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Introduction
Crohn’s disease (CD) is one of the inflammatory bowel 
diseases (IBD) characterized by discontinuous intestinal 
injury and inflammation, which may spread across the 
entire gastrointestinal (GI) tract [1]. In severe situations, 
transmural lesions, including granulomata, deep fissur-
ing ulcers, and lymphoid distribution accumulate [2, 3]. 
It has been reported that the highest incidence of CD in 
North America, Europe, and Asia/Middle East was 20.2, 
12.7, and 5.0 per 100,000 people / year, respectively [4, 
5]. With its high incidence in developed countries and 
fast increasing in developing countries, it is currently a 
worldwide health issue [6].

Although great efforts have been made to determine 
the pathogenesis, no solid or determined conclusions 
have been reached to fully interpret the etiology. Cur-
rently, it is widely accepted that the pathogenesis of CD 
is multifactorial and involves the interplay of genet-
ics, immune dysregulation, and environmental factors 
[7, 8]. Among these factors, the disturbance to the gut 
microbiota, i.e., dysbiosis, especially bacteria, has been 
recognized, playing a critical role in convergent studies, 
which hypothesized that abnormal immune response 
to gut microbiota dysbiosis resulted in recurrent intes-
tinal inflammation in genetically predisposed individu-
als [9, 10]. Patients with CD commonly have altered gut 
microbiota assemblages compared to healthy controls 
(HCs), characterized by decreased bacterial diversity 
and alternations in specific bacteria abundance [11, 12]. 
For example, the biodiversity and the relative abundance 
of Firmicutes are decreased while those of Proteobac-
teria are increased in CD patients [13]. Commonly, the 
decreased taxa are mainly short-chain fatty acid pro-
ducers such as Faecalibacterium prausnitzii, Lactobacil-
lus, Erysipelotrichaceae, and Bifidobacteriaceae [14, 15], 
while the increased taxa are mainly proinflammatory 
bacteria such as Fusobacterium and Escherichia mem-
bers [16]. However, most of these studies determined 
the luminal/fecal microbiota dysbiosis by abundance 
and diversity alternations in the feces, which underes-
timated the frequency and occurrence of specific taxa 
in the disease. Moreover, comparable dysbiosis at the 
mucosal surface, either in un-inflamed mucosal areas 
or at sites of inflammation, has rarely been investigated 
[1]. A few recent studies have shown that the microbiota 
assemblages in the rectum, ileal, or colon mucosa display 
a unique microbial signature compared to that in fecal 
samples [17–20]. Some mucosa bacteria were found to 
be predictive for CD recurrence or newly diagnosed and 
treatment-naïve CD. In recurrent CD, researchers dis-
covered that the abundance of γ-proteobacteria, Cory-
nebacterium, and Ruminococcus gnavus increased, while 
Ruminoclostidium 6 decreased [21]. It should be noted 
that Ruminiclostridium was found to be depleted in the 

mucosa of newly diagnosed and treatment-naïve CD 
patients [22]. Thus, both the luminal/fecal and mucosal 
microbiota have the potential for the prediction, diag-
nosis, or treatment of CD. However, it is unclear which 
parts are most closely related to CD, or whether they 
could work together to drive the occurrence of CD and 
the response to abnormal immune regulation.

Due to the multifactorial pathogenesis of CD, clinical 
tests and Crohn’s Disease Activity Index (CDAI) evalu-
ation were commonly performed for the primary diag-
nosis of CD, combining with imaging by endoscopy and 
histological traits [23]. While the correlations between 
the clinic and microbiota alternation were not well indi-
cated. In order to systemically link changes in the fecal 
microbiota and mucosal microbiota with the clinical 
traits of CD, here in this study, a total of 97 samples from 
the feces and gut mucosa of CD patients and HCs were 
collected and 16S rRNA amplicon sequencing was per-
formed to determine the microbiota assemblage patterns. 
The microbiota assemblage patterns of the feces and 
mucosa were explored, and machine learning using a ran-
dom forest algorithm was adopted to construct the pre-
diction model for CD. The microbiota was then clustered 
as co-occurrence modules/clusters using the weighted 
correlation network analysis (WGCNA) to correlate with 
clinical traits, identifying potential non-invasive bio-
markers for CD and deciphering possible mechanisms 
for the etiology of CD.

Materials and methods
Study Population
All CD patients and HCs in this study were enrolled by 
the Department of Gastroenterology, Xiangya Hospi-
tal, Central South University, from July 2018 to May 
2019. The study was approved by the Ethics Committee 
of Xiangya Hospital, Central South University, and writ-
ten informed consent was obtained from all participants 
prior to enrollment. Besides, sample collection from the 
participants was approved by the Research Ethics Board 
of the Xiangya Hospital of Central South University. All 
patients met the diagnostic criteria for CD and were fol-
lowed up for at least 6 months, the disease phenotype 
and activity were determined according to the Montreal 
classification system [24]. Exclusion criteria included (1) 
those who were unable to provide informed consent, (2) 
presence of comorbidities of the biliary tract or liver dis-
ease, (3) administration of antibiotics or cathartics four 
weeks before sample collection [25], (4) allergy to fluores-
cein, pregnancy or breastfeeding, and (5) acute gastroin-
testinal bleeding. The clinical tests, including complete 
blood counting, erythrocyte sedimentation rate, and 
C-reactive protein (CRP) levels were performed by the 
Department of Clinical Laboratory in Xiangya Hospital 
using standard methods. CDAI was evaluated for each 
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CD participant as well to assess the disease activity. The 
degree of anxiety and depression of all participants were 
evaluated using the Self-rated Anxiety Scale (SAS) [26] 
system and the Self-Rated Depression Scale (SDS) [27] 
system, respectively. HCs were enrolled with age and 
gender matched to the CD group, and passed the exclu-
sion criteria.

Sample collection and sequencing
Approximately 0.5  g of fresh fecal samples from CD 
patients and HCs were collected in a 2.0 mL sterile fal-
con tube, which was immediately transferred to liquid 
nitrogen and stored at -80 ° C until further processing. 
Colonoscopy was performed using an Olympus Exera II 
GIF HsheshiduQ190 or enteroscope SIF-Q180 (Olym-
pus Europa GmbH, Hamburg, Germany). The mucosa 
sample of each CD patient was collected in sterile cryovi-
als, including biopsies of the inflamed area (Inf_M) and 
the uninflamed area (Uinf_M) (approximately 5 cm from 
the inflamed area), two inflamed and two uninflamed 
biopsies were taken per individual. Meanwhile, one from 
each was sent for histological analysis, the others were 
transferred directly into liquid nitrogen and stored until 
DNA extraction. The total genomic DNA of the fecal 
samples was extracted using the TIANgen Stool DNA Kit 
(TIANGEN, Beijing, China), according to the manufac-
turers’ instructions. Total genomic DNA from mucosal 
biopsies was extracted using the FastDNA® SPIN Kit for 
Soil (MP Biomedicals, LLC, Illkirch, USA), according to 
the manufacturer’s instructions. DNA quality and purity 
was robustly determined using a NanoDrop ND-1000 
Spectrophotometer (Thermo, Massachusetts, USA). 
The quality-controlled DNA was outsourced to Novo-
gene Company (Nanjing, China) to construct 16 S rRNA 
sequencing libraries (V3 and V4) and then sequenced 
using the PE250 strategy on the Illumina platform. 
QIIME2 (version 2021.2) was used for raw reads filtering 
and quality control. The DADA2 implanted in QIIME2 
was used to denoise the data and produce amplicon 
sequence variants (ASV), and the taxonomic annotation 
was performed based on the ‘silva-138-99-nb classifier’ 
pre-trained in QIIME2. Further data visualization was 
performed using R (4.0.2).

Statistics of bacterial assemblages
The Spearman’s ranked correlation method and a signifi-
cance test of 999 permutations were used to determine 
the correlations between the alpha diversity indices and 
clinical traits, a p-value ≤ 0.05 and the absolute value of 
the correlation coefficient ≤ 0.5 were designated as sig-
nificantly correlated pairs. The two-sided Welch test 
was used to determine differences in taxonomic abun-
dance between different groups. Unless otherwise stated, 
a p-value ≤ 0.05 was considered significant. Generally 

speaking, the core taxa in half-closed artificial systems 
are persistent and high in abundance, while the satellite 
species are transient and low in abundance [28]. To bet-
ter understand the patterns of bacterial assemblages in 
the gut (i.e., the fecal/luminal or mucosal microbiota), we 
define the bacterial community into the following three 
ecological categories-based taxa occurrence frequency: 
persistent (≥ 75% of samples), intermittent (25 ~ 75% 
exclusive), and transient (≤ 25% of samples) [29].

Prediction model construction and network analysis
A machine learning model was constructed for data 
group prediction and key taxa mining using the random-
forest R software package randomforest. The “mtry” value 
was determined when the average error rate was the low-
est, and the “ntree” was determined when the model was 
stable at the smallest tree counts. Moreover, WGCNA 
was conducted to find taxa clusters/modules highly cor-
related by using the R software package “WGCNA”, to 
correlate the bacterial clusters to one another and to 
clinical traits. The WGCNA was conducted according to 
the software manual [30]. In detail, the abundance matrix 
of taxa containing all samples was first clustered using a 
hierarchy clustering function implanted in WGCNA to 
check if there were outliers, which would be removed in 
further analysis. Finally, the dynamic tree-cut method 
was used to identify the co-occurrence taxa modules of 
the whole microbiota, in which the soft-power was deter-
mined to be 10, and the minimum taxa module size was 
set to 30. Then, Cytoscape v3.7.1 was used for network 
visualization and topological analysis [31, 32].

Results
Divergent microbiota structure between di�erent 
pathology or physiology groups
Demographic and clinical characteristics were listed in 
Table S1. Firstly, we confirmed that the sequencing depth 
is enough to represent the bacterial assemblages from 
the fecal and mucosal samples (Fig. S1). Constrained 
analysis of principal coordinates using Bray-Curtis dis-
tance displayed that bacteria communities from the 
HCs feces were clustered separately from those of the 
CD feces and mucosa, and the fecal bacteria commu-
nities of CD patients were divergent from those of the 
mucosa (Fig.  1a). These differences were confirmed to 
be significant using pairwise PERMANOVA analysis 
(p-value ≤ 0.05) (Fig. S2). For the mucosal bacteria com-
munities, high heterogeneity was observed within the 
group (i.e., Inf_M or Uinf_M) (Fig. 1a and b).

The top ten abundant taxa were Bacteroidota, Fir-
micutes, Proteobacteria, etc. (Fig.  1b). Among them, 
Bacteroidota, Firmicutes, and Proteobacteria were abso-
lutely the most dominant, with a cumulative abundance 
higher than 85%. A significantly higher abundance of 
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Unassigned taxa and d_Bacteria was observed, while a 
lower abundance of Bacteroidota was observed in the 
mucosa (e.g., CD_M and Inf_M) than that in the feces 
(i.e., CD_F) in CD patients (Fig. 1c). As for the feces, the 
abundances of Proteobacteria and Fusobacteriota were 
increased, while those of Firmicutes and Bacteroidota 
were decreased in CD (Fig.  1c). Furthermore, the HCs 
showed the highest while the CDs showed the lowest 
alpha diversity when compared to other groups (Kruskal-
Wallis test, p-value ≤ 0.05) (Fig.  1d). No significant dif-
ferences in alpha diversity were observed between the 
inflamed mucosa and uninflamed mucosa (Fig. 1d), while 
they were actually shaped by divergent taxa with high 
heterogeneity as displayed in Fig. 1a and b.

Gut microbiota assemblages modeled by occurrence and 
abundance
We divided the samples into three ecological groups 
(group-FM: Fecal and Mucosal combined community; 
group-F: Fecal community; group-M: Mucosal commu-
nity) to globally view the gut microbiota assemblages. 
By classifying each group into an ecological category, 
we found that four phyla (i.e., Bacteroidota, Firmicutes, 
Proteobacteria, Actinobacteriota) were classified as per-
sistent taxa in group-FM (Fig.  2a). Although they only 
took a proportion of 7.27% (4/55) of all detected phyla in 

this community, the total abundance of these four phyla 
was 87.05% (Fig. 2a). The intermittent phyla in group-FM 
were Unassigned, Fusobacteriota, d_Bacteria, Desulfo-
bacterota, and Patescibacteria (total abundance: 12.37%; 
proportion: 9.09% (5/55)). From a global point of view, 
persistent and intermittent taxa (9/55) in group-FM took 
absolute dominant positions in this community due to 
their high cumulative abundance (99.41%). This assem-
blage pattern could also be observed in the fecal (group-
F) or mucosal (group-M) community, where the total 
abundance of the persistent and intermittent taxa took 
a low proportion of the detected taxa but with a high 
cumulative abundance (> 75%) (Fig.  2a). Besides, Bacte-
roides, Escherichia-Shigella and Blautia were displayed as 
shared persistent genera between the three defined com-
munities (Fig. 2b and c, and 2d). The positive correlations 
between the taxa abundance and occurrence frequency 
in these three defined communities were further found to 
be best fitted by the exponential formulas (Fig. 2b and c, 
and 2d).

Machine learning based methods to identify key taxa
As taxa of the three ecological categories at genus level 
showed very similar cumulative abundance in each com-
munity (Fig.  2a), we chose the genus abundance data 
to construct the machine learning model based on the 

Fig. 1  Di�erences between pathology or physiology groups in speci�c taxa and alpha diversity. (a). �-diversity between the mucosa and feces in HCs and 
CD groups indicated by constrained analysis of the principal coordinates on the Bray-Curtis distance. (b). Bar plots representing the relative taxa abun-
dance of each sample at the phylum level. (c). Di�erences between pathology or physiology groups were calculated based on the relative abundance of 
taxa at the phylum level (Two-sided Welch�s test, p-value � 0.05 was considered signi�cantly di�erent, and only taxa showing di�erences greater than 0.1% 
were plotted in the �gure). (d). Di�erences between pathology groups displayed by the Shannon alpha-diversity index. *, p-value � 0.05; **, p-value � 0.01; 
***, p-value � 0.005; ****, p-value � 0.001; ns, p-value > 0.05, not signi�cantly di�erent. We de�ned pathology groups as samples from same category of body 
components but with di�erent pathologic attributes (i.e., feces samples from CD patients (CD_F) or HCs participants (HC_F) and gut mucosal samples 
from in�amed area or unin�amed area, including HC_F vs. CD_F and Inf_M vs. Uinf_M); physiology groups from gut mucosa but from di�erent region of 
anatomy (i.e., samples from the feces or gut mucosal samples (CD_M), including CD_F vs. CD_M, CD_F vs. Inf_M and CD_F vs. Uinf_M).
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random forest algorithm. For the mucosal communi-
ties (inflamed mucosa vs. uninflamed mucosa), the low-
est out-of-bag (OOB) error rate was 44.44%, indicating 
that there were no effective genera to classify inflamed 
mucosa and uninflamed mucosa (Fig. S3a). Of note, the 
model to classify fecal microbiota between CDs and HCs 
showed excellent performance with an OOB error rate of 
11.54% and 100% accuracy to predict the practical data 
(Table S2, Fig. S3b). The key genera in the CD/HC clas-
sification model are shown in Fig.  3a. Among the top 
ten genera, except Escherichia- Shigella increased in CD 
feces, all others decreased (Fig. 3b). In addition, only one 
of them was a persistent genus, two were transient gen-
era, while seven were intermittent genera (Fig. 3b). These 
key taxa belong to three phyla and three classes, and 

most of them are Clostridia (Table 1). Notably, Rumino-
coccus, Christensenellaceae_R-7_group, [Eubacterium]_
coprostanoligenes_group and UCG-002 represented in 
low frequency in the CD feces but high occurrence in 
that of HCs, which could be developed as effective diag-
nostic biomarkers (Table 1).

Characterizing the co-occurrence of clinical-related taxa 
modules
To further clarify the correlations between specific taxa 
groups and clinical traits, WGCNA was conducted 
using the genus abundance of CD feces. After remov-
ing missing values and outliers (Fig. S4), a total of 189 
genera in the fecal bacteria community were finally 
separated into eight taxa modules, colored gray, blue, 

Fig. 3  Potential important genera biomarkers in the feces to classify CD or HCs. A random forest algorithm was used to construct a machine learning 
model to classify CD patients and HCs. (a). MeanDecreaseAccuracy and MeanDecreaseGini of the top 30 genera in the CD/HCs classi�cation model. (b). 
Cluster and heatmap display of the top 30 key genera in the CD/HCs classi�cation model

 

Fig. 2  Characterization of bacteria assemblage patterns based on taxa abundance and occurrence frequency model. (a). The taxa ecological category, 
taxa proportion to all detected taxa, and the average abundance of the taxa ecological category at di�erent taxonomic levels (i.e., phylum, genus and spe-
cies). (b), (c), (d), The best �tted model for average taxa abundance and occurrence frequency of di�erent ecological communities (b: Fecal and Mucosal 
community; c: Fecal community; d: Gut Mucosal community)
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brown, green, yellow, red, black, and turquoise (Fig. S5). 
Among these taxa, five modules were significantly cor-
related with clinical traits, i.e., module green and mod-
ule brown negatively correlated with serum glucose 
and complement C4 (CC4), while module red, mod-
ule brown, module blue, and module turquoise posi-
tively correlated with CRP, basocyte ratio (bas_ratio), 
serum complement C3 (CC3), and circulating mono-
cytes, respectively (Fig. S5). Of the machine learning 
identified key genera to classify CD patients and HCs, 
six were significantly correlated to clinics, of which one 
(Escherichia-Shigella) clustered into module red, posi-
tively correlated to CRP; five (Christensenellaceae_R-7_
group, Prevotella, [Eubacterium]_coprostanoligenes 
_group, Ruminococcus and UCG-002) clustered into 

module turquoise, positively correlated to circulating 
monocytes, and decreased in CD. The co-occurrence 
network further displayed that Christensenellaceae_R-7_
group, [Eubacterium]_coprostan, oligenes_group, 
and  Ruminococcus showed positive correlations with 
other genera in module turquoise, especially for 
Christensenellaceae_R-7_group, which showed high con-
nectivity and being a hub taxon in the network, might 
play vital roles in the formation of this network. Besides, 
f_Christensenellaceae also showed high connectivity 
(Fig. 4). However, these hub taxa identified from the feces 
did not show significant differences between the inflamed 
mucosa and uninflamed mucosa (Fig. S6), which sug-
gests that they might not be the direct cause of the 
inflammation.

Table 1  Characteristics of the top ten key fecal taxa to separate CD patients and HCs
Phylum Class Order Family Genus Occurrence frequency

CD_F HC_F Uinf_M Inf_M
Proteobacteria �-proteobacteria Enterobacterales Enterobacteriaceae Escherichia-Shigella 100%

(38/38)
85.71%
(12/14)

91.30%
(21/23)

86.36%
(19/22)

Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella 23.68%
(9/38)

64.29%
(9/14)

52.17%
(12/23)

45.45% 
(10/22)

Firmicutes Clostridia Oscillospirales Ruminococcaceae Faecalibacterium 52.63%
(20/38)

100%
(14/14)

86.96%
(20/23)

63.64% 
(14/22)

Firmicutes Clostridia Lachnospirales Lachnospiraceae Roseburia 15.79%
(6/38)

85.71%
(12/14)

17.39%
(4/23)

40.91%
(9/22)

Firmicutes Clostridia Oscillospirales Ruminococcaceae Subdoligranulum 23.68%
(9/38)

85.7%
(12/14)

43.48%
(10/23)

36.36%
(8/22)

Firmicutes Clostridia Oscillospirales Ruminococcaceae Ruminococcus 5.26%
(2/38)

78.57%
(11/14)

13.04%
(3/23)

18.18%
(4/22)

Firmicutes Clostridia Oscillospirales [Eubacterium]_
coprostanoligenes_group

[Eubacterium]_
coprostanoligenes_group

10.53%
(4/38)

85.71%
(12/14)

13.04
(3/23)

18.18%
(4/22)

Firmicutes Clostridia Oscillospirales Oscillospiraceae UCG-002 10.53%
(4/38)

78.57%
(11/14)

34.78%
(8/23)

40.91%
(9/22)

Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnospira 18.42%
(7/38)

85.71%
(12/14)

17.39%
(4/23)

22.73%
(5/22)

Firmicutes Clostridia Christensenellales Christensenellaceae Christensenellaceae_R-7_
group

5.26%
(2/38)

71.43%
(10/14)

13.04
(3/23)

18.18%
(4/22)

Fig. 4  Visualization of the networks of the clinically relevant cooccurrence taxa modules. Di�erent source node colors (i.e., red, blue, green, brown, and 
turquoise) in the networks represent di�erent genus modules. The node label size in the network represents the connectivity of it, the bigger the node 
label size, the more the connection is. Node label color and edge color represent the average abundance of each genus and correlation coe�cient be-
tween two nodes, the darker the color is, the lower the abundance and correlation, respectively. Target nodes were marked with a grey color but not the 
corresponding module colors
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Discussion
In this study, we found that divergent microbiota groups 
formed between different pathology (e.g., CD feces vs. 
HC feces) or physiology groups (e.g., CD feces vs. CD 
mucosa, inflamed mucosa vs. uninflamed mucosa). 
Although no significant differences in alpha diversity 
or beta diversity were observed between the inflamed 
mucosa and the uninflamed mucosa, a much higher 
abundance of Unassigned/d_Bacteria taxa was found 
in the inflamed mucosa. Taxa abundance distribu-
tion (TAD) patterns in both the gut lumen and mucosa 
revealed that taxa average abundance and occurrence 
frequency were fitted by exponential correlations. 
Machine learning based methods combined with taxa 
occurrence analysis revealed that the loss of specific taxa 
of Clostridia in the HC feces was excellent to classify HC 
and CD. Co-occurrence taxa modules further disclosed 
that Ruminococcus and Christensenellaceae_R-7_group 
represented in low occurrence in the CD feces but high 
occurrence in that of HCs might drive the alternation of 
bacteria taxa in CD feces and resulted in the disturbance 
of gut immune hemostasis. This study revealed that more 
attention should be paid to the occurrence of specific 
taxa in the HC feces, which might be helpful to develop 
novel diagnostic markers and to find the pathogenesis 
behind the microbiota dysbiosis in CD.

Previous studies have well documented that patients 
with CD display fecal microbiota dysbiosis compared 
with healthy controls, particularly with respect to 
reduced microbial diversity and alternated taxa abun-
dance [10]. The most common findings are the decreased 
abundance of Firmicutes (e.g., Faecailbacterium praus-
nitzii), and the increased abundance of Proteobacteria 
(e.g., Escherichia coli) [33, 34]. Consistent with previous 
studies, similar taxa abundance alternations and reduced 
alpha diversity were observed in CD feces in this study 
(Fig.  1b). Meanwhile, divergent microbiota assemblages 
between physiology groups (e.g., feces versus mucosa) 
were observed (Fig.  1). Furthermore, several studies 
using colonic mucosa from CD patients reported a neu-
tral diversity result when compared to controls [35]. In 
a recent study, Olaisen et al. (2021) reported that the 
microbiota assemblage is similar in the inflamed and 
proximal uninflamed ileal mucosa, and that neither ileal 
sublocation nor endoscopic inflammation influences 
the mucosa-associated microbiota [1]. We found that 
the mucosal microbiota of the inflamed or proximal un-
inflamed did not show significant differences (Fig.  1d). 
However, this does not mean there are no differences 
between them when referred to specific taxa, Unas-
signed-taxa and d_Bacteria were observed to be highly 
represented in the inflamed mucosa of the CD patients 
(Fig. 2), their association with CD should be considered 

seriously and more efforts should be made to clarify their 
taxon assignments and functions.

To date, associations between the microbiota and CD 
focus on describing the alternations of abundance or 
diversity, which underappreciates the occurrence fre-
quency of specific taxa in each community. Zhang et 
al. (2012) reported that the top 25.5% of the detected 
genera represented 89.1% of the abundance in the 
microbial communities of activated sludge from 14 
wastewater treatment plants [35]. This pattern of assem-
blage of microbiota has also been observed in many other 
studies [36, 37], although not discussed in the GI tract 
system. The TAD analysis showed that 16.36%, 9.47%, 
and 5.94% of the detected taxa had cumulative abun-
dances of 99.41%, 92.00%, and 80.26% at the phylum, 
genus, and species level, respectively, in the GI ecosystem 
(Fig.  2a), indicating that the gut microbiota was assem-
bled similarly to other ecosystems. Moreover, the best 
model of taxa abundance and frequency of occurrence 
in the feces and mucosa was determined to fit for expo-
nential correlations (Fig.  2b and c, and 2d), which have 
been found in other communities [29, 35]. We found that 
seven of the top ten key taxa identified by the machine 
learning method were intermittent taxa, implying that 
taxa presence/absence but not abundance could be more 
relevant to CD. The low presence of specific taxa such as 
Ruminococcus, Christensenellaceae_R-7_group, [Eubac-
terium]_coprostanoligenes_ group, and UCG-002 in the 
feces of CD patients but the high presence in that of HCs 
made them a high potential to be developed as useful 
diagnostic biomarkers in the future. Nevertheless, these 
key taxa showed no significant changes between the 
inflamed and uninflamed mucosa (Fig. S6), implying that 
their correlation with CD may not be due to their coloni-
zation on the mucosa.

Furthermore, we identified five taxa modules that were 
significantly correlated with clinical traits (Fig. S5). In 
particular, modules turquoise and red, containing five 
and one of the machine learning identified taxa, were 
positively correlated to monocytes and CRP, respec-
tively (Fig.  4). The monocytes could respond to signals 
from the local microenvironment, maintaining immune 
homeostasis by their hypo-responsiveness to bacterial 
stimulation and promoting local regulatory T-cell pro-
liferation. However, under acute intestinal inflammation, 
this homeostasis is disturbed, which can induce a cascade 
of inflammatory immune responses and result in chronic 
inflammation [38–41]. Solid proof of the correlation 
between the turquoise module taxa and monocytes has 
not been reported, but their correlation to CD has been 
widely appreciated. For example, the monocyte compart-
ment has been found to play dual functions in CD, the 
inadequacy of which on one hand, initiates the disease, 
whereas its overactivity also maintains the colitis [42]. 
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Ruminococcaceae (e.g., [Eubacterium]_coprostanoligene
s_ group, Ruminococcus) and Prevotella are short-chain 
fatty acid (SCFA) producers that are commonly decreased 
in CD patients [21, 43]. UCG-002 belongs to the Oscil-
lospiraceae family, which is a well-known producer of 
valeric acid and is positively correlated with anti-inflam-
matory [44]. Christensenellaceae have been observed 
abundantly in the feces of healthy people but absently in 
those of CD patients [21]. On the contrary, the taxa in 
module red could be pro-inflammatory bacteria, as they 
are positively correlated with CRP. Escherichia-Shigella 
belonging to module red has been identified as proin-
flammatory bacteria (e.g., adherent invasive Escherichia 
coli (AIEC)) that induce the Th17 response, improve TH1 
cell accumulation and promote proinflammatory cyto-
kines and fibrotic growth factors [45, 46]. Consequently, 
the increasing level of Escherichia-Shigella clusters may 
trigger acute inflammation in the gut mucosa, resulting 
in the disturbance of immune homeostasis and induc-
ing chronic inflammation, while decreased taxa such as 
Ruminococcus and Christensenellaceae_R-7_group could 
be the cause of the increased Escherichia-Shigella levels 
as they are presented as hub taxa in the co-occurrence 
networks (Fig. 4). Although other key taxa such as Lach-
nospira and Faecalibacterium were not identified cor-
relating to the clinical traits tested, strains belonging to 
these two genera are well known for their anti-inflam-
matory properties by producing SCFA, which suppresses 
inflammation and alleviates colitis by regulating macro-
phage M2 and regulatory T cells [47].

In conclusion, the bacteria assemblages were diver-
gent between feces and mucosa in CD patients. Although 
similar diversities were observed between the inflamed 
mucosa and the uninflamed mucosa, the highly repre-
sented unassigned taxa in the inflamed mucosa should 
not be neglected. In addition to the abundance of taxa, 
more attention should be paid to the occurrence of spe-
cific taxa in the gut microbiota of CDs and HCs, espe-
cially those persistent in HCs but transient or absent in 
CDs, and significantly correlated to clinical traits. More 
importantly, the integration of the gut microbiota and 
clinical traits would be helpful in interpreting the real 
roles of specific taxa in CD. Due to the inaccessibility 
of biopsies, no mucosa was collected from HCs in this 
study. These limitations will be fixed in our further long-
term studies. Although there are limitations, this study 
provides novel insights into studying specific taxa in CD, 
paying attention to the frequency of occurrence of the 
taxa and their correlation with clinical traits.
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