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Abstract
Introduction Autologous hematopoietic cell transplantation (AHCT) is a well-established treatment for lymphoma. 
Unintended effects of this therapy include oral mucositis (OM) and gastrointestinal toxicities, resulting in poor clinical 
outcomes. The gut microbiome has been previously linked to transplant toxicities among allogeneic recipients, but 
little is known about the effects of AHCT on the oral microbiome.

Methods Seven patients with non-Hodgkin or Hodgkin lymphoma undergoing AHCT with palifermin (keratinocyte 
growth factor) were included. Buccal swab samples were collected at baseline and 14- and 28-days post-treatment. 
Oral microbial communities were characterized with 16 S rRNA amplicon sequencing. Temporal trends in community 
composition, alpha diversity, and beta diversity were investigated.

Results A significant reduction in the relative abundance of the genera Gemella and Actinomyces were observed 
from baseline. No significant temporal differences in alpha diversity were observed. Significant changes in beta 
diversity were recorded.

Conclusion Results of this pilot study suggest treatment with AHCT and palifermin affects the oral microbiome, 
resulting in temporal shifts in oral microbial community composition. Future studies are warranted to confirm these 
trends and further investigate the effects of AHCT on the oral microbiome and how these shifts may affect health 
outcomes.
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Introduction
High-dose chemotherapy followed by autologous hema-
topoietic cell transplantation (AHCT) is a well-estab-
lished curative treatment for chemotherapy-sensitive 
relapsed lymphoma. Patients undergoing AHCT experi-
ence regimen-related toxicities, including oral mucositis 
(OM) and gastrointestinal toxicities, leading to consider-
able morbidity and high readmission rates with signifi-
cant impact on clinical and economic outcomes [1–6]. 
Conditioning regimens including chemotherapy and 
radiotherapy, directly and indirectly affect the mucosa 
of the digestive tract, leading to OM and other gastro-
intestinal toxicities, however the effects of those fac-
tors on temporal changes in the microbiome during the 
early transplant period remain largely unknown. Previ-
ous studies focused primarily on allogeneic recipients 
observed an association between the gut microbiome and 
transplant toxicities, however more evidence suggests the 
oral microbiome could play an important role in mediat-
ing AHCT toxicities and outcomes [1, 6–16].

Here we present a pilot study investigating the tempo-
ral changes in the oral microbiome of patients undergo-
ing AHCT for lymphoma with the addition of palifermin, 
a keratinocyte growth factor that is approved to ame-
liorate OM and other gastrointestinal toxicities in the 
setting of AHCT [17–20]. Palifermin was added as a sup-
portive care and quality improvement measure in our 
center for patients undergoing AHCT for lymphoma in 
an attempt to decrease regimen-related toxicities and 
improve outcomes [21]. We hypothesize that mucosal 
microbial dysbiosis and shifts in microbial community 
composition occur throughout the AHCT course and 
may linger without returning to pre-AHCT baseline after 
hematopoietic recovery from AHCT.

Methods
Study design and eligibly
Eligible patients were > 18 years of age, had a diagnosis of 
non-Hodgkin lymphoma (NHL) or Hodgkin lymphoma 
with a plan to undergo AHCT after conditioning with 
BEAM (busulfan, etoposide, cytosine arabinoside, mel-
phalan). Patients received granulocyte colony-stimulat-
ing factor (G-CSF) mobilized peripheral blood stem cell 
graft. There were no early deaths, and all patients were 
followed up for at least 30 days after AHCT. All patients 
were on palifermin (60 mcg/kg/day), administered as an 
intravenous bolus injection for 3 consecutive days before 
and 3 consecutive days after myelotoxic therapy (two 
hours after stem cell graft infusion and the two subse-
quent days 1 and 2), for a total of 6 doses per FDA indi-
cation. Patients also received antimicrobial prophylaxis 
with levofloxacin (250  mg) orally daily and fluconazole 
(200 mg) orally daily. All patients started fluconazole on 
the day of start of conditioning (day − 6) and continued 

through day 60 post-AHCT. Levofloxacin was started on 
day − 1 through day 14 or later depending on neutrophil 
recovery (> 1000 cells/microL ) but discontinued before 
day 21 for all patients. Longitudinal buccal swab samples 
were collected with a 10-second rotating swab of the left 
and right buccal mucosa 5 times starting from the upper 
to the lower jaw with Puritan™ PurFlock™ Ultra Flocked 
swabs, placed directly in RNAlater vial. Samples were 
collected at least one hour after a meal. A total of three 
samples were collected from each patient: prior to AHCT 
(baseline), 14 days (D14) and 28 days (D28) from the day 
of hematopoietic cell infusion. The severity of oral muco-
sitis and gastrointestinal toxicities were not prospectively 
collected for the study period. All participants provided 
informed consent to participating in this study. The study 
was approved by the Institutional Review Board at the 
University of Minnesota.

DNA extraction and PCR amplification
Swab tips were cut using flame-sterilized scissors and 
placed into PowerBead tubes (QIAGEN, Hilden, Ger-
many). Bacterial DNA was extracted with QIAGEN 
DNeasy® PowerSoil® Pro Kit on the automated QIAcube 
system (inhibitor removal technology protocol), follow-
ing the manufacturer’s instructions. The V4 hypervari-
able region of the 16  S rRNA gene was amplified using 
the 515  F/806R primer set [22]. Polymerase chain reac-
tion (PCR) amplification and dual-indexed, paired-end 
sequencing (300 nucleotides) were performed by the 
University of Minnesota Genomics Center (MN, USA) 
on the Illumina MiSeq platform (Illumina, Inc., San 
Diego, CA, USA) [23]. Negative controls (sterile water) 
were included in DNA extraction, PCR amplification, and 
sequencing and did not produce amplicons. Sequence 
data were deposited in the Sequence Read Archive under 
accession number SRP279100.

Oral microbiome characterization
Sequencing data were processed and analyzed with 
mothur (v. 1.31.1) [24]. Sequences were trimmed to the 
first 170 nucleotides. Paired-ends were joined using fastq-
join [25] and quality trimmed with 2 nucleotide primer 
mismatches, no ambiguous bases, homopolymers ≤ 8 
nucleotides, and quality scores ≥ 35 over a 50-nucleotide 
window. For further processing, sequences were aligned 
against the SILVA database (v. 132) [26, 27]. Errors and 
chimeric sequences were removed using a 2% pre-cluster 
and UCHIME (v. 4.2.40) [28, 29]. Individual samples con-
tained between 2 and 9575 high-quality reads. Opera-
tional taxonomic units (OTUs) were clustered at 99% 
similarity using the furthest-neighbor algorithm, and tax-
onomic classifications were made against the Ribosomal 
Database Project (v. 16) [30]. For calculations of diversity, 
samples were rarified to 1500 reads per sample (range of 
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raw reads among samples included: 3013–17,892), result-
ing in the removal of five samples (baseline for patient #6 
with 185 raw reads, D14 for patients #1, 4, 6, and 7 with 
1003, 12, 30, and 31, respectively). Negative controls pro-
duced < 20 sequence reads and were removed from the 
dataset. Alpha diversity (i.e., within-sample diversity) was 
summarized with the Shannon Index and with the Chao1 
Index. Beta diversity (i.e., between-sample diversity) was 
summarized with Bray-Curtis dissimilarity index. Good’s 

coverage estimates and diversity calculations were done 
using mothur.

Statistical analyses
Differences in alpha diversity between the three time-
points were investigated with analysis of variance 
(ANOVA) and pairwise differences with simple linear 
regression models. Beta diversity was explored with 
principal coordinate analysis (PCoA) and evaluated sta-
tistically using analysis of similarity (ANOSIM) [31]. Dif-
ferences in alpha diversity and abundances of taxa were 
evaluated using ANOVA (parametric) or Kruskal-Wallis 
(non-parametric), depending on the distribution of the 
data. All statistics were evaluated at α = 0.05, with Bonfer-
roni correction for multiple comparisons.

Results
We enrolled 7 patients with median age of 63 years 
(range 26–75), 5 males and 2 females, one with a diag-
nosis of Hodgkin lymphoma and 6 with NHL (Table 1). 
Mean estimated Good’s coverage across all samples 
was 98.6 ± 1.6%. The mean Shannon Index was low-
est at baseline (mean ± SD = 1.84 ± 0.62), followed by 
D14 (1.93 ± 0.57) and D28 (2.66 ± 0.70), but differences 
were not significant (ANOVA p-value = 0.093; Fig.  1). 
Similarly, the Chao1 index was also lowest at baseline 
(60.88 ± 32.74), followed by D14 (83.77 ± 51.98), and D28 
(126.03 ± 136.45), but differences were not significant 
(ANOVA p-value = 0.493).

Overall shifts in microbial community composi-
tion were observed from baseline to post-treatment 
time points. The mean relative abundances across all 

Table 1 Patient demographic and pre-transplant clinical 
characteristics for 7 US patients with non-Hodgkin or Hodgkin 
lymphoma undergoing autologous hematopoietic cell 
transplantation in 2020

All (N = 7)
Age at Transplant: Median (Range) 63 (26–75)
Sex
Male 5 (41%)
Female 2 (29%)
Disease
Non-Hodgkin’s Lymphoma 6 (86%)
Hodgkin’s Lymphoma 1 (14%)
Outcome
Alive 7 (100%)
CD34: Median (Range) 3.9 (3.5–10.6)
KPS: Median (Range) 90 (80–90)
HCT-CI Score Group
0 1 (14%)
1–2 1 (14%)
>2 5 (72%)
Abbreviations: KPS, Karofsky Performance Score; HCT-CI, Hematopoietic 
Cell Transportation-specific Comorbidity Index; data collected at baseline 
pre-transplant

Fig. 1 Spaghetti plot of Shannon indices for each patient
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time-points are shown in Fig.  2. We evaluated whether 
differences among the predominant taxa (those shown in 
Fig. 2) differed by time. Across all time-points, microbial 
communities were predominantly composed of the gen-
era Streptococcus and Veillonella. For most participants 
(4/7), the relative abundance of Streptococcus decreased 
from baseline (mean = 55.0%) to D14 (mean = 28.3%), 
rebounding by D28 (mean = 36.0%) post-AHCT; these 
trends were not statistically significant (Kruskal-Wal-
lis p = 0.255). Genera Gemella and Actinomyces were 
most altered by AHCT procedures. The relative abun-
dance of Gemella was significantly greater at baseline 
(mean = 9.8%) compared to D14 (mean = 0.7%; p = 0.012) 
and remained low at D28 (mean = 0.9%; p = 0.041). The 
relative abundance of Actinomyces also decreased signifi-
cantly from baseline (mean = 2.8%) to D14 (mean = 0.5%; 
p = 0.020), but recovered by D28 (mean = 2.0%, p > 0.05). 
Less abundant taxa were not interrogated due to data 
sparsity and a small number of samples that limited sta-
tistical analyses. An overall difference in community 
composition was observed across the three time points 
(ANOSIM R = 0.216, p = 0.028; Fig. 3); however, pairwise 
comparisons were not significant. A higher dissimilarity 
index was observed between the baseline and D14 sam-
ples (ANOSIM R = 0.556, p = 0.032; Bonferroni-adjusted 
α = 0.017) than between the baseline and D28 samples 
(ANOSIM R = 0.135, p = 0.086).

Discussion
This pilot prospective study investigated the temporal 
changes in the oral microbiome of patients with lym-
phoma undergoing AHCT and treated with palifermin, 
added for mucosal cytoprotection. We observed that 

significant shifts in microbial community composition 
from baseline to D14 and D28 post-treatment, marked 
by reduction in Gemella and Actinomyces and a trend 
of decrease in Streptococcus from baseline to D14, fol-
lowed by an increase by D28. While we noted no signifi-
cant temporal differences in alpha (i.e., within-sample) 
diversity similar to previous reports, notable changes in 
beta (i.e., between-sample) diversity were recorded [1]. 
These results suggest that AHCT procedures with the 
use of high dose chemotherapy and antimicrobials are 
associated with temporal shifts in microbial community 
composition that persist beyond day 28 without return-
ing to pre-treatment baselines despite the use of an oral 
cytoprotectant. Additionally, we hypothesize that the use 
of palifermin might explain the observed changes in beta 
diversity in this pilot study. We suspect that no significant 
differences in alpha diversity were observed due to a lack 
D14 samples with sufficient sequencing depth to include. 
Notably, all patients with a complete sample series tended 
to see an increase in Shannon index, although baseline 
and D28 Shannon indices were similar for the other three 
patients (Fig. 1).

Our observations have potentially unique clinical impli-
cations. Streptococcus and Gemella have been previously 
reported to dominate the oral microbial community in 
patients with breast cancer after chemotherapy exposure 
[32], while in patients undergoing AHCT for multiple 
myeloma, Streptococcus increased one week post-trans-
plant followed by a subsequent decrease [1]. Our findings 
could potentially be explained by the prophylactic use of 
levofloxacin leading to decreased abundance of suscepti-
ble bacteria with effects that persist beyond the stop date 
and are organism dependent. It must be noted, however, 

Fig. 2 Average relative abundances of predominant genera at baseline and post-AHCT (14 and 28 days)
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that the impact of this medication on the gut microbi-
ome has been previously characterized as mild [33], with 
its effects on the oral microbiome yet to be assessed. A 
study examining the oral microbiome in those with lym-
phoma or multiple myeloma undergoing AHCT noted 
an association between the decrease in Shannon diver-
sity and the severity of oral mucositis [8]. Additionally, 
differences in our findings compared to other transplant 
cohorts [1] may be due to a different patient population, 
with different underlying diseases, treatment and condi-
tioning regimen. This could be at least partially explained 
by the addition of palifermin in our cohort, as palifermin 
enhances the thickness of the oral mucosa epithelium and 
may impact niches of microorganisms. Oral dysbiosis 
is a reflection of multiple factors in this patient popula-
tion including exposure to chemotherapy, antimicrobials 
and other medications that can have direct and indirect 
effects on the microbiome [34–37]. Our findings could 
support the hypothesis that peri-transplant OM associ-
ated changes in bacteriome are dominated by depletion 
of the most common oral commensals including Strepto-
coccus, Actinomyces and Gemella [34]; although we have 
not objectively documented the severity of OM in this 
study, conditioning before AHCT is known to be clini-
cally associated with some degree of OM in all patients. 
A previous study in patients undergoing AHCT for mul-
tiple myeloma noted that changes in oral microbial com-
position were more pronounced in those developing oral 
ulcers peri-transplant [12]. As noted in a prior study 
[28], compositional changes could not be attributed to 
the direct effects of the therapy, but rather reflected pro-
inflammatory changes resembling other oral diseases. 

Changes in oral bacteria community composition and 
diversity have been linked to several oral and extra-oral 
outcomes, including infections, cardiometabolic disease, 
and recurring or new malignancies [38–41]. The associa-
tions between oral microbiome changes and risk of bac-
teremia, mucositis, and immune reconstruction remain 
uncharacterized, and our findings could assist in investi-
gating this phenomenon and its effects on health.

This study has several noteworthy limitations. Firstly, 
due to the compositional nature of microbiome data, any 
observed changes in relative abundance of a given taxon 
are relative to the total abundance captured in the sample 
and thus may not be reflective of absolute changes in the 
microbiome or its biomass. Low microbial biomass in 
samples led to insufficient sequence results obtained, and 
the removal of 5 samples from some analyses. Due to this 
small sample size, the generalizability of our study and 
our ability to adjust for confounders was limited, further 
exacerbating the effects of confounding biases, as is the 
case with any observational study. However, due to the 
temporal nature of sampling, confounding due to non-
time varying characteristics of the patients is less likely 
to be at play. Additionally, the direct effect of palifermin 
addition on the temporal changes in microbiome compo-
sition and diversity are not clear without a comparative 
cohort. Future investigations are warranted to further 
investigate our findings in a larger patient population, 
ideally comparing those changes to patients with similar 
disease and transplant characteristics not receiving pali-
fermin. This pilot study serves as an important first step 
towards understanding the effects of AHCT with pali-
fermin on the oral microbiome, uniquely reporting on 

Fig. 3 Principal Coordinates Analysis (PCoA) plot of Bray-Curtis Dissimilarity (Beta Diversity)
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longitudinal dynamic changes in oral microbiome com-
position in this patient population.
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