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Abstract
Background Toxigenic fungi (Aspergillus and Fusarium) and their metabolites represent the major cause of corn and 
corn-based products contamination and consequently lead to severe economic and health issues.

Aim Our current study aimed to investigate the efficacy of using L. macroides Bac6 as a biological control agent 
against the toxigenic fungi; A. flavus f10 and F. proliferatum f30 and their mycotoxins.

Results The results illustrated that A. flavus f10 produced the aflatoxins AFB1 and AFG2 with concentrations of 21.239 
and 13.593 ppb, respectively. While F. proliferatum f30 produced fumonisin B1 (9600 ppb). Furthermore, L. macroides 
showed a high potential for inhibition of toxigenic fungal growth using a dual culture method. F. proliferatum f30 and 
A. flavus f10 were found to be inhibited by a percentage of 80 and 62.5%, respectively. The results were confirmed 
using the scanning electron microscope. The antagonistic bacteria, L. macroides, showed chitinase productivity 
and activity of 26.45 U/L and 0.12 U/mL/min, respectively, which illustrates its potential application as a biocontrol 
agent. The GC-MS analysis revealed an abundance of Pyrrolo[1,2-a] pyrazine-1,4-dione, Hexahydro in the bacterial 
supernatant that exhibited antifungal characteristics. L. macroides had a significant reduction of AFB1 and AFG2 
produced by A. flavus f10, recording 99.25% and 99% inhibition, respectively. It also showed strong inhibition of 
fumonisin B1 (90% inhibition) produced by F. proliferatum f30. Conclusion: Thus, the current study is a prospective 
study evaluating for the first time the potential impact of L. macroides Bac6 against the toxigenic fungi and their 
toxins.
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Background
The world’s population is estimated to be 8  billion by 
2025 and 9.8  billion by 2050 [1]. As a result, increasing 
global agricultural productivity is required to meet food 
demand [2, 3]. Grains, pulses, and oil seeds continue to 
play an important part in both human and animal nutri-
tion around the world. Aspergillus flavus is typically 
found in decaying vegetation and soil [4]. This fungus is 
well-known for producing aflatoxin, a strong carcinogen 
that is dangerous to both people and animals [5, 6]. A. 
flavus may infect a diverse range of hosts, such as maize, 
cotton, and peanuts. [7]. Infections that develop dur-
ing growth or storage might cause significant monetary 
losses [8]. Due to its capacity to create secondary metabo-
lites such as aflatoxins, cyclopiazonic acid, and kojic acid, 
A. flavus is fatal [9]. In the host organism, these metabo-
lites may result in cell damage and death [10]. A. flavus’s 
aflatoxins have the potential to harm people either imme-
diately after exposure or over time, leading to conditions 
such as liver cancer, immune system suppression, and 
growth retardation [11, 12]. A filamentous fungus called 
Fusarium proliferatum infects maize and causes illnesses 
in plants. It creates mycotoxins, which, when consumed 
by people or animals eating tainted feed or crops, can 
have major negative effects on their health [13]. F. pro-
liferatum infects maize plants, causing root, stalk, and 
ear rot as well as producing fumonisins, a mycotoxin that 
can taint maize kernels and pose a major risk to human 
and animal health, results in a serious health risk to con-
sumers. [14]. Additionally, grains, including corn (maize), 
are susceptible to mycotoxins before and after harvest 
[15]. When specific fungal species are exposed to envi-
ronmental conditions (e.g., water activity, temperature, 
pH, and intergranular gas composition), mycotoxins are 
produced. Mycotoxins from toxigenic fungal growth 
are produced in food and animal feeds via the second-
ary metabolism process [16]. Mycotoxins, in contrast 
to many bacterial toxins, are typically extremely stable 
when exposed to the conventional heating method used 
in the preparation of foods for human consumption [17]. 
These fungi and mycotoxins have serious consequences 
for human and animal growth and health [18–20]. Afla-
toxin and fumonisin B1 are two mycotoxins that have 
been linked to cancer in humans and other mammals as 
well as renal and neurological disorders. [21, 22]. One of 
the primary issues in managing mycotoxigenic fungi and 
related mycotoxin, which is a source of contamination 
is that fungicides are ineffective at treating agricultural 
commodities, that are usually applied in the agricultural 
sector to treat diseases caused by fungi. [23, 24]. Biologi-
cal control may be a long-term solution, safe for human 
and environmentally healthy, self-sustaining treatment 
strategy to manage mycotoxins, resulting in reduced agri-
operational costs [25, 26]. Biological control is effective, 

and many new approaches are being developed, most 
of them are based on microbiological research and the 
usage of microbial organisms that inhibit fungal growth 
and detoxify mycotoxins [27]. Bio-acceptable approaches 
should not only be beneficial to the environment and 
the crop, but also to the producers and the consumers 
[27]. One of the approaches that are most important for 
ensuring humanity’s health and sustaining eco-friendly 
food production will unquestionably be the introduction 
and administration of biological and natural protective 
agents against fungal contamination. [28, 29]. Biocontrol 
methods include an antibiosis, mycoparasitism, compe-
tition, development of resistance in the host plant, and 
competition [30]. As a result, mycotoxigenic biocontrol 
by antagonistic agents is regarded as a promising strategy 
for minimizing and reducing toxin production by these 
fungal species, and thus reducing the hazards of these 
toxins on human health when consuming food prod-
ucts [31]. Flavobacterium aurantiacum B-184 had been 
effectively evaluated for aflatoxins destruction and was 
effective in eradicating Aspergillus toxins from liquids 
irreversibly [32, 33]. Lactobacillus plantarum CECT 749 
CFS had a strong antifungal impact on maize kernels and 
maize ears against A. flavus and F. verticillioides, and FB1 
and AFB1 levels were extremely dropped [34]. Bacillus 
velezensis RC 218 and Streptomyces albidoflavus RC 87B 
successfully reduced Fusarium Head Blight by up to 30%, 
its severity by up to 25%, and deoxynivalenol accumula-
tion by up to 51% on durum wheat under field conditions 
[35, 36]. Interestingly, Lysinibacillus macroides, isolated 
from damaged Waste materials from fruits and vegeta-
bles were found to possess an inhibiting effect on food-
borne microbes [37]. It has been proven that sugarcane 
bagasse can be applied for producing extracellular laccase 
on a large scale using Lysinibacillus macroides at a low 
cost and with ease [38]. Additionally, Lysinibacillus mac-
roides produces some antimicrobial compounds and chi-
tinase, glucanase, and protease, which are enzymes that 
have the ability to degrade the cell wall, are well-known 
to be used as biocontrol techniques. [39]. Lysinibacillus 
has the ability to down regulate the fungal-hyphal growth 
[40]. Additionally, by lowering the prevalence of Sal-
monella, which is well-known for producing significant 
morbidity in poultry, people, and other animals such as 
cattle and pigs, as well as in several plants, Lysinibacillus 
macroides was working as a natural control agent [41]. 
The most common way for these illnesses to spread is 
through the intake of contaminated food and drink [41]. 
It is proven that Lysinibacillus macroides shows a signifi-
cant concentration reduction ability for chromium (VI), 
which is known as an accumulated pollutant in lakes in 
Mexico [42]. Lysinibacillus has been proven to be effec-
tive at pest management [43], improve crop production 
and clean up heavy metal-contaminated ecosystems [43]. 
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Zinc-tolerant Lysinibacillus spp. are additionally known 
to boost maize production in Zinc-contaminated soil [43, 
44].

All across the world, mycotoxins pose a serious threat 
to the safety of food. Farmers and consumers suffer 
financial losses in poor nations such as Egypt when food 
lots contain high toxin levels. Extremely polluted lots 
are either totally discarded or sold for an undesirable 
price. In years and locations with extremely high levels 
of mycotoxins, leading to significant food loss and waste. 
In low- and middle-income countries, where mycotoxin 
limits may not even exist or may not be routinely imple-
mented, human health consequences can be substantially 
get worse [5]. For the bio-management of toxic fungus 
and their potential to manufacture mycotoxins, the use of 
bacterial strains is recommended as a non-chemical, suc-
cessful, environmentally friendly, and affordable biologi-
cal control strategy [45]. There are no published papers 
that demonstrate the potential effect of using L. macroi-
des as a natural deterrent towards toxigenic fungi that are 
related to corn and its products; therefore, we aim for the 
first time to investigate the efficacy of L. macroides Bac6 
as a natural barrier to toxigenic fungi (A. flavus f10 and 
F. proliferatum f30) and minimize their mycotoxins to 
reduce the loss of crops and increase the productivity and 
quality of the corn and its products, which will reflect on 
the consumers’ health.

Results
Molecular studies for the most predominant toxigenic 
fungi isolated from yellow-corn and cornflakes (A. flavusf10 
andF. proliferatumf30) strains
From the previous screening study performed by [46], 
A. flavus f10 and F. proliferatum f30 showed the highest 
productivity of mycotoxins, so they are representative 
producers of aflatoxins and fumonisin B1, respectively. 
A. flavus f10 and F. proliferatum f30 isolates were iden-
tified at the species level using macro- and microscopic 
characteristics. Moreover, A. flavus f10 and F. prolifera-
tum f30 isolates were subjected to confirmation of their 
identification using molecular techniques. The molecu-
lar typing resulted in partial 18 S rRNA gene sequences 
of 582 and 521  bp for A. flavus f10 and F. proliferatum 
f30, respectively. The partial 18  S rRNA gene sequence 
of 582 bp of the representative A. flavus f10 isolate had 
a sequence with 99% similarity to Aspergillus flavus 
strain PUXX-FS06 (KR296888.1), Aspergillus flavus IFM 
42,126 (LC602022.1), Aspergillus flavus strain TN533D12 
(MH271095) and Aspergillus flavus strain USMG09 
(KF434090.1) available in the GenBank database (S 1 A). 
The candidate isolate was identified as Aspergillus flavus 
f10, which belongs to the family Aspergillaceae, order 
Eurotiales, class Eurotiomycetes. Similarly, the partial 
18 S rRNA gene sequence of 521 bp of F. proliferatum f30 

isolate had a sequence with 100% similarity to Fusarium 
proliferatum strain HC01-1 (MT560215.1), Fusarium 
proliferatum strain TH12-5 (MT560218.1) and Fusarium 
proliferatum strain CF2 (MN658457.1), which are avail-
able in the Genbank database (S 1B). The chosen isolate 
was identified as Fusarium proliferatum, which belongs 
to the family Nectriaceae, order Hypocreales, class Sor-
dariomycetes. The phylogenetic trees were built indepen-
dently from various sequence alignments of 18  S rRNA 
genetic sequences. The obtained sequences of toxigenic 
fungal strains A. flavus f10 and F. proliferatum f30 were 
deposited in the genebank database under accession 
numbers OQ087136 and OQ087105, respectively.

Quantification of mycotoxins production byA. flavusf10 
andF. proliferatumf30 strains using the HPLC technique
High-performance liquid chromatography analysis was 
employed to figure out the concentrations of aflatoxins 
and fumonisin B1 produced by A. flavus f10 and F. pro-
liferatum f30 strains, respectively. HPLC analyses contin-
ued for 15–25 min of retention time, but all the produced 
mycotoxins were recovered at the first 6  min of reten-
tion time (Fig. 1) and the tested fungal strains showed a 
high ability to produce mycotoxins. A. flavus f10 strain 
showed the ability to produce two types of aflatoxins 
namely, AFB1 and AFG2 in considerable concentrations 
of 21.239 ppb and 13.593 ppb, respectively. Additionally, 
F. proliferatum f30 strain showed a high degree of toxige-
nicity since it produces 9600 ppb of fumonisin B1 (Fig. 2).

The antagonistic effect of bacterial isolates against the 
toxigenicA. flavusf10 andF. proliferatumf30 strains
Four bacterial isolates demonstrated various antagonistic 
activities against the two highest mycotoxin-producing 
fungal strains, A. flavus f10 and F. proliferatum f30. Bac-
terial isolate Lysinibacillus macrolides Bac6 exhibited the 
highest efficiency for inhibition of the growth of toxigenic 
fungi A. flavus f10 and F. proliferatum f30 recording a 
13 mm and 8 mm inhibition zone, respectively. Whereas, 
bacterial isolates Bacillus subtilis, Pseudomonas sp. and 
Bacillus cereus showed inhibition zone of 8 mm, 4.5 mm 
and 2 mm, respectively against (A) flavus f10, as well as 
inhibition zone of 0.9  mm, 4.5  mm and 3  mm, respec-
tively, against F. proliferatum f30 as shown in Table  1; 
Fig. 3A. Additionally, Lysinibacillus macroides Bac6 due 
to its highest efficacy among the four isolates as demon-
strated in Fig. 3B. The accumulated data from three plates 
for each fungal strain are expressed as the mean ± SEM in 
L. macroides Bac6 (open bars), Bacillus subtilis (hatched 
bars), Pseudomonas sp. (herringbone bars) and Bacillus 
cereus (stripe bars). *P < 0.001, L. mocrides Bac6 vs. (B) 
subtilis; #P < 0.001, L. mocrides Bac6 vs. Pseudomonas sp.; 
and ; +P < 0.001, L. mocrides Bac6 vs. B. cereus.
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Reduction of toxigenic fungal growth byLysinibacillus 
macroidesBac6 strain
The confirmation of the reduction of toxigenic fungal 
growth with the most active bacterial strain Lysinibacil-
lus macroides Bac6 was assayed on a solid medium using 
a dual culture method. The highest antagonistic bacte-
rial strains exhibiting inhibition percentage (%) of fungal 
growth compared to control fungi were 80 and 62.5% for 

A. flavus f10, and F. proliferatum f30, respectively (Fig. 4). 
Interestingly, the bacterial strain L. macrolides Bac6 is 
the most potent antagonistic bacteria against the tested 
mycotoxigenic-producing fungal strains A. flavus f10 and 
F. proliferatum f30. Therefore, it was selected for further 
studies to illustrate its crucial role in minimizing the tox-
ins produced by toxigenic fungi.

Using morphological, microscopic, biochemical, and 
molecular methods, L. macroides Bac6 was identified. 
The partial 16 S rRNA gene sequence resulted in 931 bp; 
It was compared using a BLAST search (NCBI) with 
complete sequences that were available in the GenBank 
database. Sequences obtained with those retrieved from 
the GenBank database were subjected to Crustal analysis 
using Mega Align (DNA Star) for the phylogenetic analy-
sis. Sequenced data were inserted in GenBank, and the 
resulting 16 S rRNA gene sequence showed identity simi-
larity at 100% with L. macroides AzoM1 (MK942418.1), 
L. macroides JB_2 (MT197307.1) and L. macroides 
SMV311 (MN538917.1) (S2). Therefore, from the phy-
logenetic analyses, it can be identified as Lysinibacillus 
macroides Bac6 strain which, belongs to the family Bacil-
laceae, order Bacillales and class Firmicutes after which 

Table 1 Antagonistic effect of bacterial isolates on toxigenic fungal isolates (A. flavus f10 and F. proliferatum f30) collected from corn 
and products containing corn. Bacterial isolate represents the four tested bacteria for the antagonist with the toxigenic fungi. Zone of 
inhibition presented in millimeter
Bacterial isolate Inhibition zone (mm)

A. flavus f10 F. prolifera-
tum f30

Lysinibacillus_macrolidesBac6 13 ± 0.1 8 ± 0.1
Bacillus subtilis 8 ± 0.2 0.9 ± 0.2
Pseudomonas sp. 4.5 ± 0.2 4.5 ± 0.2
Bacillus cereus 2 ± 0.1 3 ± 0.1

Fig. 2 The concentration of the produced AFB1, AFG2 and FB1 toxins

 

Fig. 1 The chromatograms of the recovered mycotoxins which produced by the toxigenic (A)A. flavus f10 and (B)F. proliferatum f30 strains
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Fig. 3 Antagonistic activities of bacterial isolates against toxigenic fungal isolates A. flavus f10, and F. proliferatum f30 recovered from corn and corn-based 
products. (A)Lysinibacillus macroides Bac6, (B)Bacillus subtilis, (C)Pseudomonas sp. and (D)Bacillus cereus. The sum of the data from three plates for each 
fungal strain are expressed as the mean ± SEM in L. macroides Bac6 (open bars), Bacillus subtilis (hatched bars), Pseudomonas sp. (herringbone bars) and 
Bacillus cereus (stripe bars). *P < 0.001, L. mocrides Bac6 vs. B. subtilis; #P < 0.001, L. mocrides Bac6 vs. Pseudomonas sp.; and ; +P < 0.001, L. mocrides Bac6 vs. 
B. cereus
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the resulting sequence was entered into the genebank 
with the corresponding accession number OQ080068.

Evaluation of the effect ofLysinibacillus macroidesBac6 
strain on fungal growth of two toxigenic strains using 
electron microscopic examination
The impact of the highest antagonistic bacterial strain 
(Lysinibacillus macroides Bac6) on the growth of toxi-
genic fungi was evaluated using scanning electron micro-
scope (SEM) to evaluate the possible mode of action of 

Lysinibacillus macroides Bac6 (Figs.  5B and 6B) against 
Aspergillus flavus f10 (Fig.  5A) and Fusarium prolifera-
tum f30 (Fig. 6A). The resulting SEM graphs showed sig-
nificant bacterial colonisation and persistent adhesion 
around the hyphae of toxigenic mould (Fig.  5C & 6C). 
The colonized hyphae displayed severely malformed and 
limited proliferation (Figs. 5D and 6D), pitting and dam-
aged appearance of the hyphal cell wall compared with 
control fungal growth. As well as, it was noticed that, 
there is strong inhibition of conidia formation.

Fig. 4 Spectrum of antifungal activities of L. macroides Bac6 against toxigenic A. flavus f10 and F. proliferatum f30 strains. The fungi in the first row (A) are 
the control (cultured fungi without bacterial effect), while those in the second row; (B) revealing substantial impacts on the development of the fungus 
in a dual culture after three days of incubation
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Chitinase activity
Scanning electron microscope (SEM) graphing showed 
pores formation of the toxigenic fungal hyphae when 
grown with L. macroides Bac6 strain in dual culture. 
Therefore, it was expected that the bacterial cells had the 
capability to produce hydrolyzing enzymes that induced 

fungal cell wall hydrolysis and pore formation by chitin-
ase. The bacterial strain (L. macroides Bac6) was tested 
for chitinase enzyme production. Control without bac-
terial colony (Fig.  7A). It showed the capability to pro-
duce chitinase, recording the appearance of a clear zone 
of 12  mm after 24  h (Fig.  7B). Interestingly, it showed 
55 mm inhibition zone on a solid chitin medium after 3 
days incubation period (Fig. 7C). Moreover, using spec-
trophotometer, the highest antagonistic bacterial strain 
showed chitinase productivity of 26.45 U/L and chitinase 
activity of 0.12 U/mL/min. after 5 days incubation period.

Composition of the metabolites profiling ofL. 
macroidesBac6
The bacterial metabolites analyses were performed 
using Gas Chromatography/Mass Spectrometry (GC-
MS), to assay the bioactive compounds produced by 
the antagonistic bacterial strain that may be responsible 
for the inhibition of the growth of toxigenic fungi. The 
GC-MS analysis revealed that the most common bacte-
rial metabolites were Pyrrolo[1,2-a] pyrazine-1,4-dione, 
hexahydro (6.69%), 9,12,15-Octadecatrienoic acid,2,3-
bis[(trimethylsilyl)oxy]propyl ester, (Z,Z,Z)- (6.57%), 
Hexadecenoic acid, 1-(hydroxymethyl)-1,2-ethanediyl 
ester (1.65%), Glycerol 2-acetate 1,3-dipalmitate (1.14), 
Ethyl iso-allocholate (1.07%). Additionally, 2(3  H)-
furanone,5-heptyldihydro- (0.81%) of the total analytes. 
Whereas, the bacterial metabolites Agaricic acid (0.42%), 
Digotoxin (0.42%), N, N’-Bis (Carbobenzyloxy)-lysine 
methyl(ester) (0.33%), Oleic acid (0.29%), 2-Myristynoyl 
pantetheine (0.26%), 2(3  H)-Furanone, 5-heptyldihydro- 
(0.18%) and hexadecenoic acid methyl ester (0.15%) were 
detected in the GC-MS analysis (Fig. 8; Table 2).

Impact ofL. macroidesBac6 strain on the formation of 
mycotoxins
The data from HPLC for each fungal extract with their 
toxins and the fungal extracts with their toxins treated 
by L. macroides are expressed as the concentration 
(ppb) in Table  3. *P < 0.0001, A. flavus f10 (AFB1) + L. 
macroides vs. A. flavus f10 (AFB1); # P < 0.0001, A. fla-
vus f10 (AFG2) + L. macroides vs. A. flavus f10 (AFG2); 
and ; +P < 0.0001, F. proliferatum f30 (FB1) + L. macroides 
vs. F. proliferatum f30 (FB1). The resulted data revealed 
that the active bacterial cells had a significant reduc-
tion for aflatoxin B1 and aflatoxin G2 which were pro-
duced by Aspergillus flavus f10 recording 99.25% and 
99% inhibition, respectively. In addition, the Lysinibacil-
lus macroides showed strong inhibition of fumonisin B1 
(90% inhibition) produced by Fusarium proliferatum f30 
(Fig. 9).

Fig. 6 Scanning electron micrographs showed effect of Lysinibacillus 
macroides Bac6 on Fusarium proliferatum f30 fungal growth. (A)Fusarium 
proliferatum f30 growth “control”, (B)Lysinibacillus macroides Bac6 cells. (C, 
D) bacterial colonization around fungal hyphae, deformations, pitting and 
inhibition of sporulation

 

Fig. 5 Scanning electron micrographs showed effect of Lysinibacillus 
macroides Bac6 on Aspergillus flavus f10 fungal growth. (A)Aspergillus flavus 
f10 growth “control”, (B)Lysinibacillus macroides Bac6 cells. (C, D) bacterial 
colonization around fungal hyphae, deformations, pitting and inhibition 
of sporulation
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Discussion
Multiple lines of evidence in vitro were employed to show 
that fumonisin and aflatoxins accumulations reflect the 
mycotoxigenic risk when the maize is infected with toxic 
Fusarium section Liseola and Aspergillus section Flavi 
[47]. Similarly, Izzati et al. [48] shown that F. proliferatum 
was found on nearly all maize farms. Other lines of evi-
dence on corn were investigated and demonstrated the 
high occurrence of A. flavus [49, 50], as well as Fusarium 
species especially Fusarium graminearum and Fusarium 
proliferatum were very common in all maize-cultivated 
areas [51]. A. flavus, is the most risky worldwide spe-
cies that is easily able to colonize corn [52]. Contamina-
tion with mycotoxins and their producers in maize and 
products based on corn is mainly caused by aflatoxins, 
fumonisins, and their primary fungal producers [53]. 
Regarding this F. proliferatum, F. verticillioides produced 
FB1 and FB2, with FB1 serving as the primary analogue 
(representing 75% of the total fumonisins). These isolates 

are thought to yield more than 500 g/g of FB1 [54]. Our 
results revealed that the potent toxigenic fungal strains 
A. flavus f10 and F. proliferatum f30 which are isolated 
from corn samples refered that strict quarantined and 
proper storage practices recommended to be used with 
imported goods in order to minimize infection with toxi-
genic moulds and steer clear of hazards to animal and 
human health.

The results were obtained from the HPLC method was 
employed to verify and quantify the aflatoxins (AFB1 
– AFG2), and fumonisin B1 generated by the highest 
concentrations of active aflatoxins and strains that pro-
duce fumonisins, respectively, namely A. flavus f10, and 
F. proliferatum f30. Our data revealed that, Aspergillus 
flavus f10 that was invading cornflakes could produce 
aflatoxin B1 21.239 ppb and aflatoxin G2 13.493 ppb and 
F. proliferatum f30 produce 9600 ppb of fumonisin B1. 
Compared to another previous study that stated that A. 
flavus isolates could produce aflatoxin B1 in the range of 

Fig. 8 GC − MS chromatograph of the detected compounds in L. macroides Bac6 strain extract

 

Fig. 7 Chitinase activity of Lysinibacillus macroides on solid medium. (A) control plate floded with Congo red, (B) chitinase activity of bacterial strain (clear 
zone) after incubation for 3 days and (C) chitinase activity of bacterial strain (clear zone) after incubation for 5 days
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0.09–50.68 ppb and aflatoxin B2 0.33–9.2 ppb isolated 
from Malaysian Sweet Corn [55]. In other research, lev-
els of Aflatoxins secreted by A. parasiticus and A. flavus 
isolated from silage of corn ranged 2–45 ppb and 2–100 
ppb, respectively [56]. In addition, a study performed on 
corn and popcorn samples monitored that A. flavus var. 
columnaris and A. flavus isolates could produce aflatox-
ins with range of 1–8 ppb [57]. F. proliferatum and Fusar-
ium verticillioides were investigated to accumulate FB1 

and FB2 in maize kernels, which could result in a harmful 
or economical crop loss [58]. It is critical to find strate-
gies to safeguard the maize crop from fumonisin build-
ing up. In the study performed [58], the production of 
fumonisin B1 is 6.22 ± 0.89 ppb. Similarly, Mohamed et 
al., published that FB1 was found in all silos samples and 
corn markets with a range of 13.69-175.54 ppb [59].

Our current study focused on the potentiality of using 
a biological control agent to reduce the growth of A. fla-
vus f10 and F. proliferatum and their toxins. Our results 
revealed that L. macrolides Bac6 was the best one among 
all the tested bacterial isolates, due to its highest effi-
cacy as demonstrated in Fig.  3B, which interpreted the 
data presented in Table  1. Although, there is no sig-
nificance among the effects of the four tested bacterial 
isolates against both tested mycotoxigenic fungi. We 
demonstrated that the most antagonistic is L. macrolides 
Bac6, as a result of its safety as demonstrated in several 
research papers using it as a biological agent against 
pathogens [41, 60, 61]. Therefore, the Lysinibacillus mac-
rolides Bac6 was the best choice to be used as a biological 
control agent. The proportion of fungal growth inhibited 
by Lysinibacillus macroides Bac6 as compared to control 
fungi was 80 and 62.5% for A. flavus f10 and F. prolifera-
tum f30, respectively. As mentioned before in a previous 
study Bacillus megaterium BM344-1 has the ability to 
reduce the toxigenic fungi growth. The inhibition ratios 
(%) of P. verrucosum, (A) flavus, and F. verticillioides out-
performed control fungi by 66.7, 29.4, and 18.2%, respec-
tively [62]. Zeidan et al. [63] The most sensitive to yeast 
VOCs was found to be Penicillium followed by Asper-
gillus, whereas Fusarium was found to be the least sen-
sitive. A key factor in fungus resistance is the nature of 
the fungal cell wall, which is affected by stressors in the 
microenvironment. The antagonistic effects of Bacillus 
volatiles as (B) subtilis, Bacillus amyloliquefaciens, Bacil-
lus cereus, and B. megaterium towards toxigenic and phy-
topathogenic Penicillium and Aspergillus spp. have been 
illustrated [62, 64, 65].

We evaluated the underlying mechanism of the 
antagonistic effect of L. macrolides via electron micro-
scopic examination, and we detected that the effect may 
be attributed to the production of chitinase enzyme. 
The tested Lysinibacillus macroides Bac6 strain in this 
study showed high potential production of exo-chitin-
ase enzyme. According to the study that illustrated that 
Lysinibacillus spp. also produces some of these types of 
antimicrobial compounds, which include the develop-
ment of cell wall-degrading enzymes as a biocontrol 
approach [40]. Cell wall-degrading enzyme-producer 
Lysinibacillus can inhibit fungal hyphal development 
[40].

Bacterial metabolites analysis performed by gas chro-
matography − mass spectrometry (GC − MS) revealed the 

Table 2 Major compounds of L. macroides Bac6 strain 
metabolites detected by Gas Chromatography-Mass 
Spectrometry
No. COMPOUND RT. M.wt % of 

total 
analytes

1 Pyrrolo[1,2-a] pyrazine-1,4-dione, 
hexahydro

36.47 154 6.69

2 9,12,15-octadecatrienoic acid,2,3 
bis[trimethylsily] propylester, (Z, Z, 
Z)-

66.25 496 6.57

3 Benzyl chloride 10.01 126 2.33
4 Hexadecenoic acid, 

1-(hydroxymethyl)-1,2-ethanediyl 
ester

47.27 568 1.65

5 Glycerol 2-acetate 1,3-dipalmitate 63.79 610 1.14
6 Ethyl iso-allocholate 75.88 436 1.07
7 2(3 H)-furanone,5-heptyldihydro- 27.65 184 0.81
8 Agaricic acid 35.60 416 0.42
9 Digotoxin 35.31 764 0.42
10  N, N’-Bis (Carbobenzyloxy)-lysine 

methyl(ester)
4.49 428 0.33

11 Oleic acid 36.73 282 0.29
12 2-Myristynoyl pantetheine 18.22 484 0.26
13 2(3 H)-Furanone, 5-heptyldihydro- 27.65 184 0.18
14 hexadecenoic acid methyl ester 35.99 270 0.15
The data in the table explains the range of various fourteen bioactive chemical 
components at various concentrations 0.1 of the total metabolites of the L. 
macroides Bac6 strain that were recovered throughout various retention times. 
Retention time every minute (RT); Compound: Active substances identified by 
GC-MS; (%): Compound percentage; M. wt.: Compound molecular weight

Table 3 Effect of Lysinibacillus macroides on mycotoxins 
produced by toxigenic fungal isolates
Fungus ± Treatment Mycotoxin Con-

centra-
tion 
(ppb)

A. flavus f10 AFB1
AFG2

21.239
11.666

 A. flavus f10 + L. macroides AFB1
AFG2

0.16*

0.168#

F. proliferatum f30 FB1 9600.91
 F. proliferatum f30 + L. macroides FB1 950+

The data from HPLC for each fungal extracts with their toxins and the fungal 
extracts with their toxins treated by L. macroides are expressed as the 
concentration (ppb). *P < 0.0001, A. flavus f10 (AFB1) + L. macroides vs. A. flavus 
f10 (AFB1); # P < 0.0001, A. flavus f10 (AFG2) + L. macroides vs. A. flavus f10 (AFG2); 
and ; +P < 0.0001, F. proliferatum f30 (FB1) + L. macroides vs. F. proliferatum f30 
(FB1)
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presence of several compounds including Pyrrolo[1,2-
a] pyrazine-1,4-dione, hexahydro. This compound was 
the highest prevalent in the L. macroides Bac6 strain 
metabolites. Interestingly, it was reported as a bacteri-
cidal compound which also, isolated from Bacillus tequi-
lensis MSI45 against multidrug-resistant pathogenic 
Staphylococcus aureus [66]. Moreover, it has been shown 
that Microcystis aeruginosa is susceptible to algicides, 
which is a compound was detected in Bacillus Lzh-5 
[67]. Furthermore, GC-MS analysis of L. macroides Bac6 
strain metabolites revealed that the presence of these 
bioactive compounds namely, Pyrrolo[1,2-a] pyrazine-
1,4-dione, hexahydro 2(3  H)-furanone,5-heptyldihydro, 
9,12,15-octadecatrienoicacid,2,3 bis[trimethylsily] pro-
pylester, (Z, Z, Z)-, agaricic acid, digotoxin, ethyl iso-
allocholate, oleic acid and hexadecanoic acid methyl 
ester. All compounds are well-known microbial biomol-
ecules that have strong antagonistic activities against 
toxigenic as well as phytopathogenic fungi [68] [69] [70] 
[71]; [62, 72] [66]. While 9,12,15-octadecatrienoic acid, 
2,3-bis[(trimethylsilyl)oxy]propyl ester, (Z,Z,Z)- (6.57%) 
was the second molecule found with a large peak area 
and has been linked to antimicrobial activity [73], hexa-
decenoic acid has recently been linked to antifungal 
activity [74]. In addition, the 1-(hydroxymethyl)-1,2-eth-
anediyl ester (1.65%) had antifungal action [75], as did 
Glycerol 2-acetate 1,3-dipalmitate (1.14) [76], and Ethyl 
iso-allocholate (1.07%). Furthermore, 2(3 H)-furanone,5-
heptyldihydro- (0.81% of total analytes) demonstrated 
antifungal activity. [77–79].

Aflatoxin and fumonisin-producing fungi share the 
same habitat as other microorganisms that can influ-
ence toxin production [80, 81]. Our results revealed that 
Lysinibacillus macroides Bac6 produced an inhibitory 
effect on A. flavus f10 and F. proliferatum f30 growth 
and their toxin production. Surprisingly, the Lysiniba-
cillus macroides Bac6 metabolites inhibited AFB1 and 
AFG2 which produced by Aspergillus flavus f10, and FB1 

that produced by Fusarium proliferatum f30, with 99.25, 
99, and 90%, respectively. Saleh et al. [62] reported that 
aflatoxins (AFB1, AFG1, and AFG2), ochratoxin A, and 
FB1 production on artificial medium were completely 
inhibited after exposure to (A) flavus, P. verrucosum, 
and F. verticillioides to Bacillus megaterium BM344-1 
VOCs. Moreover, Pereira et al. [81] study demonstrated 
that (B) amyloliquefaciens were significantly reducing 
FB1 and FB2 levels. Furthermore, it has been documented 
that volatiles released by B. megaterium KU143 and B. 
licheniformis 350-2 on un-hulled rice and maize ears pre-
vent the production of aflatoxins by A. flavus [82], [83], 
respectively.

Conclusion
In conclusion, mycotoxins pose a serious threat to the 
safety of food, especially in low- and middle-income 
nations, incurring financial and human health conse-
quences. Bacterial strains can be used as an eco-friendly, 
non-chemical, and low-cost biological control method. 
For the first time, we investigated the efficacy of using L. 
macroides Bac6 as a biological control agent against the 
most prevalent mycotoxigenic fungi invading corn and 
corn-based products through the potential impact of 
bacterial metabolites that significantly reduced AFB1 and 
AFG2 produced by A. flavus f10 and strongly inhibited 
fumonisin B1 produced by F. proliferatum f30. To bet-
ter summarize, the methods and the resulted data of our 
study were demonstrated in (Fig. 10).

Materials and methods
Toxigenic fungi
Aspergillus flavus f10 and Fusarium proliferatum f30 
strains were obtained from our previous work, in which 
they were isolated from yellow-corn and cornflakes, 
respectively [46]. According to our published paper, prior 
to usage, the tested fungal isolates were cultivated and 
cultured on potato dextrose agar (PDA) at 28 °C. [45, 84]. 

Fig. 9 Chromatograms of aflatoxins production by Aspergillus flavus f10 (A) and Fumonisin B1 production by Fusarium proliferatum f30 (B) after exposure 
to bacterial strain (L. macroides Bac6)
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Both strains were identified by molecular characteristics 
based on 18 S rRNA.

Analyses of mycotoxins production by HPLC technique
The fungal inoculum preparation was carried out using 
freshly grown fungal cultures, seven days old, at 28  °C. 
A 1  cm disc was removed from the borders of the fun-
gal growth using a cork-porer and utilized as fungal 
inoculum according to [85]. As an enhanced medium 
for mycotoxins formation, liquid yeast extract sucrose 
medium (YES) was employed containing (g/L); yeast 
extract, 1; peptone, 10; K2HPO4,1; MgSO4.7H2O, 0.5; 
sucrose, 30; KCl, 0.5; FeSO4.H2O, 0.01; and NaNO3, 2.0, 
and the pH was adjusted to 6.5. In 100 ml capacity coni-
cal flasks, 25 ml of the medium (YES) was pipetted, auto-
claved, inoculated then incubated at 28 °C for two weeks 
and three weeks under static conditions for aflatoxins 
and fumonisin B1 production, respectively. For aflatox-
ins extraction, the homogenization occurred in the fun-
gal broth. Using a fast speeds blender, mix 25 millilitres 
of chloroform solvent for a period of five minutes. The 
aqueous phase was subsequently filtered using Whatman 
filter paper No.1 after the organic phase was separated 
from it using a separating funnel, then dehydrated over a 
solution of anhydrous sodium sulphate, and dried to near 
dryness on a rotating evaporator. Each extract’s residuals 
were then reconstituted in two millilitres of chloroform 
then preserved in tiny brown bottles until the detection 
process. In contrast, the acetonitrile technique (5 ml/g 

of culture media) reported by [86] has been selected for 
fumonisin B1.

The mycotoxins were subjected to a quantitative esti-
mation using high-performance liquid chromatogra-
phy (HPLC) according to [87]. In the case of aflatoxins 
determination, the mobile phase comprised a combina-
tion of water, acetonitrile, and methanol (55:30:15 v/v/v), 
whereas, for fumonisin B1, two mobile phases have been 
used, namely solvent A (water: acetonitrile: acetic acid 
(59:4:1 v/v/v)) and solvent B acetonitrile: acetic acid (99:1 
v/v). Aflatoxins and fumonisin B1 were detected using a 
detector that detects fluorescence with wavelengths of 
excitation of 295 and 335 nm, respectively, and emitting 
wavelengths of 330 and 440 nanometers, respectively 
[88–90]. The studies were carried out using HPLC system 
(Agilent Technologies Series 1200, G1321A FLD with 
column Zorbax, the Eclipse programme + C18) located at 
Assuit University’s Analytical Chemistry Unit.

Investigating the antagonistic activities of bacterial 
isolates against the toxigenic fungi
The antagonistic activities of the recovered bacterial iso-
lates on the highest toxin-producing fungal strains (A. 
flavus F10 and F. proliferatum F30) were tested in vitro. 
The bacterial isolates recovered from soil were streaked 
with a line method at the center on PDA plates with a 
toxigenic strain of fungus inoculum, along with a 7-day 
incubation period at 28  °C for the cultures. Each treat-
ment included three replications. The inhibitory zone 

Fig. 10 To summarize our study, we started with the isolation of the toxigenic fungi from corn samples and corn-based products, separation of the toxin 
after identification of the toxigenic fungi to be analyzed via HPLC to detect the types of mycotoxins, and finally illustrating the biological control effect of 
bacterial metabolites detected with GC-MS against those toxigenic fungi.
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was identified at the end of of the incubation time [91, 
92].

Lysinibacillus macroides Bac6, the highest antagonis-
tic bacteria, were selected for assay of the reduction of 
toxigenic fungal growth. Well-grown bacterial colonies 
which were incubated at 35 º C for 48 h were picked and 
further purified by streaking [93, 94]. The isolates were 
maintained on nutrient agar (NA) slants and stored at 4 
ºC. The bacterial cultures were identified based on mor-
phology (shape, Gram stain, spore formation and motil-
ity). L. macroides Bac6 has been identified by molecular 
characteristics based on 16 S rRNA [95].

Determination of the reduced level in toxic fungal growth 
by antagonistic bacteriaLysinibacillus macroides Bac6 strain
The decrease in the development of toxic fungi (A. fla-
vus f10 and F. proliferatum f30) by Lysinibacillus macroi-
des Bac6 strain was conducted according to the method 
described in [89, 92]. The interaction between the tested 
bacterial strains and toxigenic strains was assessed using 
PDA. 1 mL of bacterial suspension (107 CFU/mL) was 
mixed with 15 mL of molten PDA medium before solidi-
fication and poured into Petri dishes (90 mm diameter). 
After solidification of the medium, mycelial discs with 
10 mm diameter were cut from the fungal active growing 
margins of 7 days old cultures and placed at the center of 
the agar surface. The control plates were inoculated with 
tested fungi but without bacteria following the same pro-
cedure. All plates were incubated at 28  °C for 72 h. The 
experiment was carried out in triplicates. Fungal growth 
inhibition was calculated by measuring the diameter of 
the fungal colonies using the following equation:

 
FungalGrowthInhibition (%) =

(C − T)
C

100

Where C is the diameter of the fungal colonies in control 
plates and.

T is the diameter of the fungal colonies in treated 
plates.

The alterations of fungal growth which was caused by 
antagonistic bacterial strains were shown and confirmed 
by scanning electron microscopy (SEM).

Evaluation of the impact of antagonistic bacterial strain 
on the Toxigenic fungal growth was evaluated by using 
scanning electron microscopy (SEM)
To evaluate the antagonistic capability of L. macroides 
Bac6 strain against the toxigenic fungi, the fungal myce-
lia of dual culture were examined using SEM. In brief, 
A 10-mm disc of mould growth boundary was removed 
and fixed for 2 days in 5% cool buffer glutaraldehyde. The 
samples were then rinsed three times (30 min each) with 
sodium cacodylate buffer before being post-fixed in 1% 

osmium tetroxide for two hours. The samples were then 
rinsed three times in the same buffer (30 min each) and 
dehydrated using an escalating ethanol gradient (30%, 
50%, 70%, and 90%) for two hours and 100% ethanol for 
two days, before being treated with amyl acetate for a fur-
ther two days. Following that, the samples were dried in 
a critical point drainer with liquid carbon dioxide before 
being attached to a metallic block with silver paint [91, 
96].

Assay of chitinase activity ofL. macroidesBac6 strain
Preparation of colloidal chitin
According to Hussin and Ab Majid, a colloidal of chitin 
was manufactured. Briefly, five grams powder of chitin 
were combined in a beaker with conc. Hydrochloric acid 
(~ 10 M HCl) 60 ml. Via a rod of glass, the prepared mix-
ture was continuously stirred for a period of 5 min then 
1 min gently stirring at a time interval 5 min for 1 h. In 
a 2 L conical flask, the chitin-HCl combination was sub-
sequently processed using 2  L of cold distilled water 
and then it was kept under static conditions for 12 h at 
4 ºC. The precipitation was gathered using crossing two 
distinct phases of until the colloidal chitin reached a pH 
of 7, the filter cloth was continuously rinsed with nor-
mal water. The produced colloid of chitin was squeezed 
between the filter paper (to reduce any residual moisture) 
and subsequently kept at 4 °C until it was used again [97].

Chitinase production of L. macroides Bac6 strain on solid 
medium
The initial screening was carried out by adding 10  L of 
a 24-hour-old culture of L. macroides Bac6 (107 CFU/
mL) to the middle of NA plates that contained 1% col-
loidal chitin, then incubating those plates at 30  °C for 5 
days. Congo red (1%) was used to demonstrate the activ-
ity of the enzyme for 30 s, after which the dye was fully 
removed with a solution of sodium chloride (30  g L-1) 
until a zone of transparency established as a result of chi-
tin hydrolysis. The test was performed in three replicates. 
[98].

Chitinase enzyme activity ofL. macroidesBac6 strain on 
liquid medium
A 250 mL Elementary flask with 100 mL NA and 1% 
colloidal chitin was filled with 10 mL of a 24-hour-old 
cultures of bacteria. The incubation was conducted 
on a rotating shaking device for five days at 30  °C and 
180 rpm. The supernatant without cells was obtained by 
centrifuging the culture broths at a speed of 120 rpm for 
10 min at 4 °C.

Applying the dinitrosalicylic acid (DNS) method, the 
efficacy of chitinase was assessed by looking for sugars 
that reduced after the enzymatic process. The test was 
performed with the specified methodology. [97]. After 
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being produced in a 50 mM phosphate buffer (pH 7.0) 
with just one millilitre of crude extract of enzyme (cell-
free culture supernatant), the substrate mixture consisted 
of 1% colloidal chitin. The resulting mixture had been 
warmed in a water bath at 37 °C for a period of one hour. 
By adding 3 mL of DNS reagent and boiling it in water 
for 20  min, the process was halted. The mixture was 
centrifuged at 5000  rpm for five minutes after cooling. 
The wavelength of the absorbance has been identified at 
540  nm using the Model T60 UV-VIS spectrophotom-
eter. The amount of chitinase activity (U/mL) was calcu-
lated as the amount of enzyme that, under normal test 
conditions, generated 1  mol of dinitrosalicylic acid per 
minute [99]. The experiment was carried out in triplicate.

Assessment ofL. macroidesBac6 metabolites using GC-MS 
analyses
Tryptic soy broth (TSB) was used to culture the bacterial 
strain. The following ingredients were present in tryptic 
soy broth in grammes per litre: 17.0 for pancreatic digest 
of casein; 3.0 for papaic digest of soybean meal; sodium 
chloride, 5.0; dextrose, 2.5; and dibasic potassium phos-
phate, 2.5; pH after sterilisation was 7.30.2. Following a 
24-hour incubation period at 30 °C, the bacterial culture 
was centrifuged for 5 min at 6000 g before being filtered 
through a sterile 0.22 micron membrane filter. With 
petroleum ether (1:1 v/v), the bacterial metabolites were 
separated from the resultant supernatant.

To quantify the bacterial metabolites, the GC/MS 
(Model: DPC-Direct Probe Controller (DPC20451), 
Thermo Scientific,USA; at the Chemistry Department, 
college of Science at Assiut University was used. A capil-
lary column TG-5MS with dimensions of 30 m, 0.25 mm 
i.d., and 1  m film thicknesses was used for the separa-
tion of fatty acid ester compounds. The temperature of 
the oven was initially maintained at 80 °C for 5 min, and 
then increased at a ramp rate of 10 °C/min to 150 °C for 
10 min, 200 °C at a ramping speed of 10 °C/min (held for 
10 min), and 250 °C at a ramp rate of 5 °C/min (held for 
13 min). Helium was employed as a carrying gas at a flow 
rate of 0.5 mL/min, and the split flow was 10 mL/min. 
[100, 101].

Effect ofLysinibacillus macroidesBac6 on mycotoxins 
production
Minimization of toxins production by toxigenic fungi by 
using active bacterial cells was tested by growing the fun-
gus for 10 days in coculture with the bacterial living cells 
(107 CFU/ml), from 24  h old culture [90, 98]. As previ-
ously mentioned, high-performance liquid chromatogra-
phy (HPLC) was used to extract the poisons and quantify 
their amounts.

Statistical analysis
GraphPad Prism software version 5 was used to conduct 
statistical analysis on normally distributed data, which 
are represented as means standard errors of the means 
(SEM). One-way ANOVA was used to analyse the signifi-
cant differences between the three groups, and Tukey’s 
posttest followed.
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