Systems, Eötvös Loránd University, 
1117 Budapest, Hungary

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-023-03053-y&domain=pdf


Page 2 of 7Nagy et al. BMC Microbiology          (2023) 23:307 

a coherent light source. It can therefore be used for the 
study of changes at the edges of colonies, and thus their 
growth. Although LSI can be used to overcome these 
shortcomings of the threshold-based approach, its appli-
cation is currently more challenging.

In our work, we investigated the applicability of convo-
lutional neural networks (CNNs) for estimating growth 
rates from time series of digital images of bacterial cul-
tures. For the detection of bacterial colonies, these 
algorithms are promising tools to address the above-
mentioned weaknesses of threshold-based approaches 
[14, 15]. If the detection of bacterial colonies is done 
to count the number of colonies, then the main goal of 
training CNN is to find the colonies. Less important is 
how well the dimensions of the predicted object match 
the dimensions of the colony. On the contrary, if we want 
to study growth rates, we need to be able to measure the 
size of the detected colonies as accurately as possible. 
This also means that we need to perform model selec-
tion according to such predictive measures of neural net-
works in order to obtain the most accurate outputs. With 
these considerations in mind, we trained and selected 
CNNs for the estimation of colony sizes and, as a result, 
growth rates.

Methods
To detect bacterial colonies in the Detectron2 [16] environ-
ment, 10 pre-trained Faster R-CNN [17] models (R_50_
C4_1x, R_50_C4_C4_3x, R_50_DC5_1x, R_50_DC5_3x, 
R_50_FPN_1x, R_50_FPN_3x, R_101_C4_C4_3x, R_101_
DC5_3x, R_101_FPN_3x, X_101_32x8d_FPN_3x) were 
trained. For this purpose, our research group has previously 
created a manually annotated dataset (with bounding boxes 
enclosing the colonies) [12]. This dataset contains digital 
records of 24 bacterial species, 369 cultures with 56,865 
annotated colonies. The dataset was randomly divided into 
two-thirds and one-third training and validation sets. Since 
the images were of different sizes, they were transformed to 
a uniform size ( 6200× 6200 pixels) for training. Each pre-
trained model was trained (base learning rate: 0.001, batch 
size per image: 10240) through 100 epochs and validated 
after every 100 iterations. During validation, we always 
recorded weights with a smaller validation loss compared 
to the previous smallest weights. Thus, the training resulted 
in a collection of the best weights for each of the 10 pre-
trained models.

We performed bacterial colony detection predictions 
using the best weights and an independent image col-
lection. The dataset used to investigate bacterial colony 
growth consisted of the unannotated digital images gen-
erated and shared on Figshare by Bärr et  al. [11]. The 
authors took digital images of 22 Staphylococcus aureus 
cultures in every 10 min. From each culture, 410 or 423 

recordings were made. Of the 22 cultures, 8 were con-
trol (without any antmicrobial treatment, Ctrl), and 14 
were pretreated with rifampicin antibiotic (Rifa) for 24 h 
immediately prior to culturing (Table 1/A). Based on best 
weights, bacterial detection prediction was performed 
for images numbered 1-410. For the 410 records of 22 
cultures (transformed to 6200× 6200 pixels), predictions 
(bounding box coordinates, object prediction probabil-
ity) obtained with each model were stored. CNN training 
and predictions were performed on a Tesla V100 32GB 
GPU.

Further processing of the data and plotting of the 
results were done in R-environment (v4.2.1) [18] using 
the packages broom [19], broom.mixed [20], ggplot2 
[21], sf [22], tmap [23], and xtable [24]. The bound-
ing boxes around the colonies that were predicted 
with each model’s best weights were later filtered; only 
those with object prediction probabilities above 0.5 
were retained for further analyses. Simple feature pol-
ygons were generated from their coordinates. From the 
predicted objects at 410 recording time, the ones with 
an object prediction probability greater than 0.95 were 
extracted. These represented the final state and size of 
the colonies.

Based on our experience, we assumed that in the 
case of S. aureus, the colonies’ center does not shift sig-
nificantly during growth. Therefore, when tracking the 
growth of colonies, we assumed that the bounding box 
describing the latest state of the colony mostly contains 
the area determined during the previous predictions. 
Accordingly, for each bounding box describing the final 
colony state, we extracted the bounding boxes predicted 
at the previous time points that fell completely within the 
final one. In order to compare our results with the work 
of Bärr et al. [11], we used the radius of the colonies to 
describe their size. We estimated the colony radius by 
taking half of the width of the predicted bounding boxes. 
As the dataset reported by Bärr et al. [11] is not an anno-
tated one, we were unable to use traditional metrics of 
prediction quality in model selection, so we selected 
the best model based on the following considerations. 
Despite the fact that the centre of the S. aureus colony 
does not shift significantly during culturing, there were 
bounding boxes that did not fit perfectly into the bound-
ing box describing the final state of the colony. These out-
lying bounding boxes were omitted from the time series 
associated with the colonies, so that there were time 
series with fewer and those with more bounding boxes. 
The more data points we can use, the more accurate the 
growth rate estimate. In addition, in terms of the coher-
ence of the model’s prediction, we would expect it to 
predict as many elements of the time series as possible 
that fall within the final bounding box for a given colony. 
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Therefore, of the models tested, the one that contained 
the largest number of bounding boxes for each colony 
was considered the best. However, visual inspection of 
the predicted bounding boxes also showed that some 
models had systematically larger distances between the 
edges of their boxes and the boundaries of the colonies, 
while others had smaller distances. Since the boxes that 
provide a more accurate estimate of colony size are those 
with smaller distances between their bounding edges and 
the colony contour, we considered the best models to be 
those that consistently estimated smaller colony sizes. 
The median length of the bounding box series, the mean 
and standard deviation of the bounding box width were 
calculated for the time series of each bounding box for 
each of the models examined. We selected the model 
as the best one with the largest median length of the 
series of bounding boxes and the model with the mini-
mum mean and standard deviation of the box widths. 
The dimensions of the bounding boxes predicted by this 
model were used to estimate the growth rates shown.

Following the work of Bärr et al. [11] we used the col-
ony growth rates predicted during the first 24 h of cul-
turing. Bärr et al. [11] estimated growth rates per culture 
using a linear model with colony size as the dependent 
variable and incubation time as the explanatory vari-
able. The regression coefficients obtained per culture 
were averaged over the cultures of the Ctrl group with 
less than 150 colonies. For comparability, we used the 
same approach to estimate the growth rate. However, 
this approach assumes that the cultures are perfectly 
identical in all respects and that each measurement is 
independent. In reality, repeated measurements on the 
same cultures are not independent of each other and 
cultures will inevitably differ somewhat (e.g. in number 
of colonies, placement in the thermostat or thickness of 
the culture medium). In such cases, we can expect more 
extensible and robust results if we use a model that takes 
these aspects into account. Therefore, in addition to the 
above approach, we used a mixed effects linear model for 
growth rate estimation where colony size was modelled 
as the dependent variable with incubation time as a fixed 
factor and culture as a random factor.

The growth rate of bacterial colonies is influenced by 
how densely they are distributed in the culture. The num-
ber of other colonies in the surroundings of each colony 
that can affect its growth was characterized by the num-
ber of close neighbors (NB). We considered two colonies 
as close neighbors if the bounding boxes between them 
overlapped to any extent.

The time of the first colony appearance was estimated 
as follows. The age of each culture was assigned to the 
bounding box of each colony of each culture. These were 
pooled into a time series per culture. The minimum of 

these time series per culture gave the time of the first col-
ony appearance.

Results
For the pre-trained model X_101_32x8d_FPN_3x, we 
obtained the largest median length ( n = 323 ) for the set 
of bounding boxes and the smallest mean (3.39 mm) and 
standard deviation (1.32 mm) for the width of the boxes. 
Regardless of the number of colonies, the trained neural 
network processed a single culture record in 0.31 sec-
onds. This time included converting the image to a uni-
form size, predicting the bounding box of the colonies, 
and tabulating the data describing them. The bounding 
boxes on an arbitrary image of the Ctrl_1 culture are 
shown in Fig. 1.

Figure  2 shows the time when the first colonies were 
detected in each culture. While the median time to first 
colony detection in the Ctrl group was 9.4 h, the median 
time to first colony detection in the Rifa group was 13.2 
h, with a difference of 3.8 h.

The growth curves of colonies are shown in Fig. 3. Fol-
lowing the approach of Bärr et al. [11] we estimated the 
linear growth trend per culture for the first 24 h (Table 1). 
The average growth rate for Ctrl plates with less than 150 
colonies was 60.3 µm/h (SD: 5.6). Using a mixed effect 
model, colony growth rate estimates for Ctrl and Rifa 
groups are summarized in Table 1.

Discussion
The best model detected all colonies in the figure in 0.31 
seconds, regardless of the number of colonies. Bärr et al. 
[11] provided partial detection times for 16 cultures in 
their Supplementary Table 3, giving a mean per image of 
8.8 s (SD: 7.35 s), which is 28 times our CNN result.

The median time to detect the first colonies in the Ctrl 
group (9.4 h) was 0.4 h later than that reported by Bärr 
et al. [11] (9 h). In the Rifa group, however, instead of 17.4 
h [11], we obtained 13.2 h as the median of the appear-
ance times. Thus, instead of 8.4 h [11], we obtained a 3.8 
h difference in the median of the appearance times of the 
first colonies in the two groups.

The hourly colony growth rates for the first 24 h in 
Ctrl group with less than 150 colonies were estimated 
by Bärr et  al. [11] to be 60.4 µm . Using the same sta-
tistical approach, our trained CNN estimated 60.3 µm , 
a difference of only 0.1 µm (0.17%). However, due to 
repeated measurements, we believe that a more cor-
rect approach is to use the mixed-effect model, which 
yields 58.7 µm for the same subset, with a 1.7 µm dif-
ference (2.8%) from the reference. For estimates that 
do not consider the number of neighbors, we can see 
that the rate for cultures with less than 150 colonies is 
always higher than the rate calculated from the sum of 
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all cultures. This is more substantial in the Ctrl group 
(7.7 µm/h ) and less in the Rifa group (2.6 µm/h ). In 
both approaches, the Ctrl group shows that the growth 

rate decreases with the increasing number of neigh-
bors up to the subgroup with 3 neighbors. Those with 
4 neighbors show an increased growth rate, however, 

Fig. 1 Bounding boxes on an image of Ctrl_1 culture predicted by the neural network. The colors have no meaning, they only aid separation 
in the case of overlapping boxes. The percentages indicate the confidence the algorithm assigned to the detected object

Ctrl

Rifa

8 10 12 14
Detection time (h)

Fig. 2 The time until the detection of the first colony in each culture in the two groups. Dashed lines indicate the median of the groups
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as Table 1 shows, the number of colonies with 4 neigh-
bors is very low, therefore, the estimates for these are 
not really reliable. In the analyses using all Rifa cultures, 
we see that colonies without close neighbors grow at 
a lower rate than those with close neighbors, among 
which the increase in the number of close neighbors 
indicates a clear decrease in rate. No such regularity is 
seen in the Rifa cultures, with less than 150 colonies. 
Comparing Fig. 3 showing the growth curves of colonies 
with the Supplementary Fig.  10 of Bärr et  al. [11] we 
see that the final colony sizes of our estimates exceed in 
several plates the values presented by Bärr et al. [11] for 

the same ones. A visual inspection of the different cul-
tures indicates that while the predicted bounding boxes 
are narrower in the case of the smaller colonies, more 
closely approximating the boundaries of the colonies, 
they can deviate significantly in the large colonies. If the 
aforementioned minimal deviation in growth rates in 
the first 24 hours is reconsidered in this light, it can be 
explained by the fact that until the end of that period, 
the colonies are still quite small, and the predictions do 
not distort the size of the bounding box. We believe that 
the more inaccurate bounding box estimation of large 
colonies may be because the images used in the training 
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Fig. 3 Growth curves of the colonies. Each curve describes the change in the radius size of a single colony (in Table 1, TN columns indicate their 
number). Their color indicates the number of close neighbors (NB) of the colony
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set were taken from cultures that were incubated for 
24-48 hours. As a consequence, only a few colonies 
could have grown as large as on the 68-hour cultures of 
Bärr et  al. [11]. This imprecision could be reduced by 
using a training set that includes longer incubation time 
with larger colonies.

Based on our results, we believe that CNN-based 
bacterial colony detection and bacterial colony growth 
dynamics analyses could become an effective tool for 
bacteriological work and research.
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Plate TN Estimate SE Bärr et al. [11] Group TN NB All plates TN Plates with 
N < 150

(µm/h) ID N Estimate SE Estimate SE

(µm/h) (µm/h)

A) B)

Ctrl_1 16 55.3 0.84 21 16 Ctrl 749 51.0 0.14 235 58.7 0.22

Ctrl_2 31 66.3 0.51 22 31 233 0 53.1 0.28 66 65.0 0.42

Ctrl_3 76 56.8 0.45 20 78 277 1 52.9 0.23 99 58.9 0.34

Ctrl_4 200 36.4 0.28 19 1,186 177 2 48.2 0.23 52 53.0 0.40

Ctrl_5 134 50.6 0.29 18 162 55 3 43.2 0.35 15 51.4 0.65

Ctrl_6 180 44.2 0.25 15 275 7 4 48.2 0.75 3 55.6 0.77

Ctrl_7 22 66.6 0.71 16 23

Ctrl_8 90 56.7 0.33 17 102

Rifa_1 54 16.3 2.52 5 71 Rifa 1757 36.5 0.29 321 33.9 0.79

Rifa_2 214 33.8 0.70 6 925 490 0 35.2 0.65 87 37.3 1.60

Rifa_3 165 42.4 0.73 7 1,200 665 1 38.6 0.43 119 42.4 1.31

Rifa_4 153 41.2 0.95 8 1,509 432 2 37.0 0.55 80 28.8 1.50

Rifa_5 136 23.2 1.45 10 158 139 3 36.1 0.76 31 31.0 1.82

Rifa_6 91 31.6 1.29 9 93 31 4 35.4 1.66 4 26.3 5.76

Rifa_7 43 37.6 2.30 11 44

Rifa_8 68 34.3 1.86 12 76

Rifa_9 36 40.4 2.15 13 40

Rifa_10 29 46.8 2.20 14 33

Rifa_11 181 40.6 0.67 1 288

Rifa_12 166 29.3 1.01 2 207

Rifa_13 206 44.4 0.59 3 425

Rifa_14 215 33.1 0.61 4 662

https://doi.org/10.6084/m9.figshare.22022540.v3
https://doi.org/10.6084/m9.figshare.22022540.v3
https://doi.org/10.6084/m9.figshare.12951152.v1
https://doi.org/10.6084/m9.figshare.12951152.v1


Page 7 of 7Nagy et al. BMC Microbiology          (2023) 23:307  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Competing interests
The authors declare no competing interests.

Received: 7 June 2023   Accepted: 9 October 2023

References
 1. Anderson J, Eftekhar F, Aird M, Hammond J. Role of bacterial growth rates 

in the epidemiology and pathogenesis of urinary infections in women. J 
Clin Microbiol. 1979;10:766–71.

 2. Bourchookarn A, Paddock C, Macaluso K, Bourchookarn W. Association 
between growth rate and pathogenicity of spotted fever group Rickett-
sia. J Pure Appl Microbiol. 2022;16:374–83.

 3. McMeekin T, et al. Quantitative microbiology: a basis for food safety. 
Emerg Infect Dis. 1997;3:541.

 4. Madrid RE, Felice CJ, Valentinuzzi ME. Automatic on-line analyser of 
microbial growth using simultaneous measurements of impedance and 
turbidity. Med Biol Eng Comput. 1999;37:789–93.

 5. Lindqvist R. Estimation of staphylococcus aureus growth parameters 
from turbidity data: characterization of strain variation and comparison of 
methods. Appl Environ Microbiol. 2006;72:4862–70.

 6. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister 
cells. Nat Rev Microbiol. 2017;15:453–64.

 7. Levin-Reisman I, et al. Automated imaging with scanlag reveals 
previously undetectable bacterial growth phenotypes. Nat Methods. 
2010;7:737–9.

 8. Levin-Reisman I, Fridman O, Balaban NQ. Scanlag: high-throughput 
quantification of colony growth and lag time. J Visualized Exp: JoVE; 
2014.

 9. Barr D, et al. Serial image analysis of mycobacterium tuberculosis colony 
growth reveals a persistent subpopulation in sputum during treatment of 
pulmonary tb. Tuberculosis. 2016;98:110–5.

 10. Vulin C, Leimer N, Huemer M, Ackermann M, Zinkernagel AS. Prolonged 
bacterial lag time results in small colony variants that represent a sub-
population of persisters. Nat Commun. 2018;9:4074.

 11. Bar J, Boumasmoud M, Kouyos RD, Zinkernagel AS, Vulin C. Efficient 
microbial colony growth dynamics quantification with ColTapp, an auto-
mated image analysis application. Sci Rep 2020;10:16084. https:// doi. org/ 
10. 1038/ s41598- 020- 72979-4.

 12. Makrai L, et al. Annotated dataset for deep-learning-based bacterial 
colony detection. Sci Data. 2023;10:497.

 13. Balmages I, et al. Use of the speckle imaging sub-pixel correlation 
analysis in revealing a mechanism of microbial colony growth. Sci Rep. 
2023;13:2613.

 14. Majchrowska S, et al. Agar a microbial colony dataset for deep learning 
detection. arXiv preprint arXiv: 2108. 01234. 2021.

 15. Pawłowski J, Majchrowska S, Golan T. Generation of microbial colonies 
dataset with deep learning style transfer. Sci Rep. 2022;12:5212.

 16. Wu Y, Kirillov A, Massa F, Lo W-Y, Girshick R. Detectron2. 2019. https:// 
github. com/ faceb ookre search/ detec tron2. Accessed 6 June 2023.

 17. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object 
detection with region proposal networks. In: Proceedings of the 28th 
International Conference on Neural Information Processing Systems - 
Volume 1, NIPS’15, 91–99. Cambridge: MIT Press; 2015.

 18. R Core Team. R: A Language and Environment for Statistical Computing. 
Vienna: R Foundation for Statistical Computing; 2022.

 19. Robinson D, Hayes A, Couch S. broom: Convert Statistical Objects into 
Tidy Tibbles. R package version 1.0.4. 2023. https:// github. com/ tidym 
odels/ broom. Accessed 6 June 2023.

 20. Bolker B, Robinson D. broom.mixed: Tidying Methods for  Mixed Models. 
R package version 0.2.9.4. 2022. https:// github. com/ bbolk er/ broom. 
mixed. Accessed 6 June 2023.

 21. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: 
Springer-Verlag; 2016.

 22. Pebesma E. Simple Features for R: Standardized Support for Spatial Vector 
Data. R J 10:439–446. 2018. https:// doi. org/ 10. 32614/ RJ- 2018- 009.

 23. Tennekes M. tmap: Thematic maps in R. J Stat Softw. 2018;84:1–39. 
https:// doi. org/ 10. 18637/ jss. v084. i06.

 24. Dahl DB, Scott D, Roosen C, Magnusson A, Swinton J. xtable: Export 
Tables to LaTeX or HTML. R package version 1.8-4. 2019. https:// cran.r- 
proje ct. org/ web/ packa ges/ xtable. Accessed 6 June 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41598-020-72979-4
https://doi.org/10.1038/s41598-020-72979-4
http://arxiv.org/abs/2108.01234
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/tidymodels/broom
https://github.com/tidymodels/broom
https://github.com/bbolker/broom.mixed
https://github.com/bbolker/broom.mixed
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.18637/jss.v084.i06
https://cran.r-project.org/web/packages/xtable
https://cran.r-project.org/web/packages/xtable

	Bacterial colony size growth estimation by deep learning
	Abstract 
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	References


