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Abstract 

Background  The mechanisms behind obesity are complex and multi-faceted, involving the interplay of both host 
genomics and gut microbiome. In recent years, research has largely focused on these factors separately, but rarely 
from the viewpoint of holo-omics, which considers the host and microbiome as an integrated entity. To address this 
gap in knowledge, the present study aimed to investigate the holo-omics basis of obesity in Jinhua pigs, a Chinese 
indigenous breed known for its high degree of fat deposition and superior meat quality.

Methods  Six pigs with extreme obesity phenotype were selected from a larger cohort of eighteen Jinhua pigs, 
and the contents of the jejunum, cecum, and colon regions were collected after slaughter at 240 days of age. The data 
obtained was processed, denoised, and annotated using QIIME2, with expression differences being analyzed using 
edgeR software.

Results  The results showed significant differences in jejunal microbial diversity and composition between the two 
groups, with gut transcriptomics also indicating that differentially expressed genes in the jejunum were enriched 
in lipid metabolism pathways. These findings provide further evidence of the influence of the gut microbiome 
and host gene expression on fat deposition in Jinhua pigs.

Conclusions  This study provides valuable insights into the mechanisms of fat deposition in Jinhua pigs 
from the viewpoint of holo-omics. The integration of host transcriptomics and microbiome data helps shed light 
on the complex interactions between the host and gut microbiome, and highlights the importance of considering 
both factors in our understanding of obesity.
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Background
The gut microbiome has been shown to play a signifi-
cant role in host energy absorption and storage [1], and 
the composition and functionality of the microbiome 
have been implicated in various host traits or diseases, 
including obesity [2–4]. Hosts and microbes exhibit a 
symbiotic relationship, with many microbial genes being 
shared among individuals forming a "core microbiome." 
This suggests that the interplay between host and micro-
biome contributes to host phenotypic indicators [5]. For 
example, previous studies have revealed similar microbial 
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community structures in hereditary obesity populations, 
with changes in bacterial diversity and metabolic path-
ways associated with obesity phenotypes [6].

While mice are frequently used as animal models in 
obesity research, the results obtained are not easily trans-
lated to humans due to physiological differences [7]. Pigs, 
on the other hand, are considered a more appropriate 
biomedical model for human metabolism and obesity 
research due to their similar metabolic characteristics 
and organ size. In addition, the structure of the pig gut 
microbiome is more similar to that of humans [8–10].

After being domesticated by humans since ~ 7000 years 
ago, many pig breeds with different features has been 
formed around the world. For instance, commercial west-
ern pig breeds have been selected to grow faster and pro-
vide more lean meat, while Chinese pig breeds are known 
for their high fat content and strong stress resistance. A 
previous study performed a comparison of microbiota 
in different intestinal segments between Jinhua pigs (a 
Chinese indigenous pig breed with high propensity for 
adipogenesis) and a European commercial pig breed, 
Landrace, using 16S rRNA gene sequencing, and shown 
that the bacterial communities in duodenum, jejunum 
and cecum are different between the two pig populations 
[11]. Therefore, it is reasonable to hypothesize that gut 
microorganisms can explain the phenotypic differences 
between Chinese and western pig breeds. In addition, 
the microbial contribution to the obesity phenotype can 
differ between gut segments. A previous study investi-
gating the relationship between intestinal microbes and 
obesity phenotypes in pigs showed that cecum and colon 
microbes contributed more to body weight and average 
daily weight gain, ranging from 22 to 37%. In contrast, 
the contribution of jejunum and cecum microbes to 
backfat thickness and intralipid fat ranged from 13%—
31%, higher than in other intestinal segments [12].

However, these previous studies mainly focus simply 
on microbiome itself, while the interaction between host 
and microbiome can also contribute to the host phe-
notypes, such as fat deposition [13]. From ontogeny to 
homeostasis, complex organismal phenotypes are shaped 
by bidirectional interactions between host organisms 
and their associated microbiota. Although genomic and 
metagenomic studies have been instrumental in under-
standing many biological processes, each type of study 
has tended overlook the impact of the other, particularly 
the interactions between them. Recently, the recognition 
of the importance of these host-microbiota interactions 
has opened new avenues of research based on the inte-
grated analysis of coupled genomic and metagenomic 
data [14]. Therefore, it will improve our understanding of 
genetic mechanisms of complex traits by taking micro-
biome and host as a whole, i.e., from the viewpoint of 

holo-omics [5]. Statistical models play an important role 
in the design of competent breeding programmes associ-
ated with complex traits. Recently, the holo-omics con-
cept has been used effectively for trait prediction, and it 
has proved desirable to build predictions with accuracy 
while combining genomic and microbial data from the 
host [15]. Xu believes that such holo-omics studies have 
the ability to resolve the function of plant-microbiota 
ecosystems by generating images of expression, transla-
tion and production during plant–microbe interactions. 
And it was mentioned that the most commonly included 
type of host data currently available is transcriptomics, 
which provides a broad and in many cases relatively well-
annotated view of host function [16].

Meanwhile, in order to obtain more findings, cross-
breeds comparison of gut microbiota was regularly used 
in previous studies [11], but it is difficult to exclude con-
founding influence caused by breed differences. There-
fore, in this study, individuals with extreme high or low 
obesity indicators within the same breed were used to 
reveal the holo-omics differences between them.

Although research over the last decade has established 
a strong link between gut microbiota and fat deposition, 
there is still a need to explore the causal relationships 
and potential mechanisms from the view of holo-omics. 
In this study, we tried to explore the holo-omics mech-
anisms of fat deposition by carrying out comparison 
between Jinhua pigs with high and low obesity indicators, 
while taking into account the spatial heterogeneity of the 
gut, so as to provide insights into both improvement of 
meat quality in pigs and understanding for obesity in 
human medicine.

Results
Phenotype characterization of the high and low fatness 
Jinhua pigs
In this study, we included 6 Jinhua pigs that were raised 
under standard management conditions. At 240  days of 
age, the pigs were slaughtered to measure body weight, 
backfat thickness, and high-density lipoprotein choles-
terol (HDL-C) levels in the blood serum (Fig. 1A). Backfat 
thickness was identified as the most direct and objective 
indicator reflecting fat deposition in pigs. To support 
this finding, we also examined blood parameters related 
to obesity, such as triglycerides (TG) and high-density 
lipoprotein (HDL) levels. The high-fat group exhibited 
higher levels of these indicators compared to the low-fat 
group. The individuals were then divided into high-fat 
and low-fat groups based on the indicators of fat deposi-
tion (BF, HDL-C), as outlined in Table 1. Additionally, we 
measured phenotypic traits associated with meat quality, 
including eye muscle area and drip loss (Supplementary 
Table  1). To assess the significance of the differences in 
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fatness phenotypes between the two groups, a t-test was 
performed on the relevant phenotypic indicators. The 
high-fatness group displayed significant differences from 
the low-fatness group in all phenotypes (p < 0.05), except 
for triglyceride and cholesterol lipid levels. Regarding 
meat quality traits, drip loss exhibited a significant dif-
ference between the two groups (p < 0.05). Furthermore, 
we computed the power value for these phenotype indi-
cators, and the power value for the aforementioned indi-
cators showing significant differences were all above 0.8 
(Supplementary Table 2).

The gut microbiome composition analysis of the high‑ 
and low‑fatness pigs
Fecal samples form jejunum, cecum and colon were 
sequenced using 16S rRNA sequencing and clustered at 

Fig. 1  |Differences in microbial diversity and composition between low-fatness and high-fatness. A The experimental design of this study. 
B Comparison of the Shannon index in the three intestinal segment regions between the two groups. Mann-Whitney U test was performed 
to verify the differences, where p < 0.05 indicates significant difference. Partial least squares discriminant analysis of the composition of microbial 
species in the three intestinal segments. C Relative abundance of the top 10 microbial species at the phylum, class, family and genus level 
in the three intestinal regions of the two groups

Table 1  | The comparison of phenotypes between the low-
fatness and high-fatness groups

Values in table are described with mean ± standard error

BW body weight, BF back fat, TG triglycerides, TC cholesterol, HDL-C high-density 
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol
a,b Superscript letters in the same row mean a significant difference between the 
two groups (p < 0.05)

Phenotype Low fatness (n = 3) Fat fatness(n = 3) Pvalue

BW/kg 79.067 ± 1.482b 83.667 ± 0.805a 0.029
BF/cm 5.909 ± 0.160b 6.467 ± 0.205a 0.042
TG (mmol/L) 0.797 ± 0.154 0.983 ± 0.199 0.358
TC(mmol/L) 3.037 ± 0.433 2.720 ± 0.205 0.422
HDL-C(mmol/L) 1.063 ± 0.034a 0.710 ± 0.008b 0.003
LDL-C(mmol/L) 1.823 ± 0.286 1.737 ± 0.115 0.721
HDL-C/LDL-C 
(mmol/L)

0.597 ± 0.090 0.410 ± 0.029 0.085
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100% similarity to obtain characteristic sequence ASVs 
(amplicon sequence variants) for each gut segment 
microbiota. Supplementary Fig.  1  shows the number 
of ASVs obtained from each group and each intestinal 
region, as well as the ASVs that are co-occurring in each 
of corresponding samples. Overall, the large intestine 
region (Cecum and Colon) had more ASVs in the low-
fatness group than those in the high-fatness group, 
whereas the reverse trend can be observed for small 
intestine region. However, there was no statistically sig-
nificant difference in the number of ASVs between the 
groups (p > 0.05).

The Alpha diversity of each group was compared to 
illustrate the bacterial diversity of each sample (Fig. 1B). 
By comparing the Shannon index, the jejunum region 
was significantly less diverse compared with the cecum 
and colon regions (p < 0.05). The space and environment 
in large intestine are more suitable for microbes than the 
small intestine, resulting in an order of magnitude dif-
ference in the species and number of microorganisms in 
the two regions. In the comparison of the alpha diver-
sity between the two groups in each region, the alpha 
diversity in high-fatness group was higher than that in 
the low-fatness group in the colon region. There was no 
major difference in the cecum region, while the Shannon 
index was lower in the high-fatness group than the low-
fatness group in the jejunum region. None of the above 
results were statistically different. Such tendency can 
also be observed for other alpha diversity indices (Chao1, 
Simpson) (Supplementary Table 3). This suggests that the 
microbial composition in small intestine region of the 
high-fatness group is simpler than that of the low-fatness 
group, which is consistent with the results of previous 
studies on the microbiological composition of obese peo-
ple [6].

Partial least square (PLS) analysis based on Bray–Cur-
tis distance between pairwise of samples at the species 
level (Fig. 1B) shows that samples from jejunal region can 
be clearly divided across the second PLS components. In 
contrast, samples from cecum and colon regions are clus-
tered together, while the first PLS component can clearly 
separate the jejunal samples from other samples in colon 
and cecum.

The relative abundance of dominant species in the 
three intestinal segments of the two groups was shown 
in Fig.  1C. Subsequently, the relative abundance of the 
microorganisms used for comparison was greater than 
0.1% of the microbial population in the three intestinal 
regions of the two groups. These results indicate that 
jejunum and cecum have different microbial character-
istics at the family and genus levels (Fig.  1C). Accord-
ing to the species classification results, Bacteroidia and 
Clostridia were the dominant organisms at the class 

level in all three intestinal segments, followed by Bacilli 
and Spirochaetota in the large intestine region. The pro-
portion of Alphaproteobacteria and Actinobacteria in 
the small intestinal region determined the significant 
difference between the two groups (Fig.  1C). As the 
F/B(Firmicutes/ Bacteroides) is a candidate indicator for 
obesity, we also examined the F/B, which was decreased 
in jejunum of high-fatness pigs. However, there was no 
significant difference in the cecum and colon sections 
[17] (Supplementary Fig. 1).

Analysis of microbial species differences
Meanwhile, to investigate the differences in micro-
bial community abundance between the two groups. 
The LEfSe (Linear Discriminant Analysis Effect Size) 
method was used to find statistically different Biomarkers 
between the two groups (Supplementary Table 4).

At the species level, a total of 22 different species from 
the two groups were identified in the jejunum region by 
the above LEfSe (Fig.  2A). There are 10 species belong-
ing to the genus Bacteroides, including Bacteroides ova-
tus, Bacteroides dorei and Bacteroides uniformisd. In the 
cecum region, there are significant differences between 
the three microbial species. The abundance of Eubacte-
rium siraeum and Treponema porcinum in the low fat-
ness group is higher than that in the high fatness group, 
while Clostridiales bacteriumc presents the opposite 
trend. In the colon region, it is worth noting that in the 
high fatness group, the abundance of Bacteroides plebeius 
increased significantly. Bacteroides plebeius seems to be 
related to the environment and eating habits. Studies 
have found that the bacteria have significant differences 
in the two groups of Koreans living in the United States 
and South Korea. The two groups of Koreans have very 
different geography and eating habits, and the bacteria is 
significantly abundant in the high-calorie diet environ-
ment in the United States [18]. Also from the side, the 
bacteria will exist in individuals with high energy storage 
and metabolism.

In order to further understand the function of these 
species in the host, we performed functional enrichment 
for the microbial composition genes of the three intes-
tinal segments, and attempted to cluster according to 
grouping and functional abundance. The results showed 
that the cecum and colonic segments had obvious simi-
larity in function, and the clustering was not obvious 
(Supplementary Fig. 2). However, the two groups in the 
jejunum region could be obviously clustered apart. There 
were significant differences in enrichment of "Fatty acid 
biosynthesis", "Glycolysis Gluconeogenesis" and "Pepti-
doglycan biosynthesis" (Fig. 2B).

From the functional annotation of the differential 
bacteria species between the two groups (Fig.  2B), we 
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suggested the pathways by which the microbiology cause 
elevated obesity indicators in pigs may be the following: 
1) Associated species can cause chronic inflammation 
of the intestinal tract, leading to fat accumulation in the 
host [19]; 3) The metabolites of the species in question 
can promote or inhibit the production of adipocytes, 
consequently affecting on host phenotype [20].

The intestinal transcriptome landscapes
It is important to clarify that the results showed that the 
cecum had the highest number of differential genes (Sup-
plementary Table 6) of all three intestinal regions. How-
ever, during the mapping step, it was found that one of 
the samples from the cecum region was only mapped 
to about 20% of the reference genome due to microbial 
contamination. Therefore, in our transcriptome analy-
sis, we only focused on the jejunal and colonic regions 
to ensure the reliability of the results. In the jejunal 
region, 126 genes were up-regulated and 258 genes were 
down-regulated in the low-fatness group relative to the 
high-fatness group (Fig.  3A). Functional enrichment 
results show that jejunum have significant differences 
in some receptor actions: "Cytokine-cytokine-receptor 
interaction", "Hematopoietic cell lineage", "Neuroac-
tive ligand-receptor interaction" (Fig. 3B). In the colonic 
region, 594 genes were screened for differences, of which 

175 were up-regulated and 419 were down-regulated 
in the low-fatness group compared to the high-fatness 
group (Fig.  3C). Notably, there were significant changes 
in lipid metabolism-related pathways between the two 
groups, including "Pancreatic secretion", "Steroid hor-
mone biosynthesis", and "Arachidonic acid metabolism", 
which were also enriched in the jejunum (Fig.  3D). The 
most prominent pathway enriched in the colon was the 
“Metabolite pathway”. The differences between the two 
groups may be due to the action of certain active sub-
stances in the metabolic pathways, which affect lipid 
metabolism and result in different phenotypes. These 
important ’communication substances’ are likely to be 
metabolites of microorganisms that are enriched in the 
gut. Finding the link between the two and bridging the 
host-microbe interactions will be the next step.

In order to investigate which intestinal region has 
larger influence on lipid production, we identified DEGs 
between colonic regions (large intestine) and jejunal 
regions (small intestine) for low and high fatness groups, 
respectively (Supplementary Fig.  3). The pathways 
involved in lipid metabolism were significantly enriched, 
suggesting that the two sites are significantly different in 
their roles in "Fat digestion and absorption", "Cholesterol 
metabolism", "Arachidonic acid metabolism" and "Insulin 
resistance".

Fig. 2  |Species abundance differences between high-fatness and low-fatness groups. A Search for marker microorganisms in the jejunal region 
using the LEfSe score discrimination. q < 0.05, LDA > 2 as the criterion for significant difference between the two groups. B The microbial constituent 
genes of the three intestinal segments were functionally enriched and an attempt was made to cluster them according to grouping and functional 
abundance
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LncRNAs can help detect distinct functional pathways 
resulting from various therapies and affect the tran-
scriptional and post-transcriptional levels of target gene 
expression [21]. After mapping to the reference genome, 
transcript splicing was identified. In this step, we also 
carried out transcript screening, using Cuffcompare 
software to compare with known databases, filtering out 
known transcripts from databases, and finally obtain-
ing 18,341 novel lncRNAs (Supplementary Table 7). The 
novel lncRNAs were classified into 3 main types: anti-
sense, lincRNA, and sense overlapping, based on their 
position in relation to known mRNAs, with reference to 
HGNC [22].

Regulation of target genes by lncRNAs occurs through 
a variety of approaches, we focus here on the case of tar-
get genes within 100 kb upstream and downstream of the 
lncRNA for functional enrichment analysis. The results 
showed that genes near the differential lncRNAs for jeju-
nal and colonic intestinal segments were mostly enriched 
in the “metabolic pathway”. Furthermore, the enrichment 
analysis of lncRNA target genes showed that two intes-
tinal regions were enriched in more pathways related to 
lipid metabolism: ’’fatty acid metabolism’’, ’’biosynthesis 
of unsaturated fatty acids’’, and ’’regulation of lipolysis in 
adipocytes’’. This is consistent with the results of the pre-
vious mRNA studies (Fig. 4).

Fig. 3  |Results of DEGs of low-fatness and high-fatness -in jejunal and colonic tissues. A, C The two groups of differentially expressed gene profiles 
including the number of upregulated and downregulated genes in the jejunum and colon regions are shown by volcano plots. Down-regulated: 
p < 0.05 & log2foldchange < -1; Up-regulated: p < 0.05 & log2foldchange > 1. B, D KEGG pathway enrichment analysis of differentially expressed 
genes between the two groups. y-axis shows the name of the pathway and x-axis shows the enrichment factor. Pathways with significant 
enrichment are shown in the KEGG scatter plot. The enrichment factor is the ratio of the number of differentially expressed genes to the number 
of all genes annotated in a particular pathway. The q-value, obtained through the Benjamini-Hochberg (BH) method, is a corrected value 
for the p-value. A q-value less than 0.05 is considered statistically significant, indicating significant findings after controlling for multiple testing
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We also predicted circRNAs (Supplementary Table  8) 
and identified differentially expressed ones which were 
further used to obtain enriched KEGG functional path-
ways (Supplementary Fig.  4). The results showed that 
in addition to the conventional metabolic pathway, the 
mTOR signaling pathway was also enriched. mTOR sign-
aling pathway has been shown to influence fat deposition 
through metabolite regulation in the body. The miR-181 
family, which is highly bound to the identified target 
genes, was also found to be regulated by metabolites for 
brown fat deposition in the intestine [23].

Associations of microbe–intestine interactions 
with obesity indicators
To further explore the interactions between the host and 
gut microbiomes and to validate the above studies, we 
used a multi-omics approach to correlate obesity indica-
tors, gut transcriptome and microbial species abundance. 
Briefly, the WGCNA R package was used to identify key 
gut tissue genes within each gut region that were sig-
nificantly associated with indicators of obesity. After the 
analysis, a total of 93 key genes were identified in the 

jejunum region, while 43 key genes were identified in the 
colon region (Supplementary Table  9). These key genes 
can now be subjected to further analysis for subsequent 
investigations. In the previous analysis, we obtained two 
sets of differentially abundant microbial species from dif-
ferent gut regions. After filtering based on abundance, we 
selected 73 microbial species from the jejunum region 
and 24 microbial species from the colon region for cor-
relation analysis with key genes using the Spearman 
method (Supplementary Table 10).

The results showed that the gene modules in each 
region were mainly associated with body weight (BW) 
and backfat thickness (BF) phenotypic indicators. In the 
jejunal region, the proportion of gene modules associ-
ated with blood obesity indicators (HDL, TC) was higher 
than in the large intestine region, we presented them in 
the form of heat maps and clustered the module genes 
(Supplementary Fig.  5). In the colon, two microbial 
species(Bacteroides plebeius, Clostridium butyricum) 
that both increased in the high-fatness group (Fig.  5A). 
We utilized multivariable regression analysis, with 
gene expression levels as the dependent variable and 

Fig. 4  |Prediction and functional analysis of LncRNA. A, B Functional enrichment of genes in LncRNA localized regions in jejunum and colon. 
Down-regulated: p < 0.05 & log2foldchange < -1; Up-regulated: p < 0.05 & log2foldchange > 1. C, D KEGG pathway enrichment analysis 
of differentially expressed genes between the two groups in jejunum and colon. The q-value, obtained through the Benjamini-Hochberg 
(BH) method, is a corrected value for the p-value. A q-value less than 0.05 is considered statistically significant, indicating significant findings 
after controlling for multiple testing
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microbiota as the independent variable, to construct a 
linear regression model. we estimated the coefficients of 
the independent variables and assessed their significance. 

Bacteroides plebeius, Clostridium butyricum again 
showed significant associations with key genes, and in 
the same direction as the spearman correlation described 

Fig. 5  |Associations of Microbe–Intestine Interactions With Obesity indicators. A We correlated the key genes associated with fat deposition 
with differentially abundant microbiota and calculated the correlation coefficient (Spearman’s coefficient). The heatmap’s color indicates the degree 
of correlation.*:p < 0.05, **:p < 0.01, ***:p < 0.001 B Differential genes associated to Bacteroides plebeius species with significant differences 
in the colonic region were enriched for KEGG pathways of high relevance to them. Functional entries were found to focus on intercellular 
communication functions. C Types and proportions of carbohydrases encoded by the Bacteroides plebeius genome. D The functions 
of the enzymes of interest were investigated. The results showed that the bacterium had the highest number of genes encoding GH2, GH20, GT4 
and GT2
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above (Supplementary Table 11). Then, we focus on the 
genes that are associated with significant variations in 
two microbial species and examine their functions. The 
results of the functional enrichment revealed three main 
categories involved, the first involving the metabolism 
of vitamins and amino acids, with particular emphasis 
on glutamate metabolism. The second category includes 
a range of intercellular communication pathways, while 
the third is mainly concerned with lipid metabolism, 
for example the metabolism of arachidonic acid. In the 
colon tissue, FOLH1B, which is significantly associated 
with microbes, encodes a receptor for intestinal folate. It 
can indirectly regulate microbial metabolic capabilities 
[24]. In the genes related to obesity indicators, 93 jeju-
nal DEGs expression levels were found to be significantly 
correlated with microbial species (p < 0.05). Notably, 
APOH is involved in cholesterol metabolism pathways. 
The cecum fraction was not analyzed for association as 
the cecum tissue samples received contamination.

In the above results we noticed that Bacteroides ple-
beius not only differed significantly between the two 
groups in the colon region, correlating with indicators of 
fat deposition, but that its significantly associated gene 
function enrichment results also showed an association 
with fat metabolism (Fig.  5B). Therefore, we explored 
further the coding function of this bacterium. Imme-
diately afterwards, the ability of this species to encode 
carbohydrates was also explored. A total of five types 
of carbohydrates were identified, of which "GH (Glyco-
side Hydrolases)" and "GT (Glycosyl Transferases)" were 
the main components (Fig.  5C). The functions of the 
enzymes of interest were also investigated. The results 
showed that the bacterium had the highest number of 
genes encoding GH2, GH20, GT4 and GT2 (Fig.  5D). 
This suggests that the strain is likely to be involved in 
lipid metabolism and the regulation of cellular communi-
cation in the intestine through different pathways, while 
at the same time suggesting that the microbial influence 
on the host is widespread. This partly explains why these 
genera show correlations with fatty acid binding proteins 
in terms of developmental changes and fat deposition.

Discussion
The gut is now widely recognized as an influential fac-
tor affecting growth and development as well as per-
formance indicators in pigs. And these studies have 
described functional changes in the composition and gut 
microbiome of obese individuals, which reveal a strong 
correlation between the gut microbiota and obesity. 
Nowadays, numerous studies investigating the structure 
of the gut microbiota have been proposed to reveal the 
relationship between gut bacterial species and pig obesity 
through metagenomics and 16 s in pigs. We explored the 

interactions between two groups with differences in obe-
sity phenotypes, including differences in gut microbiota, 
and gut tissue expression, within the Jinhua pig popula-
tion. In addition, we sought to explore the mechanisms 
by which intestinal genes and microbes interact to cause 
fat deposition.

Previous studies have found that high oxidative stress 
and dysregulated ecology of lipid metabolism in high-
fatness pigs may be responsible for fat deposition in gilts. 
Host fat deposition is affected through the methanogenic 
function of archaea and the production of short-chain 
fatty acids by bacteria [25]. Developmental changes in 
the structure and expression levels of fatty acid binding 
proteins in the ileal flora of Jinhua pigs, and correlation 
with fat deposition [26]. The intestinal fungal structure of 
Jinhua pigs with different fatness rates differed and cor-
related with backfat thickness, indicating a correlation 
between intestinal fungal changes and host fat deposition 
[27].

HDL is a protein that plays an important role in the 
body and has an anti-atherosclerotic effect. Reduced 
HDL levels are often associated with obesity, hyperten-
sion, dyslipidaemia and insulin resistance, and the body 
can develop metabolic disorders [28]. Lipocalin concen-
trations have been found to correlate with lipoprotein 
metabolism, particularly with the metabolism of HDL 
and triglycerides [29]. Studies have found a significant 
negative correlation between HDL cholesterol and cor-
onary heart disease, meaning that if HDL is reduced, 
the risk of cardiovascular disease and atherosclerosis 
increases. Therefore, in this study we used HDL also as 
an indicator to determine the obesity phenotype of Jin-
hua pigs.

In terms of the number of species, high-fatness is rela-
tively homogeneous with fewer numbers and species 
compared to low-fatness. This is consistent with previous 
studies that have shown the relatively simple flora struc-
ture of obese individuals [6, 30]. We hypothesize that the 
occurrence of microbially induced fat deposition in the 
body may have a strong correlation with the absorption 
and metabolism of the small intestinal fraction, especially 
for fat metabolism and absorption. The functional pre-
diction of the bacterial community suggested increased 
fatty acid biosynthesis in Jinhua pigs, which could par-
tially explain their adiposity phenotype [11].

The differential genes in the large intestinal seg-
ment were invariably able to enrich for the metabolic 
pathway in question, further validating our suspicions. 
The differential cricRNA enrichment pathway to the 
mTOR signaling pathway, which can be regulated by 
the intestinal metabolite imipramine, activates p38-
p62-mTORc1, which in turn inhibits the function 
of insulin receptor substrates, blocking the insulin 



Page 10 of 14Liu et al. BMC Microbiology          (2023) 23:322 

receptor pathway and leading to insulin resistance. 
In turn, insulin resistance leads to lower HDL, higher 
serum triglycerides and higher LDL [23].

RNA binding motifs, potential transmembrane 
structural domains and proline-rich regions were sig-
nificantly correlated with body weight in jejunal and 
colon tissues. In colon tissue CLEC4G again showed 
a significant correlation with backfat thickness. This 
gene encodes a glycan-binding receptor and a mem-
ber of the C-type lectin family that functions in the 
immune response. C-type lectin receptors are pattern 
recognition receptors located on immune cells and 
play a role in the recognition and uptake of self and 
non-self glycoproteins and in mediating cell adhesion, 
glycoprotein clearance and cell signaling functions.

We therefore have the following speculations on the 
mechanism of action of microbial-organism interac-
tions causing obesity, 1) Immune-related differentially 
expressed genes interact with metabolites produced 
by bacteria to drive anti-inflammatory responses to 
prevent obesity and 2) Key species are likely to be 
involved in lipid metabolism in the gut as well as in 
regulating cellular communication through different 
pathways that allow developmental changes in fatty 
acid binding proteins. However, our study still leaves 
much to be desired, whether the small sample size 
investigation represents a universal pattern remains to 
be further validated. Additionally, the lack of recorded 
body size data limits our ability to account for inherent 
variability in body size measurements. And secondly 
many genes with no clear function were also identified 
as microbial interactions associated with fat deposi-
tion in Jinhua pigs, suggesting an integrated interac-
tion between the gut microbiota and host genes, which 
needs to be fully described by more studies.

Conclusion
In summary, differences in gut microbes structure as 
well as abundance have a differential impact on the fat 
metabolism of the host. The metabolic pathways of 
substances in the digestive tract are disturbed, which 
leads to differences in gene expression in the intestinal 
tissues, ultimately affecting the digestion and absorp-
tion of key substances or the delivery of small mole-
cules, cascading down to an obese phenotype.

This study examines how the gut microbiome affects 
obesity indicators in pigs in terms of gut tissue devel-
opment, providing hints for improving growth perfor-
mance and fat deposition levels in local pigs.

Methods
Animal experiments and sample collection
This study aimed to investigate the relationship between 
the fatness of pigs and their gut microbiota composition. 
The researchers fed 18 newly born Jinhua pigs a stand-
ard corn-soybean-based diet for 240  days and then col-
lected blood samples, intestinal tissue, and abdominal 
adipose tissue from each pig. The pigs were sourced from 
the same environment (pig farm), received the same feed, 
were of the same age (240 days), and of the same gender 
(female), ensuring minimal differences in the designed 
traits. The specific composition of the feed, provided by 
Farm for the two groups of Jinhua pigs, was consistent 
with the regular feed used in their daily feeding. Upon 
slaughter, the pigs are immediately exsanguinated, and 
blood is promptly collected and transferred into tubes. 
Centrifugation was performed using a centrifuge at 4° C 
until the blood was stratified and the upper serum was 
extracted. The tubes are then placed on ice or in a cold 
pack at temperatures ranging from 0℃—4 ℃ to maintain 
the integrity of the blood sample. Following the removal 
of hair, the heads, hooves, tail, and internal organs are 
discarded, while the body weight is measured by pre-
serving the fat layer and kidneys, which represent the 
body weight (BW). The collected blood samples, stored 
at 0℃—4 ℃, are transported back to the laboratory at 
Zhejiang University for analysis. The time between sam-
pling and testing does not exceed 6 h to ensure the sta-
bility and reliability of the samples. All experimental 
procedures adhere to the aforementioned requirements 
for blood parameter analysis. To assess fat deposition 
traits, we considered both phenotypic measurements and 
blood parameters. Among the various phenotypic meas-
urements reflecting fat deposition in pigs, backfat thick-
ness emerged as the most direct and objective indicator. 
In order to support this result, we also examined blood 
parameters. Key obesity indicators such as triglycerides 
(TG) and high-density lipoprotein (HDL) showed higher 
levels in the high-fat group compared to the low-fat 
group. The most extreme pigs (three high-fat and three 
low-fat pigs) were identified for further analysis using t 
tests for indicators of fat deposition. To further examine 
whether the sample size has statistical power, we per-
formed Two-Sample t tests using the SAS software [31] 
to calculate the power values for each phenotype indica-
tor when the total sample size was 6.

Luminal samples were collected from the same loca-
tions in the jejunum, cecum, and colon of the selected 
pigs, and 16S sequencing was performed on the intestinal 
contents. Additionally, 3 cm of intestinal tissue was col-
lected from each pig and snap-frozen in liquid nitrogen 
for mRNA sequencing. The luminal samples were col-
lected within 30 min after slaughter and stored in a -80 °C 
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refrigerator until DNA extraction. It should be noted 
that all animal experiments were approved by the Zheji-
ang University Institutional Animal Care, and were con-
ducted in accordance with relevant rules and regulations.

16S Ribosomal RNA gene sequencing
The gut microbial DNA was isolated from the three intes-
tinal contents per pig using the QIAamp DNA Stool Mini 
Kit (Qiagen, Hilden, Germany) following the standard 
manufacturer’s protocol at benagen technology Institute 
(Wuhan, China).

Following the manufacturer’s instructions, microbial 
DNA was isolated from three intestinal contents using 
a DNA extraction kit. The V3-V4 region of the micro-
biota 16S ribosomal RNA genes was amplified by poly-
merase chain reaction (95℃ for 3  min, followed by 30 
cycles at 98℃ for 20  s, 58℃ for 15  s, and 72 ℃ for 20  s 
and a final extension at 72 ℃ for 5  min) using primers 
341F 5’-CTA​CGG​GRSGCA​GCA​G)-3’ and 806R 5’-GGA​
CTA​CVVGGG​TAT​CTA​ATC​-3’. A 30 µl mixture includ-
ing 15 µl of 2 × KAPA Library Amplification Ready Mix, 
1 µl of each primer (10 M), 50 ng of template DNA, and 
double-distilled water was used to conduct the polymer-
ase chain reaction experiment. According to the manu-
facturer’s recommendations, amplicons were extracted 
from 2% agarose gels, purified using the AxyPrep DNA 
Gel Extraction Kit from Axygen Biosciences in Union 
City, California, and quantified using Qubit 2.0 (Invitro-
gen, United States).After preparation of the library, these 
tags were sequenced on the HiSeq platform (Illumina, 
Inc.,CA, United States) for paired-end reads of 250  bp, 
which were overlapped on their ends for concatenation 
into original longer tags. DNA extraction, library con-
struction, and sequencing were conducted at benagen 
technology Institute (Wuhan, China).

Single sample sequence data were obtained by bar-
code identification of the mixed sample library; primer 
sequences were identified and removed using cutadapt 
[32] (version 3.4) software to obtain Clean sequences that 
did not contain primers.

Then, quality filtering on the raw tags was performed 
under specific filtering conditions to obtain high quality 
clean tags, and the reads were compared with the species 
annotation database (Silva) (http://​www.​arb-​silva.​de/) 
according to QIIME2 [33] quality controlling process to 
obtain the final clean reads. Chimeric sequences were 
detected and removed using the UCHIME algorithm 
[34]. The DADA2 [35] method focuses on quality filter-
ing, denoising, splicing (illumina data only) and chimera 
removal. Sequences are clustered at 100% similarity and 
each de-duplicated sequence produced after QC is called 
ASVs (amplicon sequence variants). Use the R package 

“phyloseq” to draw all samples flat at minimum ASV 
abundance and filter for low abundance ASV.

Classify-sklearn algorithm using QIIME2 [33]: for each 
ASVs feature sequence, using the default parameters in 
the QIIME2 software. Species annotation was performed 
using a pretrained Naive Bayes classifier. At the same, 
using QIIME2 software, samples were evaluated for 
Alpha Diversity Index. Alpha diversity of observed ASVs, 
Chao1 index, Shannon index, Goods coverage, phyloge-
netic diversity and beta diversity. To ensure the accuracy 
of the results, we further processed the ASV abundance 
table, where 0 values were treated as missing values and 
only remained larger than microorganisms in 50% of 
the samples. To investigate the differences in microbial 
community abundance between the two groups of sam-
ples, Metagenomic biomarker search is achieved using 
LEfSe [36]. In this study, we consider q < 0.05, LDA > 2 are 
microorganisms with significant differences between the 
two groups, and the specific results are shown in Supple-
mentary Table  4. PICRUST2 [37] predicts sample func-
tion based on the sequence abundance of marker genes 
in the sample, The classification function abundance val-
ues in the corrected KEGG in the sample were output.

Transcriptome sequencing and analysis
Using the TRizol reagent, the total RNA of the corre-
sponding all tissues was prepared for mRNA sequencing. 
The RNA integrity and yield were assessed by the RNA 
Nano 6000 Assay Kit of the Bioanalyzer 2100 system 
(Agilent Technologies, Santa Clara, CA, United States) 
and the NanoPhotometer spectrophotometer (IMPLEN, 
Westlake Village, CA, United States). 3  μg of RNA per 
sample was used to create sequencing libraries using the 
NEBNext Ultra TM RNA Library Prep Kit for Illumina 
(NEB, Ipswich, MA, United States) in accordance with 
the manufacturer’s instructions. Index numbers were 
added to identify each sample’s sequences. Finally, the 
clustered libraries were sequenced on an Illumina HiSeq 
platform, and 150-bp paired-end reads were generated.

The raw data obtained by sequencing contains a small 
number of reads with sequencing junctions or of low 
sequencing quality. In order to ensure the quality and 
reliability of the data analysis, the raw data needs to be 
filtered with the following filtering criteria: 1) Removal 
of reads with a splice (adapter);2) Removal of reads with 
a proportion of N (N means base information cannot 
be determined) greater than 0.002;3) When the number 
of low quality bases contained in a single-ended read 
exceeds 50% of the proportion of the length of that read, 
this pair of paired reads needs to be removed. After raw 
data filtering, sequencing error rate checking and GC 
content distribution checking, clean reads were obtained 
for subsequent analysis.

http://www.arb-silva.de/
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The clean reads are compared to the reference genome 
or transcriptome using HISAT2 [38] and the results are 
output as a standard SAM file. The percentage of reads in 
the exonic, intronic and intergenic regions of the genome 
is then counted according to the results of the alignment. 
We used Stringtie [39] software to splice the reads into 
transcripts and quantify them based on the results com-
pared to the genome. We then used Cuffmerge to merge 
the transcripts obtained by splicing each sample, remov-
ing those with uncertain strand orientation and tran-
scripts up to 200 nt in length, then used Cuffcompare to 
compare with known databases, filtering out known tran-
scripts, and finally performing coding potential predic-
tion on the filtered new transcripts.

A comprehensive investigation of transcriptome, 
including coding and non-coding RNAs, was performed 
in the three intestinal regions of Jinhua pigs. Firstly, RNA 
was extracted from a total of 18 intestinal tissues from 
three intestinal regions of 6 pigs. After quality was deter-
mined, RNA sequencing was performed on these samples 
using Illumina HiSeq platform. A total of 1,606,004,430 
raw reads with a length of 150 bp were retrieved from the 
sequencing of 18 libraries. After quality control, a total of 
1,577,466,652 clean reads were remained for each sam-
ple and the proportion of Q30 bases was more than 90% 
(Supplementary Table 5).

The expression level of a gene is directly reflected in 
the abundance of its transcript. In order to make the 
estimated gene expression comparable across genes and 
different experimental conditions, we calculated FPKM 
(FragmentsPer Kilo bases per Millionreads) values for 
difference comparison. To address the issue of zeros in 
transcriptome data, we chose the method of zero exclu-
sion, which completely excluded zero from the analy-
sis, retaining only those samples that were greater than 
zero in the 50% median sample, and the remainder were 
excluded as missing values. Afterwards, we used the soft-
ware edgeR [40] for differential expression analysis and 
clustered the expression values of the samples using a 
hierarchical clustering approach. p < 0.05 and |log2fold-
change|> 1 were used as criteria for significance of dif-
ferences. Specific results are presented in Supplementary 
Table 6. For gene functional enrichment analysis, KEGG 
enrichment was subsequently performed using the clus-
ter Profiler R package (v3.12.0) and the pathway profiles 
in the KEGG database.

Functional analysis of non‑coding RNA
The target gene of the lncRNA is predicted by the 
positional relationship (co-location) and expres-
sion correlation (co-expression) of the lncRNA with 
the protein-coding gene. GO and KEGG enrichment 

analysis of target genes for co-location and co-expres-
sion of differential lncRNAs, respectively, to predict 
the function of lncRNAs.

In this project we used find_circ [41] and CIRI [42] to 
identify circRNAs, the two methods differ in principle 
and the combined analysis improves accuracy. The ori-
gin of circRNAs and the distribution of chromosomal 
positions were counted. The expression of known and 
new circRNAs in each sample was counted and normal-
ized using TPM. Differential and enrichment analyses 
were performed on the results. The significance criteria 
were the same as those for mRNAs described above.

Multi‑omics association analysis
The phenotypes were compared statistically using R 
(4.1.3) for t-test for differences between high-fatness 
and low-fatness. We conducted a Weighted Gene Co-
expression Network Analysis (WGCNA) [43] using the 
R package to assess the correlation between the obesity 
phenotype and mRNA gene expression. Our aim was 
to identify genes associated with adipose deposition in 
the jejunal and colonic regions. WGCNA clusters genes 
into multiple modules, and in this study, we specifically 
focused on selecting genes that exhibited significant 
correlation (q < 0.05) with the obesity phenotype indica-
tors (Supplementary Table 9). These genes were chosen 
for subsequent omics-related investigations. The han-
dling of zero values in the microbial abundance table is 
performed using the following steps: Firstly, zero values 
are treated as missing values, and only zero values that 
are present in less than 50% of the samples are retained 
for further analysis. Additionally, we add a small value 
of 0.01 to abundance data. Afterwards, we performed 
data transformation using the CLR (centered log-
ratio) method on the selected differential microbial 
abundance matrix. We then conducted Spearman cor-
relation analysis between the transformed microbial 
abundance matrix and the expression level matrix of 
the key genes obtained as mentioned above. We con-
sidered a correlation threshold of |r|> 0.6 and p < 0.05 
as the criterion for identifying microbial-gene associa-
tions. The results of this analysis are presented in Sup-
plementary Table  10. The results of microorganisms 
and associated genes in the jejunal region are shown in 
Supplementary Fig.  6. We utilized the "lme4" R pack-
age [44] to construct a linear regression model, with 
microbial abundance as the independent variable and 
key gene expression as the dependent variable. Through 
this model, we obtained the estimated effect values of 
each key gene on the microbiota, allowing us to assess 
the degree of association (Supplementary Table 11).
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Functional exploration of Bacteroides plebeius
We downloaded the assembled genome data of Bac-
teroides plebeius from NCBI [45]. The open reading 
frames (ORFs) in the genome were predicted using 
Prodigal software [46]. A comparable “faa” file was 
generated containing the protein sequences. Subse-
quently, the protein sequences were subjected to func-
tional annotation using the kofam_scan software [47]. 
This annotation was based on Hidden Markov Models 
(HMMs) and the kofam database, enabling the identi-
fication of protein sequence homology and completion 
of gene function annotation. The type and number of 
carbohydrase encoded by the assembled genome were 
annotated using the CAZY database [48].

Statistical analysis
P < 0.05 was considered statistically significant. In 
addition, a Benjamini–Hochberg false-discovery rate-
corrected pvalue (qvalue) was estimated. The cor-
rected results were included in the Supplementary 
Tables 4, 6, 9, and 10.
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