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Abstract
Background  Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of 
decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and 
improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field 
worth exploring.

Methods  In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and 
bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different 
Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The 
antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated 
against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, 
Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, 
Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model 
tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, 
and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene 
blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their 
photocatalytic behavior.

Results  According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest 
O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 
15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation 
of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL− 1, and the data clearly 
demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value 
was 125 µg mL− 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL− 1 Ag-Se NPs inhibited C. albicans with a 
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Background
Different metallic nanoparticles have been created and 
identified during the past several decades as a result of 
their unique features and the many applications they have 
in optoelectronics, biological sensors, biological imaging, 
catalytic processes, antibacterial, and different biological 
fields [1–5].

Due to the unique chemical, physical, and physiologi-
cal characteristics of bimetallic nanomaterials (BMNMs), 
which are the consequence of the synergistic effects 
of combining diverse metallic components, they have 
attracted a lot of attention [6, 7]. Gold-silver nanopar-
ticles (Au-Ag NPs) composites have received the most 
attention among the various BMNMs because of their 
adaptable plasmonic properties that rely on their struc-
tural makeup and their potential for use in sensor and 
catalytic activities [8]. The combined reduction of sodium 
selenite and silver nitrate precursors in the incidence of 
gamma rays is one of several known preparation tech-
niques for the creation of bimetallic Ag-Se NPs, as is the 
use of some biological filtrates as an especially powerful 
stabilizing agent.

During the manufacture of inorganic-polymer 
nanoparticles, natural polymeric protective coatings 
including chitosan, Gum Arabic, and Polyvinylpyrrol-
idone (PVP), as well as certain bacterial filtrate, are uti-
lized to boost the resilience of the generated NPs and to 
manage their particle size [9, 10].

The interactions between living cells and some particles 
are now included in biological techniques to nanopar-
ticle and nanocrystal production [11]. Due to its safety 
and environmental friendliness, biological production of 
metal nanoparticles utilizing plants, bacteria, and fungus 
has recently attracted a lot of attention [12]. According 
to earlier research, bacterial extracts include macromol-
ecules such phenolics, flavonoids, alkaloids, polysaccha-
rides, proteins, enzymes, and tannins that work as safe 
reducing and stabilizing agents during the production of 
metal nanoparticles [13].

Many commercial uses, including surface sprays, 
healthcare equipment, refrigerators, antibacterial sub-
stances, and several more, may be made with silver and 
selenium nanoparticles (NPs) [14, 15]. The capacity of Ag 

NPs to inhibit microbial development is well established. 
But since the methods effectiveness and their damaging 
impact on the target cells remain not completely under-
stood, more study is necessary [15, 16].

The microbial activity of multi-drug resistant bacteria 
and other infectious microorganisms linked to diabetic 
foot are endangering the health of the general people. 
One of these microorganisms’ most prevalent charac-
teristics is microbial biofilm, which is a collection of 
multicellular organisms that form protective layers sur-
rounding the diseased diabetic foot [17, 18]. It kept the 
microbial population alive in almost all damp settings 
with limited nutrient flow [19]. Most pathogenic bacte-
ria develop an exopolysaccharide biofilm around their 
whole population as a protective barrier against a variety 
of bacterio-phages, biocides, and immune cells from the 
host in order to survive harsh environmental and other 
circumstances [17, 18].

Due to either the limited quantity of drinkable water 
that is now available on Earth (approximately 0.9%), or 
the enormous amount of wasted or contaminated water, 
the world is currently experiencing a worldwide water 
shortage crisis [20, 21]. Furthermore, many harmful bac-
teria that cause severe illnesses including hepatitis A, 
diarrhoea, and typhoid fever thrive in dirty water [22, 
23]. Therefore, it is important now to create innovative 
technology for wastewater treatment [24, 25]. There are 
now several water treatment techniques, which may be 
divided into three categories: processes that are physical, 
chemical, and biological [26, 27]. One of these, hetero-
geneous photocatalysis using nanoscale semiconductor 
photocatalysts, is a quick, effective, and affordable way to 
purify water [26, 28–30]. This method depends on redox 
processes that happen on the semiconductor photocata-
lyst surfaces when they absorb light with a greater energy 
than their bandgap [31–33].

Bacterial filtrate was used as a promising eco-friendly 
and economically advantageous material for the con-
trolled synthesis of Ag NPs, Se NPs, and bimetallic Ag-Se 
NPs with the influence of gamma radiation. Optimization 
was applied to get precise and superior results in terms of 
the purity, shape, and size of the synthesized NPs. A vari-
ety of pathogenic bacteria and yeasts were tested for the 

percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized 
NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se 
NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs 
was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight.

Conclusion  Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to 
develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases 
caused by clinically and industrial relevant drug-resistant strains.
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generated NPs’ antimicrobial and antibiofilm activities. 
In addition, the antioxidant potential and photocatalytic 
behavior of the synthesized NPs had been investigated to 
direct the synthesized NPs to be utilized in different bio-
medical, and industrial applications due to their promis-
ing activities.

Materials and methods
Chemicals and reagents
For the fabrication of NPs, analytical-grade chemicals 
including sodium selenite (Sigma Aldrich, UK) and silver 
nitrate (Sigma Aldrich, UK) were used. However, media 
for microbiological testing was acquired from Oxoid in 
the UK.

Source of bacteria
Bacillus paramycoides strain (registered in Gene bank 
with accession no MT102429 [34]), supplied from Drug 
Microbiology Lab., culture collection of the Drug Radia-
tion Research Department at the National Center for 
Radiation Research and Technology  (NCRRT), EAEA, 
Cairo, Egypt, was employed for the Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs production.

Bacterial filtrate preparation
Every two weeks, seed media was used to continuously 
sub-cultivate the culture. Bacillus paramycoides was 
grown in a 250 mL Erlenmeyer flask at 30oC with 200 
rpm shaking for 24 hours using (LAB-Line Orbit Envi-
ron) in 50 mL medium (fermentation media for nitrate 
reductase production) containing the following concen-
trations of yeast extract (0.3%), peptone (0.5%), and K 
NO3 (0.2%). Using a Hettich Universal 16R cooling cen-
trifuge set at 6000 rpm for 10 minutes (6oC), the cell-free 
supernatant was separated [35].

Gamma radiation
The NCRRT in Cairo, Egypt, performed gamma irra-
diation procedures. The collected samples were gamma-
irradiated in the form of solutions employing the 
60Co-Gamma chamber 4000-A-India after the first pre-
cursors were dissolved at a radiation time that was pre-
dicted to be 1.014 kGy per hour (dose rate).

Synthesis of Ag NPs, Se NPs and bimetallic Ag-Se NPs
With bacterial filtrate (as a reducing and capping agent) 
and gamma rays (as a direct and indirect reducing pro-
cessing), Ag NPs, Se NPs, and bimetallic Ag-Se NPs were 
created. Because powerful reducing electrons, known as 
e-

aq, were unleashed by gamma rays and were present 
in aqueous solutions, this process of direct reduction of 
metal ions was triggered [36]. While indirect reduction 
came about as a result of the radiolysis byproducts H• 

and OH• interacting with the bacterial filtrate to produce 
active free radical, which then reduced metal ions [37].

Aqueous bacterial filtrate solution was combined with 
mixed solution samples of (1.0 mM) Ag NO3 for the pro-
duction of Ag NPs. Similar to this, numerous solution 
samples of sodium selenite (1.0 mM) were combined 
with bacterial filtrate to create Se NPs. While multiple 
solution samples of (1.0 mM) Ag NO3 and (1.0 mM) 
sodium selenite were combined with bacterial filtrate to 
create bimetallic Ag-Se NPs. Prior to gamma radiation, 
the pH of each sample was determined and adjusted to 
neutral (pH = 7). Then, various dosages of gamma radia-
tion (0, 5.0, 10.0, 15.0, 20.0, and 25.0 kGy) were applied 
to the prepared solutions. In order to determine the most 
efficient dose, the optical density (O.D.) of the produced 
NPs at a specific and defined wavelength was determined 
using UV-Vis. spectra. In the case of bimetallic Ag-Se 
NPs, in addition to dose, the ratio of Ag/Se concentration 
must be explored as a critical influence [38, 39].

Characterization of the synthesized NPs
The absorbance and optical characteristics of the syn-
thesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were 
investigated using a UV-Vis. spectrophotometer (JASCO 
V-560). A sample without any metallic ions was added for 
auto-zero purposes. To determine the fixed wavelengths 
needed to compute absorbance, all samples were first 
tested for optical properties [40].

A high-resolution transmission electron microscope 
(HR-TEM, JEM2100, Jeol, Japan) was also used to exam-
ine the shape, appearance, and average particle size of the 
generated NPs. After dried in an incubator at 37.0 ± 2 °C, 
NPs samples utilized for TEM research were drop-coated 
into carbon-coated TEM grids. The XRD-6000 (Shi-
madzu Scientific Instruments, Japan) uses XRD analysis 
to confirm the accurate development of the crystalline 
materials. XRD analysis was used to estimate the crystal 
size in the resulting bimetallic NPs. The last stage com-
prised analyzing the deposited bimetallic elements com-
position using an EDX detector (JEOL JSM-5600 LV, 
Japan) and analyzing the surface quality and exact sur-
face form of the synthesised bimetallic NPs using a SEM, 
ZEISS, EVO-MA10, Germany [41].

Separation and purification of the synthesized NPs
The produced Ag NPs, Se NPs, and bimetallic Ag-Se NPs 
were separated from the reaction mixture and purified 
using Whatman No. 1 filter paper. Each kind of NPs was 
obtained by ultracentrifugation at 20,000 rpm for 20 min, 
followed by ethanol and deionized water washings and 
drying at 50  °C. Each NP type’s resulting fine powders 
were then individually dissolved in HPLC-grade ethanol, 
given an ultrasonic treatment to disperse them, and then 
utilized for the biological assessment [42].
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In vitro antimicrobial sensitivity tests
To acquire a concentration range of 62.5–1000 µg mL− 1, 
Ag NPs, Se NPs, and bimetallic Ag-Se NPs were indi-
vidually dissolved in various quantities of HPLC-grade 
methanol. After that, they were subjected to an ultra-
sonic treatment. The agar well diffusion assay approach 
was used to assess antimicrobial activity [43]. Asper-
gillus brasiliensis ATCC16404 and Candida albicans 
ATCC10231, two human pathogenic fungi, and Alter-
naria alternate EUM108 and Fusarium oxysporum 
EUM37, two plant pathogenic fungi, were tested for anti-
fungal potential by Cairo MIRCEN (Faculty of Agricul-
ture, Ain Shams University, Cairo, Egypt). The agar wells 
were also treated simultaneously with Nystatin (positive 
control) and only methanol (negative control).

The antibacterial susceptibility experiment was con-
ducted in the meanwhile using some harmful bacterial 
strains, including Escherichia coli ATCC11229, Bacillus 
cereus ATCC15442, Klebsiella pneumoniae ATCC13883, 
Bacillus subtilis ATCC15442, and Pseudomonas aeru-
ginosa ATCC6538. Amoxicillin/Clavulanic acid (posi-
tive control) and methanol alone (negative control) were 
applied to the agar wells to create control Petri plates. 
The agar wells’ inhibition zones were meticulously mea-
sured. The lowest concentration of the synthesized NPs 
with the greatest level of inhibition, known as the MIC 
(minimum inhibitory concentration), was found in agar 
wells.

Anti-biofilm potential of the prepared NPs
By using the technique described by Christensen et al., a 
semi-qualitative assessment of biofilm development was 
made [44]. It was easy to see the biofilm wrapping on the 
inner surfaces of test tubes absent of Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs. Pathogenic microbes that demon-
strated responsiveness in the antimicrobial experiment 
were used to determine the antibiofilm properties of syn-
thesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs (at 
5.0 µg/mL) and evaluate it to the control tube. The exam-
ined bacteria and Candida sp. broth were given treat-
ment (after adjustment at 0.5 McFarland) and added to 
each tube’s 5.0 mL of nutrition broth before being incu-
bated at 37 °C for an overnight period [45].

The adhering bacteria and yeast that had covered the 
inner walls of test tubes for 15  min were rinsed with 
roughly 5.0 mL of sodium acetate (3.5%). Then, they were 
washed using de-ionized water (D.I.W). About  5.0 mL 
of crystal violet (CV; 0.15%) was employed for staining 
microbial biofilms for 15.0 min before the remaining dye 
was removed. After that, the color was dissolved using 
5.0 mL of 100% ethanol [45]. If a noticeable discolored 
film covering the tube’s inside surfaces was discovered, 
the biofilm that had been generated was identified [46]. 
The microbial biofilms were investigated using a UV-Vis. 

spectrophotometer at a fixed wavelength (570.0 nm). The 
bacterial and yeast biofilm inhibition (%) was used for 
calculating the inhibition % as the following: [44].

Inhibition % = 100× (O.D. of control sample – O.D. of 
treated sample) / (O.D. of control sample).

In vitro antioxidant activity
The 2, 2-diphenyl picrylhydrazyl (DPPH, Sigma-Aldrich, 
St. Louis, MO, USA) radical scavenging experiment was 
used to determine the individual free radical scaveng-
ing potentials of the synthesized Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs [43]. Each NPs were independently 
diluted in HPLC-grade methanol and subjected to an 
ultrasonic treatment to obtain concentrations between 
25 and 1000 µg mL− 1. The antioxidant standard ascorbic 
acid from Sigma-Aldrich, was used as a control substance 
at the same dose range [47]. The observed absorbance 
difference between the combination (DPPH + NPs) and 
the control (DPPH alone) was used to calculate the per-
centage of scavenging activity. GraphPad Prism software, 
San Diego, CA, USA, was used to determine IC50 values 
from graphic plots for each NPs concentration.

Photocatalytic potential
According to the procedure outlined by Abdelhakim 
et al. [48], the breakdown of methylene blue (MB) dye 
(Sigma-Aldrich, USA) was used to test the photocatalytic 
efficiency of the synthesized Ag NPs, Se NPs, and bime-
tallic Ag-Se NPs. Different quantities of both Ag NPs, Se 
NPs, or bimetallic Ag-Se NPs powder (25, 50, 100, 200, 
and 400 mg) were separately added to a 100 mL aqueous 
solution of MB (10 mg L− 1) while stirring constantly for 
an hour in full darkness in order to attain the adsorp-
tion equilibrium. The combination was then exposed to 
sunlight for 20 min at the ambient temperature. Follow-
ing that, 10 mL of the aliquot solution from the NPs-dye 
combination was removed, centrifuged, and the absor-
bance was measured at 664 nm. Under the same circum-
stances, a control experiment was conducted without the 
inclusion of nanoparticles. The following equation was 
used to determine the percentage of dye degradation:

Degradation (%) = 100 × (Mo - M) / Mo.
Where Mo is the original concentration of MB and M is 

the MB concentration after catalytic degradation.

Statistics
The computed mean and standard deviation were used to 
express the experimental results. The estimated mean is 
based on three separate experiments’ worth of triplicate 
readings. The least significant difference (LSD) test (0.05 
level) and one-way analysis of variance (ANOVA) were 
used to examine statistical significance using IBM Corp.‘s 
SPSS software, version 22.
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Results and Discussion
Synthesis of Ag NPs, Se NPs and bimetallic Ag-Se NPs by 
bacterial filtrate and gamma rays
The impact of gamma radiation and the ideal dosage
Figure  1 displays gamma-rays screening for the created 
NPs applying a UV-Vis. spectrophotometer. The most 
effective dosage is shown (Fig. 1a) to be 20.0 kGy, which 
results in Ag NPs production with the highest O.D. = 3.19 
at 390 nm. Similar to this, Fig. 1b shows that the optimal 
dose for producing Se NPs is 15.0 kGy with O.D. = 1.74 at 
460 nm. While Fig. 1c demonstrates that 15.0 kGy, with a 
high O.D. of 2.79 at 395 nm, is the most potent dose for 
the formation of bimetallic Ag-Se NPs.

In this case, extreme temperatures or additional chemi-
cal reducing agents were not required to make homoge-
neous NPs with a substantial comparative yield thanks to 
the potential of gamma rays [49, 50].

Figure  1 shows that the maximum Gamma-ray dose 
used to produce Ag NPs, Se NPs, and bimetallic Ag-Se 
NPs, respectively, was 20 kGy, 15 kGy, and 15 kGy. After 
raising the dose by more than 15 kGy (in the case of Se 
NPs and Ag-Se NPs) and more than 20 kGy (in the case 
of Ag NPs), the relative yield of the synthesized NPs had 

decreased. Excessive radiation is not helpful for the cre-
ation of new nanoparticles due to extra reactive oxygen 
species and solvated electrons (produced by water radi-
olysis) alter the pH of the solutions, attack freshly estab-
lished NPs (which have contrary charges), attach to them, 
and ultimately generate combined NPs that lower the 
intensity in the UV-Vis. spectrum.

Proposed synthetic reaction mechanism
Investigations into kinetics show that the onset of gamma 
irradiation always precedes the start of metal ions’ con-
version to NPs in the prepared solutions. According to 
Table  1, the reduction in the present investigation was 
greatest at 20.0 and 15 kGy, indicating that gamma radia-
tion is required for the synthesis of Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs [51].

After being exposed to gamma radiation, water cre-
ated a variety of species, including e− aq, OH•, H•, H2O2, 
and H2, according to Eq.  (1). The creation of highly 
reducing electrons, or e− aq, which carry out their task 
without generating any unnecessary byproducts was 
a benefit of gamma irradiation for the manufacture of 
metallic nanoparticles [14]. Different NPs were created 

Fig. 1  Gamma-rays screening by UV-Vis. spectrophotometry for the synthesis of Ag NPs (a), Se NPs (b), and bimetallic Ag-Se NPs (c)
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starting with the breakdown of Ag NO3 and Na2SeO3, 
which resulted in the hydrate cations Na+ and Ag+ and 
the anions SeO3

2− and NO3
− (Eqs. (2) and (3) in Table 1) 

[52].
After then, according to Eqs.  (4) and (5), there is a 

chance that both Ag+ and SeO3
2− will be obviously 

decreased by e− aq, creating non-capped Ag NPs and Se 
NPs that are likely to disintegrate [53]. In simultane-
ously as shown in Eq. (6) (Table 1), Ag+ and SeO3

2− likely 
reacted to create the synthesized bimetallic Ag-Se NPs 
combination [54].

A phenomenon known as Surface Plasmon Resonance 
(SPR) is brought about by the stimulation of electrons in 
the conductive zone around bimetallic Ag-Se NPs [55]. 
The unique oscillation qualities depend on the particle’s 
size and form. It is significant to note that when inor-
ganic NPs are activated by a light source, light electro-
magnetism bridges the free electrons, namely those that 
conduct line-located electrons of Ag + and/or Se + ions to 
create fused mixed flow [56].

The whole process demonstrated how Ag+ and SeO3
2− 

ions were reduced by electrons to allow for the formation 
of bimetallic Ag-Se NPs. It should be observed that the 
mean size of the particles and particle size distribution 
of the generated Ag NPs, Se NPs, and bimetallic Ag-Se 
NPs increased when the gamma radiation dosage was 
increased up to 20.0 kGy [57], result was attributed to the 
agglomeration and deposition of the synthesized Ag NPs, 
Se NPs, and bimetallic Ag-Se NPs via the mechanism 
shown in Eq.  (1), which was influenced by additional 
electrons and free radicals produced during water radi-
olysis [58].

Characterization of Ag NPs, Se NPs and bimetallic Ag-Se 
NPs
HR-TEM imaging, and DLS analysis
The average particle size and the appearance of the syn-
thesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were 
examined by HR-TEM (Fig.  2). Results from HR-TEM 
and DLS measures were also compared. Various spheri-
cal, sometimes irregular, and oval shapes of the synthe-
sized Ag NPs, Se NPs, and bimetallic Ag-Se NPs could 
be seen in HR-TEM images. According to Fig.  2a, the 

diameter of Ag NPs ranged from 26.2  nm to 50.5  nm 
with an average of 34.3 nm. As shown in Fig. 2b, Se NPs 
ranged in size from 22.4 to 98.1 nm, with a median diam-
eter of 40.7  nm.  Finally for the synthesized bimetallic 
Ag-Se NPs, the particle sizes ranged from 38.2 nm to 59.3 
nm with an average size as 46.7 nm (Fig. 2c, and d).

According to the HRTEM image result (Fig. 2d), there 
was only one grade system since the line spacing was pre-
cisely the same throughout. It shown that the selenium 
matrix’s homogeneous distribution of silver led to the 
creation of a special alloy. Similar to this, the bacterial 
filtrate’s generated radical-multi-position may cause con-
current decreases in Ag and Se [57].

The anisotropic form had been identified, although dif-
ferent morphologies may have been seen as a result of the 
process of creating it from extract in that present work 
[59]. This is due to the collected NPs were almost always 
round or oval in form. Due to the use of a single reducing 
and capping agent, a constant form is seen in our investi-
gation. Last but not least, our findings were connected to 
the newly published studies [60–63].

The usual particle size spreading for Ag NPs, Se NPs, 
and bimetallic Ag-Se NPs, which were produced using 
gamma rays and bacterial filtrate, was strongminded by 
the DLS technique to be 45.8 nm, 49.2 nm, and 66.5 nm, 
respectively (Fig. 3a, b, and 3c).

When the polydispersity index (PDI) results are less 
than 0.05, samples are said to be monodisperse by inter-
national standards organizations (ISOs). The goal of PDI 
results larger than 0.7, however, is to create particles with 
a polydispersity distribution [64].

According to our research, the bimetallic Ag-Se NPs 
had PDI values of 0.86. The synthesized bimetallic 
nanoparticles were a reasonable range of polymers based 
on the existing values. The results demonstrated that the 
estimated particle sizes detected by HR-TEM imaging 
were lower than the median and common sizes suggested 
by DLS analysis. The large diameters of the synthesized 
NPs are caused by the hydrodynamic radius within the 
Ag NPs, Se NPs, and bimetallic Ag-Se NPs as well as the 
water layers encircling them [65].

SEM and EDX analysis
Figure  4 depicts the surface morphology of the synthe-
sized Ag NPs, Se NPs, and bimetallic Ag-Se NPs. The 
image in Fig.  (4a) shows that Ag NPs, which are visible 
as a brilliant particle, were frequently in their pure state. 
Similar to how Se NPs appeared as brilliant particles all 
over the carbon imaging holder in Fig. (4b).

Figure (4c) displays the SEM verification of the synthe-
sized bimetallic Ag-Se NPs, which were dispersed equally 
across the carbon visualization frame. The synthesized 
bimetallic Ag-Se NPs, however, appeared to be just one 

Table 1  Proposed reaction mechanism regarding Ag NPs, Se 
NPs, and bimetallic Ag-Se NPs synthesis
Reaction inputs Condition Products Eq.
H2O Radiolysis (γ-ray) e− aq, OH•, H•, 

H2,and H2O2

(1)

Ag NO3 + H2O Hydrolysis Ag+ + NO3
− (2)

Na2SeO3 + H2O SeO3 − 2 + 2Na+ (3)

Ag+ + e− aq Reduction Ag NPs (4)

SeO3 − 2 + e− aq Se NPs + 3O2 (5)

SeO3 − 2 +3Ag+ Complexation Ag-Se NPs + 3O2 (6)
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particle with an irregular surface shape when seen in 
high resolution (Fig. 4d).

By comparing the synthesized Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs (in the present research) to the lit-
erature’s morphology form and elemental analysis, it was 
found that they were equally distributed with small size 
and a comparable spherical shape.

The synthesized bimetallic Au-Ag NPs were created by 
Muhammad et al. [66] using the citrate reduction tech-
nique at various pH levels and temperatures. Since their 
apparent morphology form and border size showed 
that they fall within a size range of 50 nm to 65 nm and 
appeared as spheres, temperature and pH are significant 
elements in the production process.

To examine the basic composition and confirm the per-
centage variations of the generated samples, EDX spec-
troscopy was used [67]. As shown in Fig.  5, the purity 
and fundamental structure of the synthesized bimetallic 
Ag-Se NPs were determined using an EDX examination. 

Bimetallic Ag-Se NPs showed distinct silver and selenium 
absorption maxima at 1.41 and 2.85 keV, respectively. The 
Ag-Se NPs’ element purity is supported by the absence of 
other elements peaks and the abundance of Ag and Se in 
the spectrum, while O and C signals were for the image 
holder, as shown in Fig. 5.

The mass percentage was found to be particularly equal 
in case of Ag (13.25%), and Se (13.50%) and confirm the 
equal distribution of Ag, and Se elements in the synthe-
sized bimetallic Ag-Se NPs (Fig. 5).

Ag-Au bimetallic NPs’ elemental structure was ana-
lyzed by EDX and contrasted with that of Muhammad et 
al. [66], it demonstrates that Ag and Au are used to cre-
ate bimetallic NPs. At 25 °C, Au’s relative elemental per-
centage was 55.98% and Ag’s was 44.02%; at 100 °C, these 
percentages shifted to Au (69.51%) and Ag (30.49%), 
demonstrating the effectiveness of the reduction process.

Fig. 2  Average particle size, and shape for the synthesized NPs where, (a) HRTEM for Ag NPs, (b) HRTEM for Se NPs, (c) HR-TEM for bimetallic Ag-Se NPs, 
and (d) magnified HR-TEM for bimetallic Ag-Se NPs
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XRD investigation
The structure of the crystals and phase of the gener-
ated NPs were investigated using a technique called 
XRD [68]. Figure  6 displays the synthesized NPs’ XRD 
pattern. The pattern makes it very evident that neither 
sodium selenite nor silver nitrate exhibit any distinctive 
peaks. The production of the nano-complex (bimetallic 
Ag-Se NPs) was verified by XRD measurements. Figure 6 
shows the XRD diffraction peaks of Ag NPs, including 
peaks at 2 ɵ = 38.46o, 44.14o, 64.88o, and 78.61o that cor-
respond to (111), (200), (220), and (311), respectively for 
Bragg’s reflections and matched with a reference card 

JCPDS-ICDD card 04-0783 [69]. Additionally, Fig. 6 dis-
plays the XRD diffraction peaks of Se NPs and displays 
the diffraction characteristics for 2 ɵ at 27.24o, 33.19o, 
46.88o, 57.29o, 67.19o, 75.07o, and 84.68o, which cor-
respond to the Bragg’s reflections at (100), (101), (111), 
(201), (210), (113), and (301), respectively. Using a stan-
dard card JCPDS File No. 06-0362, the Joint Commit-
tee on Powder Diffraction Standards (JCPDS) of Se NPs 
demonstrated that all of the peaks were equivalent [70].

Bimetallic Ag-Se NPs that have been synthesized have 
diffraction properties at 2 ɵ that are similar to those seen 
for both Se NPs and Ag NPs, according to XRD data. 

Fig. 3  Particle size distribution of (a) Ag NPs, (b) Se NPs, and (c) bimetallic Ag-Se NPs by DLS analysis
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This suggests that the synthesized bimetallic Ag-Se NPs 
were crystallized. It is important to note that a minor in 
2 ɵ shifting was found, which may be related to the emer-
gence of bimetallic Ag-Se NPs [68]. According to the 
published experiment [71], the 2 ɵ range from 5o to 25o 
corresponded to the amorphous form of organic mol-
ecules found in the bacterial filtrate.

The lack of peaks at 2 ɵ = 31.30o, 32.62o, and 33.68o 
demonstrated the purity and absence of AgO NPs and 
SeO NPs in the synthesized Ag NPs, Se NPs, and bime-
tallic Ag-Se NPs [72]. According to the XRD data, the 
generated nanoparticles were extremely crystalline for 
improved applicability [73]. On the other hand, the aver-
age crystallite size of the synthesized Ag NPs, Se NPs, 
and bimetallic Ag-Se NPs was determined by using the 
Scherrer equation [74], and was found to be 30.25, 38.54, 
and 42.40  nm for the synthesized Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs, respectively. Similarly, the assessed 
crystal sizes detected by XRD data and after applying 
the Scherrer equation were lower than sizes investigated 

by DLS analysis. The large diameters of the synthesized 
NPs are caused by the hydrodynamic radius within the 
Ag NPs, Se NPs, and bimetallic Ag-Se NPs as well as the 
water layers surrounding them [65, 75].

In vitro antimicrobial activity of the synthesized Ag NPs, Se 
NPs and bimetallic Ag-Se NPs
The antifungal activity of the synthesized Ag NPs, Se 
NPs, and bimetallic Ag-Se NPs against two fungi that 
are harmful to humans and two fungi that are harmful 
to plants were shown in Table 2. When compared to the 
standard antifungal (Nystatin), all the synthesized NPs 
demonstrated promising antifungal potential. The data 
collected (Table  2) further showed that the MIC-values 
of the three types of NPs vary depending on the fungal 
pathogen examined as well as depending on the synthe-
sized NPs. Data clearly demonstrated that C. albicans 
was the most susceptible organism to all three kinds of 
NPs, with documented MIC values for bimetallic Ag-Se 

Fig. 4  Morphological characters and surface shape for the synthesized NPs where, (a) SEM for Ag NPs, (b) SEM for Se NPs, (c) SEM for bimetallic Ag-Se 
NPs, and (d) magnified SEM for bimetallic Ag-Se NPs
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NPs of 62.5 µg mL− 1. Ag NPs and Se NPs both have MIC 
values of 125 µg mL− 1, however shown in Table 2.

Table  3 displays the antibacterial characteristics of 
four distinct human pathogenic bacterial strains against 
which the synthesized Ag NPs, Se NPs, and bimetallic 
Ag-Se NPs were tested. The gathered data amply illus-
trated the broad spectrum of antibacterial properties of 
all the synthesized NPs when contrasted with Amoxicil-
lin (the gold standard antibiotic). Additional information 
from the collected data revealed that the reported MIC-
values varied according to the kind of NPs used in the 
synthesis and the subject of the study bacterial species. 
While P. aeruginosa and K. pneumoniae were the most 
antibiotic-resistant organisms, the three different types of 
NPs were most efficient against E. coli. The information 
acquired (Table  3) additional shown that the reported 
MIC-values for bimetallic Ag-Se NPs against E. coli were 
62.5 µg mL− 1. Ag NPs and Se NPs both had MIC values 
of 125 µg mL− 1.

Ag NPs have been studied in several papers as potent 
antibacterial agents against different infections. Ag NPs 
were created by suspending graphene oxide sheets, as 
described by Das et al. [76] after which their antibacte-
rial activity was investigated. Their results showed that 
increasing the quantity of Ag NPs enhanced the devel-
opment inhibition of P. aeruginosa and E. coli, indicat-
ing that Ag NP concentration is an important factor that 
influences their antibacterial action.

According to Saeb et al. [77] the production of biogenic 
Ag NPs also made use of a range of soil isolates. Further 
research was done on how well these antimicrobial drugs 
worked against isolates of MDR microbes and other 
highly transmissible bacteria. The pathogens E. coli, S. 
aureus, S. epidermidis, and K. pneumoniae were all effec-
tively combatted by the generated Ag NPs.

Last but not least, Shepherd et al. [78] evaluated the 
effectiveness of the biogenic Ag NPs (75.0 ppm) towards 
E. coli, which had a ZOI of around 15.0 mm, whereas S. 
aureus was found to have a ZOI of 14.0 mm. Additionally, 
11.0 and 12.0 mm ZOI towards E. coli and S. aureus were 
found in the active Ag+ ions.

After taking into consideration the small amount of Ag 
that helps minimize the toxic degree of the synthesized 
bimetallic NPs and particular combinations among Ag 
and Se atoms, the highest antimicrobial activity at small 
quantities is due to the synergistic potential between Ag 
and Se in the synthesized bimetallic Ag-Se NPs. These 
enhanced characteristics enable for the feasible appli-
cation in different fields of medicine with the accurate 
treatment [79–81].

Rising resistance to antibiotics is a severe global 
health concern, making it urgently necessary to develop 
new antimicrobial formulations to fight drug-resistant 
microorganisms. Drugs that utilize NPs as antimicro-
bial substances have lately gained a lot of attention in 
the research of microbial drug resistance [82]. In order 

Fig. 5  Elemental investigation for the synthesized bimetallic Ag-Se NPs using EDX analysis
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to determine the efficiency of the three types of NPs that 
were synthesized in this work as possible antimicrobials 
touching various MDR bacterial strains as well as several 
human and plant harmful fungi, they were investigated.

The gathered information supported the broad-spec-
trum antibacterial activity of all produced Ag NPs, Se 
NPs, and bimetallic Ag-Se NPs, which inhibited all kinds 
of bacteria and fungi. According to our findings, Ag NPs 
and Se NPs have been well-reported for their antibac-
terial efficacy against a number of bacterial and fungal 
species [83–85]. Some NPs may often damage microbial 
organisms by interacting with the cell wall or membrane, 
which can cause the leaking of genetic information, pro-
teins, and minerals [82, 83]. Along with to their signifi-
cant effectiveness in preventing cellular development by 
triggering cell death for increasing the formation of reac-
tive oxygen species [86].

Anti-biofilm potential of the synthesized NPs
Exopolysaccharides frequently form biofilms is formed in 
many pathogenic bacteria [46]. Using the tube approach, 

nutrient broth inoculations with and without the inclu-
sion of the synthesized NPs were used to assess the devel-
opment of bacterial biofilms.

Without Ag NPs, Se NPs, or bimetallic Ag-Se NPs, 
microbial pathogens will grow in test tubes and might 
produce an extensive pale yellow matt at the air-liquid 
interface. It was then attached to the tube walls, dyed 
with crystal violet (CV), and appeared as deep blue rings. 
A dark blue solution was created when CV was dissolved 
in ethanol and was utilized for subsequent semi-quanti-
tative analyses. In contrast, the tube containing the tested 
microbes that had been treated with 5.0 µg/mL Ag NPs, 
Se NPs, and bimetallic Ag-Se NPs displayed poor growth 
and biofilm production when compared to the control 
(tube containing only the tested microbes), as shown 
by the lighter blue solution after CV was dissolved in 
ethanol.

The UV-Vis. spectrophotometer was set at 570.0  nm 
to measure the inhibition percentage (%) of the tested 
pathogens. After ethanol was used to separate the stained 
biofilm, the O.D. was calculated. As indicated in Table 4, 

Fig. 6  XRD spectra for the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs
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Table 2  Antifungal activity of Ag NPs, Se NPs, and bimetallic Ag-Se NPs synthesized by bacterial filtrate and gamma-rays against 
different human and plant pathogenic fungi
NPs concentration
(µg mL− 1)

Diameter of inhibition zone (mm)
C. albicans A. brasiliensis A. alternata F. 

oxysporum
Ag NPs 0.00 (C) 0.00e 0.00c 0.00c 0.00c

62.5 0.00e 0.00c 0.00c 0.00c

125 14.33 ± 0.58d 0.00c 0.00c 0.00c

250 22.00 ± 1.00c 0.00c 0.00c 0.00c

500 27.33 ± 1.54b 12.33 ± 1.53b 14.33 ± 1.53b 13.00 ± 1.00b

1000 32.67 ± 0.58a 23.33 ± 0.58a 20.67 ± 0.58a 21.33 ± 0.58a

Se NPs 0.00 (C) 0.00d 0.00d 0.00d 0.00d

62.5 0.00d 0.00d 0.00d 0.00d

125 14.33 ± 0.58c 13.33 ± 0.58c 0.00d 0.00d

250 22.00 ± 1.00b 21.67 ± 0.58b 14.00 ± 1.00c 14.67 ± 0.58c

500 28.33 ± 1.15a 31.33 ± 0.58a 22.00 ± 1.00b 22.67 ± 2.08b

1000 32.67 ± 0.58a 35.00 ± 1.00a 25.67 ± 2.08a 33.33 ± 2.08a

Ag-Se NPs 0.00 (C) 0.00f 0.00e 0.00d 0.00d

62.5 11.33 ± 0.58e 0.00e 0.00d 0.00d

100 17.00 ± 1.00d 12.33 ± 1.53d 0.00d 0.00d

250 26.33 ± 1.52c 17.67 ± 0.58c 11.33 ± 1.53c 12.33 ± 1.53c

500 34.00 ± 2.65b 26.00 ± 1.00b 22.33 ± 1.53b 21.67 ± 0.58b

1000 42.67 ± 1.15a 32.67 ± 0.58a 30.67 ± 0.58a 30.33 ± 2.08a

Nystatin 11.33 ± 0.58 0.00 0.00 0.00
Nystatin was used at a concentration of 100 µg mL− 1. Calculated mean is for triplicate measurements from three independent experiments ± SD, a−emeans with different superscripts 
in the same column for each nanoparticle are considered statistically different (LSD test, P ≤ 0.05)

Table 3  Antibacterial activity of Ag NPs, Se NPs, and bimetallic Ag-Se NPs synthesized by bacterial filtrate and gamma-rays against 
different Gram-positive and Gram-negative human pathogenic bacterial strains
NPs concentration
(µg mL− 1)

Diameter of inhibition zone (mm)
E. coli S. aureus P. aeruginosa K. pneu-

moniae
Ag NPs 0.00 (C) 0.00e 0.00d 0.00c 0.00c

62.5 0.00d 0.00d 0.00c 0.00c

125 12.67 ± 1.53d 0.00d 0.00c 0.00c

250 18.33 ± 1.15c 16.33 ± 1.15c 0.00c 0.00c

500 25.33 ± 1.15b 27.33 ± 1.15b 21.33 ± 0.58b 11.33 ± 0.58b

1000 30.67 ± 0.58a 34.33 ± 0.58a 30.00 ± 1.00a 16.67 ± 1.15a

Se NPs 0.00 (C) 0.00e 0.00d 0.00d 0.00d

62.5 0.00e 0.00d 0.00d 0.00d

125 12.67 ± 1.15c 15.33 ± 1.15c 0.00d 0.00d

250 20.67 ± 1.15c 21.67 ± 1.15b 08.67 ± 0.58c 11.67 ± 1.15c

500 33.33 ± 2.08b 24.67 ± 0.58b 12.67 ± 0.58b 15.33 ± 1.15b

1000 38.67 ± 0.58a 35.33 ± 1.15a 19.00 ± 1.00a 23.33 ± 1.52a

Ag-Se NPs 0.00 (C) 0.00e 0.00f 0.00e 0.00e

62.5 8.67 ± 0.58d 7.33 ± 0.58e 0.00e 0.00e

100 12.67 ± 0.58c 10.67 ± 0.58d 8.67 ± 0.58d 10.00 ± 1.00d

250 23.33 ± 1.53b 14.67 ± 1.52c 13.67 ± 1.00c 13.67 ± 0.58c

500 32.67 ± 1.53a 23.33 ± 2.51b 18.33 ± 2.52b 21.33 ± 2.08b

1000 34.67 ± 2.52a 29.33 ± 1.52a 28.33 ± 2.31a 29.67 ± 1.53a

Amoxicillin/Clavulanic acid 9.67 ± 1.15 0.00 0.00 0.00
Amoxicillin/Clavulanic acid was used at a concentration of 100 µg mL− 1. Calculated mean is for triplicate measurements from three independent experiments ± SD, a−emeans with 
different superscripts in the same column for each nanoparticle are considered statistically different (LSD test, P ≤ 0.05)
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the percentage of inhibition against C. albicans that was 
inhibited by 5  µg/mLAg-Se NPs was 90.88%, followed 
by 90.70% for E. coli and 90.62% for S. aureus. The same 
situation was observed for the synthesized Ag NPs with 
high antibiofilm potential as 87.57%, 86.71%, and 86.62% 
against S. aureus, E. coli, and P. aeruginosa, respectively. 
Finally the synthesized Se NPs were inhibit biofilm for-
mation in C. albicans (86.39%), E. coli (82.09%), and S. 
aureus (76.04%). It must be noted that, the combination 
between Se and Ag NPs as bimetallic Ag-Se NPs increas-
ing the antibiofilm potential as seen in Table 4.

The study of biofilm inhibition is continually develop-
ing, and the factors involved in biofilm development have 
been discovered and are being investigated as possible 
therapeutic targets [46]. Still, further research is needed 
about the agents that prevent infections from building 
biofilms. Wood et al., [87], discovered that several non-
toxic anti-biofilm drugs, including indole compounds, 
5-fluorouracil, and ursolic acid, interacted with E. coli.

It is still unclear what exactly causes resistance to bac-
terial biofilms. The creation of glycocalyx, a pericellular 
matrix made up of glycolipid and glycoprotein, which 
improves bacterial biofilms and reduces the impact of 
other antibacterial drugs while decreasing patient resis-
tance, is an intriguing discovery [88].

Antibacterial drugs are used to prevent the formation 
of bacterial biofilms by obstructing polysaccharide lay-
ers, which therefore makes it easier to restrict the growth 
of bacterial cells. The advancement of nanotechnology 
allows for the quick manufacture of particles and nano-
composite with effective antibiofilms [89, 90].

Exopolysaccharide formation, which is crucial for the 
formation of biofilms, was visible in the non-treated 
pathogens with Ag NPs, Se NPs, and bimetallic Ag-Se 
NPs. However, after treatment with Ag NPs, Se NPs, and 
bimetallic Ag-Se NPs, these pathogens were significantly 
inhibited. Thus, pathogens are prevented from form-
ing biofilms by impeding the production of exopolysac-
charides. Similar outcomes against S. epidermidis and P. 
aeruginosa biofilms were also seen by Kalishwaralal et al. 

[91] who found that 100 nM of the produced Ag NPs pro-
vided 96–99% of biofilm suppression.

The synthesized Ag NPs, Se NPs, and bimetallic Ag-Se 
NPs (in this study) exhibit antibiofilm inhibition  % in a 
suitable and encouraging result at low concentrations, as 
compared to those in the scientific literature that have 
antibiofilm potential.

According to Kasi Gopinath et al.’s antibiofilm findings 
[92], all of the tested microorganisms had inadequate 
adhesion and disconnected biofilm external architecture 
after being incubated overnight for biofilm growth. The 
antibiofilm properties of bimetallic Ag-Se NPs showed 
more notable restraint of biofilm mass width as a result 
of the combined benefits of Ag and Se in the synthesized 
bimetallic Ag-Se NPs. Not least, our results were related 
to recently published research [93–96].

According to earlier studies, Ag NPs can considerably 
lower the amount of bacterial cells, which in turn lowers 
the capacity to form biofilms. Some synthesized Ag-Au 
NPs were able to penetrate bacterial cell walls and their 
surfaces. Additionally, in our earlier research, several 
synthesized metal NPs’ possible modes of action against 
particular infections were described [58, 97].

DPPH free radical scavenging activity of the synthesized 
Ag NPs, Se NPs and bimetallic Ag-Se NPs
All three NPs shown promising antioxidant activity at 
various concentrations, according to the results of con-
trasting the antioxidant behavior of synthesized Ag NPs, 
Se NPs, and bimetallic Ag-Se NPs with ascorbic acid 
(Table 5). Ascorbic acid and the three different kinds of 
the synthesized NPs had the lowest inhibitory levels at 
25 µg mL− 1, according to the results. The observed out-
comes (Table 5) further demonstrated that all three types 
of the synthesized NPs reduced DPPH free radicals in a 
dependent on dose way, with any rise in the administered 
concentration of NPs creating a significant (P ≤ 0.05) 
increase in the observed scavenging activity.

The results that were obtained further demonstrated 
that the recorded IC50-values for bimetallic Ag-Se 
NPs, Se NPs, and Ag NPs were 98.52 µg mL− 1, 124.53 µg 

Table 4  Semi-quantitative inhibition % of the biofilm formation for non-treated and treated bacterial and yeast pathogens with Ag 
NPs, Se NPs, and bimetallic Ag-Se NPs
Test organism O.D. of crystal violet stain at 570.0 nm Inhibition %

Control Treated with 
Ag NPs

Treated with 
Se NPs

Treated with 
Ag-Se NPs

Ag 
NPs

Se 
NPs

Ag-
Se 
NPs

E. coli 0.888c ± 0.008 0.118c ± 0.002 0.159d ± 0.002 0.109d ± 0.009 86.71 82.09 87.70

 S. aureus 0.789d ± 0.006 0.098d ± 0.003 0.189c ± 0.001 0.074b ± 0.009 87.57 76.04 90.62

P. aeruginosa 0.912a ± 0.007 0.122b ± 0.005 0.280b ± 0.005 0.089c ± 0.009 86.62 69.29 90.24

 K. pneumoniae 0.891b ± 0.002 0.389a ± 0.006 0.445a ± 0.006 0.198e ± 0.009 56.34 50.72 77.77

 C. albicans 0.669e ± 0.004 0.092d ± 0.003 0.091e ± 0.003 0.061a ± 0.009 86.42 86.39 90.88
Values are means  ±  SD (n = 3). Data within the groups are analyzed using one-way analysis of variance (ANOVA) followed by a, b, c, d, e Duncan’s multiple range test 
(DMRT)
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mL− 1, and 242.54 µg mL− 1, respectively. Ascorbic acid’s 
IC50 measurement was found to be  71.61  µg mL− 1. As 
a result, the synthesized NPs may be sorted as follows in 
decreasing order of antioxidant potential: Ag-Se NPs > Se 
NPs > Ag NPs.

When compared to ascorbic acid, the synthesized Ag 
NPs, Se NPs, and bimetallic Ag-Se NPs showed promis-
ing antioxidant potential in the current study, accord-
ing to the findings of the evaluation of their antioxidant 
activity. Metal nanoparticles’ capacity to neutralize free 
radicals has been extensively documented in the litera-
ture [48, 85, 98]. The antioxidant effect of the metal NPs 
was primarily caused by the movement of electrons, 
which neutralized and stopped the DPPH from produc-
ing free radicals [99]. Additionally, a high surface-to-
volume ratio may boost the antioxidant activity of metal 
nanoparticles [100]. According to literature findings, Se 
NPs produced by Monascus purpureus culture extract 
had equal antioxidant activity to ascorbic acid in a dose-
dependent manner at a concentration of 85.92 µg mL− 1 
[85]. When compared to ascorbic acid, Se NPs produced 
by Withania somnifera leaf extract shown modest anti-
oxidant activity in a dose-dependent manner at concen-
trations between 20 µg mL− 1 and 100 µg mL− 1 [84]. As a 
result, the antioxidant activity seen in our work is encour-
aging in terms of concentration and offers a direction for 

further investigation of bimetallic Ag-Se NPs as a poten-
tial new source of antioxidants.

Photocatalytic activity of Ag NPs, Se NPs, and bimetallic 
Ag-Se NPs
The photocatalytic activity of the synthesized Ag NPs, Se 
NPs, and bimetallic Ag-Se NPs was evaluated by the deg-
radation of MB dye after they had been left in the dark 
for 1 h to attain equilibrium. The fact that the dye deg-
radation occurred in the presence of the synthesized Ag 
NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed 
by a reduction in the measured absorbance (at 664 nm) 
following twenty minutes of being exposed to sunlight. 
Deterioration was demonstrated by the MB’s gradual 
change in color from a dark blue to colorless. The impact 
of various Ag NPs, Se NPs, and bimetallic Ag-Se NP con-
centrations on the degradation of MB dye was shown in 
Fig. 6. The acquired data, as can be seen in Fig. 7, dem-
onstrated that the three distinct types of NPs successfully 
obliterated the MB dye in a concentration-dependent 
way. The proportion of degradation steadily rises with a 
rise in either the quantity of Ag NPs, Se NPs, or bimetal-
lic Ag-Se NPs. Complete degradation (100%) was dem-
onstrated for Se NPs and bimetallic Ag-Se NPs both at a 
concentration of 200 mg; yet, for Ag NPs, it occurred at a 
concentration of 400 mg.

Table 5  DPPH free radical scavenging activity of Ag NPs, Se NPs, and bimetallic Ag-Se NPs
NPs concentration
(µg mL− 1)

Free radical scavenging activity (%)
Ascorbic acid Ag NPs Se NPs Ag-Se NPs

0.00 (C) 0.00 g 0.00 h 0.00 h 0.00 g

25 20.56 ± 2.56f 15.11 ± 1.36 g 17.21 ± 1.45 g 19.32 ± 2.56f

50 47.65 ± 3.45e 27.87 ± 1.41f 36.76 ± 3.54f 38.53 ± 5.15e

100 55.43 ± 4.87d 38.67 ± 4.52e 51.81 ± 2.61e 50.32 ± 3.64d

200 61.08 ± 6.33c 48.56 ± 4.87d 59.59 ± 5.44d 58.56 ± 1.56c

400 75.22 ± 8.51b 62.06 ± 3.56c 68.54 ± 5.42c 68.65 ± 4.48b

800 98.71 ± 6.32a 75.17 ± 2.66b 74.32 ± 7.06b 89.34 ± 3.42a

1000 100.00 ± 0.00a 83.65 ± 7.51a 82.41 ± 6.11a 91.14 ± 7.85a

IC50(µg mL− 1) 71.61 242.54 124.53 98.52
DPPH scavenging assay was used for measuring the antioxidant activities of the synthesized nanoparticles at 517 nm using DPPH solution under the conditions described in Materials 
and Methods. Calculated mean is for triplicate measurements from three independent experiments ± SD, a−hmeans with different superscripts in the same column are considered 
statistically different (LSD test, P ≤ 0.05)

Fig. 7  Photocatalytic degradation of MB dye by (A) Ag NPs, (B) Se NPs, and (C) bimetallic Ag-Se NPs
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In this investigation, dye degradation of MB during 
20 min of sunshine was used to assess the photocatalytic 
behavior of the synthesized Ag NPs, Se NPs, and bimetal-
lic Ag-Se NPs. The MB dye was successfully broken down 
by the synthesized NPs in a concentration-dependent 
manner, with 200  mg being the magic number for both 
Se NPs and bimetallic Ag-Se NPs. Recently, the study of 
catalytic activation of industrial wastes has given metallic 
nanoparticles a lot of attention [18, 101, 102]. Data on the 
photocatalytic activity of NPs produced by microorgan-
isms are few in the literature. However, no papers have 
examined the photocatalytic behavior of bimetallic Ag-Se 
NPs produced by microorganisms in the literature.

The photocatalytic activity of ZnO NPs produced by 
Alternaria tenuissima was investigated by Abdelha-
kim et al. [48]. Under UV irradiation, ZnO NPs enabled 
complete breakdown (100%) of the MB dye. Further-
more, according to Kalpana et al. [103], Bismarck brown 
dye showed greatest degradation (89%) when used with 
100 µL ZnO NPs when exposed to UV radiation for 72 h.

Up to present deep discussion, the synthesized bime-
tallic Ag-Se NPs created in this work shown excellent effi-
ciency in the MB degrading process. Consequently, they 
can be used in the textile and water treatment sectors.

Conclusion
This paper proposed a novel approach to create bimetal-
lic Ag-Se NPs, Se NPs, and Ag NPs from bacterial filtrate 
in an environment of gamma rays. According to HR-TEM 
imaging, the synthesized Ag NPs, Se NPs, and bimetallic 
Ag-Se NPs had a variety of round, sometimes irregular, 
and oval morphologies. Analyses of the form, crystallin-
ity, and distribution underwent thorough confirmation. 
Se NPs had a median diameter of 40.7  nm with sizes 
ranging from 22.4 to 98.1 nm. The synthesized bimetal-
lic Ag-Se NPs had an average diameter of 46.7 nm with a 
size range of 38.2 to 59.3 nm. Last but not least, Ag NPs 
varied in diameter by 34.3  nm and ranged in size from 
26.2 to 50.5  nm. An argument for the impending and 
ongoing reduction in ions brought on by the effects of the 
gamma rays at 20.0 kGy and 15 kGy. Antimicrobial activ-
ity against several pathogenic bacteria, fungi, and yeast 
was studied using ZOI and MIC methods. Ag-Se NPs (at 
low concentrations) inhibited the growth and biofilm for-
mation of C. albicans, E. coli, and S. aureus in percent-
ages of 90.88%, 90.70%, and 90.62%, respectively. This 
study is scientifically sound due to the generated NPs’ 
high stability for an extended period due to the bacterial 
filtrate’s capping ability and their potential antibacterial 
properties at low amounts, which raised the potential for 
the likely application in long-term goals. The prepared 
bimetallic Ag-Se NPs have the potential to be useful in a 
variety of pharmaceutical, environmental, and healthcare 
uses as well as to their contribution to the breakdown of 

MB dye via their potential as an effective photocatalyst, 
particularly as antimicrobial substances towards some 
infectious bacteria and announcing antioxidants.
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