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Abstract 

Background  Mycoplasma ovipneumoniae is a critical pathogen that causes respiratory diseases that threaten Caprini 
health and cause economic damage. A genome-wide study of M. ovipneumoniae will help understand the patho-
genic characteristics of this microorganism.

Results  Toxicological pathology and whole-genome sequencing of nine M. ovipneumoniae strains isolated 
from goats were performed using an epidemiological survey. These strains exhibited anterior ventral lung con-
solidation, typical of bronchopneumonia in goats. Average nucleotide identity and phylogenetic analysis based 
on whole-genome sequences showed that all M. ovipneumoniae strains clustered into two clades, largely in accord-
ance with their geographical origins. The pan-genome of the 23 M. ovipneumoniae strains contained 5,596 genes, 
including 385 core, 210 soft core, and 5,001 accessory genes. Among these genes, two protein-coding genes were 
annotated as cilium adhesion and eight as paralog surface adhesins when annotated to VFDB, and no antibiotic resist-
ance-related genes were predicted. Additionally, 23 strains carried glucosidase-related genes (ycjT and group_1595) 
and glucosidase-related genes (atpD_2), indicating that M. ovipneumoniae possesses a wide range of glycoside hydro-
lase activities.

Conclusions  The population structure and genomic features identified in this study will facilitate further investiga-
tions into the pathogenesis of M. ovipneumoniae and lay the foundation for the development of preventive and thera-
peutic methods.

Keywords  Mycoplasma ovipneumoniae, Whole-genome sequencing, Pathogenesis, Pan-genome

*Correspondence:
Jun Li
Jlee9981@163.com
Jiakang He
jkhe@gxu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-023-02964-0&domain=pdf


Page 2 of 11Ma et al. BMC Microbiology          (2023) 23:220 

Background
Mycoplasma ovipneumoniae is an etiological micro-
organism of acute or chronic pneumonia in Caprini, 
affecting healthy animals and causing economic dam-
age. Infection outbreaks usually occur in sheep and goat 
populations and are strongly associated with the transfer 
of sick individuals to susceptible herds [1, 2]. Domestic 
sheep and goats serve as asymptomatic carriers of M. 
ovipneumoniae and spread this pathogen to native big-
horn sheep populations through close contact [3, 4]. 
Additionally, epizootic introduction events in sheep and 
goat populations frequently result in annual pneumonia 
outbreaks in susceptible juveniles, high flock mortality, 
and years of reduced herd growth rate [5, 6]. Secretions 
from individuals with pneumonia or pathogen carriers 
mainly contribute to the spread of the disease through 
nasal inhalation of infected droplets [7, 8]. Once infected 
with M. ovipneumoniae, sheep and goats develop severe 
diseases, including contagious pleuropneumonia, bron-
chopneumonia, polymicrobial pneumonia, arthritis, 
keratoconjunctivitis, consolidated lung lesions, and pul-
monary abscesses.

Currently, there are few global surveillance records for 
M. ovipneumoniae and some gaps in basic research have 
resulted from nutritionally limited conditions for in vitro 
growth (24–72  h with a peak at 48  h), a spherical mor-
phology (pear, flask-shaped cells, and filaments), and a 
lack of fried egg-like morphology on agar plates [9, 10]. 
After isolation, microbial identification mainly depends 
on additional tests such as biochemical testing, PCR, 
Sanger sequencing, serological testing, or matrix-assisted 
laser desorption/ionization-time of flight (MALDI-TOF) 
[1, 11–13]. Direct molecular methods with high resolu-
tion for detection using sheep clinical samples without 
pre-culture, such as real-time quantitative PCR, loop-
mediated isothermal amplification (LAMP), and droplet 
digital PCR, seem promising but lack broad validation 
[14, 15]. In addition, owing to difficulties in counting M. 
ovipneumoniae cells, antimicrobial susceptibility test-
ing (AST) has been poorly studied; thus, methodological 
standards are lacking and there are currently no clinical 
interpretation criteria available [16, 17]. Whole genome 
sequencing (WGS) is widely used to characterize micro-
bial genomes. Theoretically, WGS-based strategies allow 
the classification of housekeeping genes, epidemiological 
relationships, serology, virulence genotypes, and antimi-
crobial resistance genotypes of all classes of infectious 
agents [18, 19]. A recent survey of Enterococcus spp. iso-
lated from different environments confirmed that tradi-
tional molecular techniques are less effective than WGS 
for annotating antimicrobial resistance genes (ARGs) 
and virulence genes [20]. However, this strategy faces 
four critical challenges: time consumption, data analysis, 

reporting interpretation, and cost. Thus, WGS should be 
conceptually and technologically optimized to its greatest 
potential.

Therefore, this study aimed to isolate and identify 
Mycoplasma spp. circulating in goats with respiratory 
infections in Guangxi, China, using WGS to study the 
population structure, ARGs, and virulence genes of this 
microorganism. We aimed to enrich genomic resources 
and provide fundamental genomic insights to facili-
tate molecular diagnostics and pathogenic microbial 
therapies.

Results
Isolation and pathogenic characteristics of M. 
ovipneumoniae strains
Before pathogen isolation, we performed an epidemiolog-
ical analysis of the goat population in Guangxi; 87 cases 
revealed typical clinical symptoms, including respiratory 
(83.9%), diarrhea (9.2%), and parasitic symptoms (6.8%). 
Further exploration of the purified microorganisms iden-
tified 49.6% as M. ovipneumoniae, 12.4% as a subspecies 
of Mycoplasma filiformis, 12.4% as Manniella hemolyti-
cus, 13.9% as Escherichia coli, 5.8% as Klebsiella pneumo-
niae, and 5.8% as Cryptobacterium pyogenes according 
to the 16S rRNA sequences. Goats infected with M. 
ovipneumoniae had light-yellow lungs that produced 
emphysema, diffuse congestion, reddish-brown areas, 
edema, and hemorrhage. Simultaneously, pulmonary bul-
lae (emphysema) were visible because of alveolar fusion 
(Fig. 1A). In addition, swollen mucosa, congestive blood 
vessels in the mucosal and submucosal layers, inflamma-
tory cell infiltration, and degeneration and necrosis of the 
mucosal epithelial cells were observed (Fig.  1B and C). 
Moreover, lymphatic vessel dilation, lymphatic throm-
bosis, interstitial capillary thrombosis, and pulmonary 
interstitial necrosis were also detected (Fig. 1D).

M. ovipneumoniae strains NN–MO, MSM, and YZM 
were obtained from the lung tissue, and strains BHF6, 
DH1, DH4, FS2, GT1, and GXHX211028 were isolated 
from nasal swabs. Single colonies of M. ovipneumoniae 
and M. filiformis appeared as tiny dew drops (Figure S1 
A) and fried eggs (Figure S1 B) on the agar plate where 
the raised center was wider in some colonies of M. ovi-
pneumoniae and smaller in a few colonies upon light 
microscopic examination (Figure S1 C). All isolates were 
identified as M. ovipneumoniae by Sanger sequencing, 
using specific primers. We further used the strains BHF6 
and FS2 to infect goats and found that the infected goats 
exhibited lung consolidation typical of bronchopneumo-
nia, as shown in Fig. 1. Microscopic examination of the 
lesions revealed tracheal and bronchial mucosal edema. 
The cilia and microvilli were identified. Hyperemia, 
inflammatory cell infiltration, mitochondrial swelling, 
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and cristae were also observed. In addition, the local vas-
cular endothelial membranes were damaged.

Genomic statistics of M. ovipneumoniae strains
Relevant information regarding the whole-genome 
sequences of the nine M. ovipneumoniae strains is pre-
sented in Table 1. The N50 values of the nine assembled 
genomes ranged from 46.745 to 471.097 kb. Eighty scaf-
folds were used for each assembly. Moreover, the GC 
content of all strains ranged from 28.74% to 28.96%, 
which is in accordance with the M. ovipneumoniae 

genomes available in the NCBI database (Table S1). In 
addition, the coding genes in each strain accounted for 
more than 1,425 genes, whereas the number of non-cod-
ing genes was less than 41.

Pairwise average nucleotide identity (ANI) values of 
the nine strains and fourteen publicly available M. ovip-
neumoniae genome sequences were analyzed. Two clades 
of microbial strains were identified in the dendrogram 
constructed by clustering pairwise ANI values (Fig.  2). 
Closely related strains from China (YZM, NN–MO, 
TC7, TC5, TC2, BHF6, DH4, FS2, GT20201111, DH1, 

A B
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Fig. 1  Morphology of goat lung tissue. A and B represent cell morphology of goat lung tissue after Mycoplasma ovipneumoniae NN-MO infection. 
C and D represent morphology of goat lung tissue after M. ovipneumoniae BHF6 infection

Table 1  Genomic statistics of 9 Mycoplasma ovipneumoniae genomes sequenced in this study

Strain Number of 
sequences

Total length (bp) CG content (%) Average lengths Average 
length 
(kb)

N50 N50 (kb) Coding gene Non-
coding 
gene

131213NN-MO 43 1,024,299 28.9 23,820.91 23.82 46745 46.745 1447 33

BHF6 9 996,893 28.95 110,765.89 110.77 197056 197.056 1450 35

DH1 19 1,053,909 28.78 55,468.89 55.47 109416 109.416 1532 34

DH4 8 992,882 28.96 124,110.25 124.11 187061 187.061 1429 34

FS2 7 994,476 28.95 142,068 142.07 245050 245.05 1425 34

GT20201111 23 1,053,882 28.74 45,820.96 45.82 87661 87.661 1531 34

GXHX211028 79 1,640,719 28.91 20,768.59 20.77 471097 471.097 2296 40

MSM 35 1,034,546 28.95 29,558.46 29.56 82198 82.198 1473 34

YZM 38 1,131,018 28.79 29,763.63 29.76 65233 65.233 1648 34
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GXHX211028, TC1, TC3, MSM, TC8, and TC4) and one 
strain from France (SC01) formed the first cluster, which 
was distinct from the other clusters (NM2010, USP-
BR2017, 90, 14,811, Y98, and ATCC29419). Moreover, 
the nine strains in this study displayed average ANI val-
ues of over 95.0% compared to other Chinese strains.

Population structure of M. ovipneumoniae strains
To study the population structure of M. ovipneumo-
niae, the core genome SNPs of all 23 M. ovipneumoniae 
genomes were analyzed. A total of 219 potential recom-
bination regions were predicted in the core genome 
of M. ovipneumoniae based on the Gubbins analysis 

(Figure S2). After removing the recombinant regions, 
core genome SNP alignment was performed to evaluate 
the population structure, and two distinct clusters were 
identified (Figure S3). Furthermore, 29,874 non-recom-
binant SNPs were used to build a recombination-free 
phylogenetic tree, which revealed a large phylogenetic 
distance between the two major M. ovipneumoniae clus-
ters (Fig.  3). In addition, closely related isolates from 
China (YZM, NN–MO, TC7, TC5, TC2, BHF6, DH4, 
FS2, GT20201111, DH1, GXHX211028, TC1, TC3, 
MSM, TC8, and TC4) and France (SC01) were identified, 
with comparable degrees of relatedness in the phyloge-
netic tree (Fig.  3). Moreover, this clade was genetically 

Fig. 2  Hierarchical clustering in two dimensions of pairwise average nucleotide identity (ANI) of 23 Mycoplasma ovipneumoniae strains. Pairwise 
ANI values are presented as a heatmap
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distinct from foreign strains 90, ATCC 29419, NM2010, 
14,811, and Y98. These results are in accordance with 
the clustering results based on the ANI values, suggest-
ing that the genetic diversity of M. ovipneumoniae may 
be closely related to the geographical distribution of this 
microorganism.

Pan‑genome analysis of M. ovipneumoniae strains
Pan-genome analysis was performed to explore genetic 
differences based on the distribution of core microbial 
genes. The pan-genome of the 23  M. ovipneumoniae 
strains contained 5,596 genes, including 385 core genes, 
210 soft core genes, and 5,001 accessory genes (1,711 
shell genes and 3,290 cloud genes) (Fig.  4A). The pan-
genomic distribution curve revealed that the number of 
core genes gradually decreased and finally stabilized with 
an increase in the number of genomes analyzed, whereas 
the number of total genes showed an increasing trend 

(Fig. 4B). However, because of the small number of total 
genomes analyzed, it is difficult to judge whether the 
pan-genome of M. ovipneumoniae is open (i.e., whether 
the pan-genome has an infinite size) or closed (i.e., 
whether the pan-genome has a definite size). The distri-
bution of novel and unique genes in M. ovipneumoniae 
was also analyzed. The results showed that the number 
of novel uncharacteristic genes carried by each strain was 
between 100 and 200, and more than 2,000 unique genes 
were detected among the 23 strains (Figure S4).

Virulence and antibiotic resistance gene analysis
Potential virulence factors in M. ovipneumoniae were 
subsequently analyzed, and ten coding genes (group_999, 
group_2540, group_260, group_261, group_262, 
group_264, group_332, group_2053, group_2094, and 
group_2095) were annotated using the VFDB (Table 
S2). Both group_999 and group_2540 were annotated as 
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cilium adhesins, which mainly contributed to the infec-
tion of M. ovipneumoniae in goats, while the others were 
paralog surface adhesins. No antibiotic resistance genes 
were detected in the pan-genome of M. ovipneumoniae 
when annotated using the CARD database.

Carbohydrate utilization
To analyze the functions related to the carbohydrate 
metabolism of M. ovipneumoniae, genes linked to 
carbohydrate-active enzymes (CAZymes) were anno-
tated. Four types of enzyme-related genes, glucosidase 
transferase (GT), glycoside hydrolase (GH), carbohy-
drate lipase (CL), and the carbohydrate-binding module 
(CBM), were found in the pan-genome (Fig. 5). All strains 
carried GH-related (ycjT and group_1595) and GT-
related genes (atpD_2), indicating that M. ovipneumo-
niae possesses a wide range of GH activities. In addition, 
group_2566, which contributes to the CBM, was detected 
in Chinese and French isolates, suggesting that it may be 
a valuable source of CAZymes. However, nagA associated 
with CL was only found in a few strains (Y98, NM2010, 
USP.BR2017, ATCC_29419, GXHX211028, DH1, 
GT20201111, and TC4), demonstrating that M. ovipneu-
moniae strains are generally deficient in CL activity.

Discussion
The pathogenesis of respiratory diseases and related 
infectious pathogens is difficult to establish in goats 
because of interactions between unknown factors 
and similar anatomopathological patterns. It has been 

reported that atelectasis, desquamative pneumonia, 
nodular lymphoid hyperplasia surrounding the bronchi-
oles and vessels, and moderate macrophage exudates are 
present in only 7 of 15 cases of Mycoplasma spp infec-
tion. Additionally, 16 of the tested samples contained 
these lesions and did not show positive results using 
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the microbiological culture technique [21]. Our results 
are consistent with these findings. Therefore, it is nec-
essary to investigate the features of respiratory diseases 
and their etiology to identify the causative agents of lung 
inflammation. We demonstrated that inflammatory cell 
infiltration and vascular lesions are key clinical symp-
toms of M. ovipneumoniae infection in goats. However, 
this is insufficient for the diagnosis of M. ovipneumoniae-
related respiratory diseases.

During the last few decades, WGS-based identification 
and bioinformatics analysis of clinically pathogenic bacte-
ria have become promising and widely used approaches. 
Previously, less discriminatory and inefficient techniques 
such as high-resolution DNA fingerprinting techniques 
(pulsed-field gel electrophoresis, restriction fragment 
length polymorphism, and amplified fragment length 
polymorphism) have been used. In contrast, basic fea-
tures of the genome and ANI calculations based on WGS 
data increase the resolution of microbial classification, 
phylogenetic signals, and other genetic backgrounds 
derived from comparative genomic analysis [22–24]. We 
purified nine Chinese isolates, two of which (BHF6 and 
FS2) exhibited lung consolidation typical of broncho-
pneumonia. In addition, they had a similar genome size, 
average GC content, number of open reading frames, and 
gene organization. The genomes of these nine strains dis-
played high similarity to the reference genome of M. ovi-
pneumoniae, indicating that they were M. ovipneumoniae 
isolates. Phylogenetic trees supported these results and 
suggested that SC01 may have originated from China.

To understand the physiology of M. ovipneumoniae 
isolates and uncover the minimal genes required for sur-
vival, we performed WGS using pan-genomic analysis, 
which exhibited strong dependability and discriminating 
capacity, and was appropriate for epidemiological data 
[25, 26]. Although the core genes of several isolates have 
been identified using large-scale mutagenesis approaches, 
systematic evidence of their genomic background, 
genetic evolution, and biological functions remains 
scarce. The identification of core genes in uncharacter-
ized microorganisms often relies on sequence alignment 
and homology mapping of annotated core genes in the 
reference genomes [27]. In our study, we identified 385 
core and 210 soft-core genes (genes missing in up to 5% 
of all genomes). As the core genes are responsible for the 
major biological functions of M. ovipneumoniae, distin-
guishing between the core and soft-core genes involved 
in pathogenic mechanisms and metabolism is promis-
ing for exploiting specific medicines or other biological 
methods to treat diseases associated with M. ovipneumo-
niae infection.

To date, studies on the virulence factors and induced 
pathogenicity of M. ovipneumoniae have mainly focused 

on glpF, glpK, glpD, hlyA, and hlyC [28]. However, most 
of these genes were found in the pan-genome but were 
not annotated in the VFDB. VFDB annotation identified 
only cilium adhesin and its paralog, surface adhesin, in 
M. ovipneumoniae (Table S2). Usually, cilium adhesin is 
present on the cell surface of Mycoplasma spp. suggest-
ing a critical role in adhesion. Mycoplasma pneumoniae 
colonization is achieved through the interaction between 
its expressed adhesin proteins and sulfated glycolipids 
or sialoglycoprotein molecules in the host respiratory 
epithelium, causing community-acquired pneumonia 
[29, 30]. In M. pneumoniae, the differentiated terminal 
organelle was commonly observed to be pointed at and 
closely related to, the host cell surface; hence, this struc-
ture was commonly designated as an “attachment orga-
nelle.” Although there are many differences between the 
structures of M. pneumoniae and M. ovipneumoniae, M. 
ovipneumoniae adhesion to goat respiratory epithelial 
cells plays a positive role in the progression of pneumo-
nia. Thus, studies on the microbial mechanisms of patho-
genesis are needed to characterize adhesion-mediating 
molecules [31]. Considering the limited annotation of 
virulence factors in M. ovipneumoniae, it is necessary to 
characterize other unknown virulence genes and deter-
mine their true prevalence and mechanism of action 
using transcriptomic and metabolomic methods in future 
investigations.

Owing to the lack of CAZymes, herbivores rely heav-
ily on microbially encoded enzymes to break down cel-
lulose and obtain energy from plant biomass. Although 
the mechanism of action of CAZymes in M. ovipneumo-
niae has rarely been explored, CAZymes strongly contrib-
ute to the metabolism of all sugars in nature, exhibit high 
selectivity, and display catalytic promise in biochemically 
complex environments [32]. Herein, we highlight how 
CAZymes act on the hydrolytic degradation, creation, 
modification, and rearrangement of glycosidic linkages. 
Generally, CBM binds to glycans and polysaccharide lyase 
(PL) enhances the non-hydrolytic cleavage capacity for 
glycosidic bonds when GT catalyzes the biosynthesis of 
complex carbohydrate molecules from activated sugars 
[33, 34]. In addition, most CAZymes establish these reac-
tions with strong specificity for structurally diverse sets of 
donor substrates. In contrast, acceptors have weaker speci-
ficity (monosaccharides, oligosaccharides, peptides, DNA, 
or lipids) and their binding subsites contribute to the gly-
cosidic bond type in the products [35, 36]. For example, 
the one linkage/one enzyme concept in the glycan bio-
synthesis pathway demonstrates that GT facilitates the 
biosynthesis of glycosidic bonds with high regio- and ste-
reoselectivity [32]. In our study, the hydrolytic degradation 
of glycosidic linkages in M. ovipneumoniae was mostly 
catalyzed by ycjT and group_1595, whereas the synthesis 
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of glycosidic bonds was mostly catalyzed by atpD_2. In 
addition, the Chinese isolates carrying group_2566 showed 
a stronger ability to recognize and bind glycans. Carbohy-
drates for uptake and metabolism play a significant role in 
the production of energy and proteins for a constant sup-
ply of variable-surface membrane lipoproteins. Disorders 
in carbohydrate metabolism promote the escape of Myco-
plasma spp. from the host humoral defense system, trans-
mission, and proliferation in a variety of locations within 
the host [37].

Conclusion
Recent studies have suggested that M. ovipneumoniae is a 
major cause of pneumonia in goats and sheep. In the pre-
sent study, we characterized the pathogenicity of M. ovi-
pneumoniae in goats. We also characterized the genetic 
diversity of M. ovipneumoniae and obtained the core 
genes and related functional annotations for this species. 
In future studies, we will investigate molecular detection 
technology, pathogenic mechanisms, and specific drug 
applications of M. ovipneumoniae.

Materials and methods
Species isolation and identification
Epidemiologic investigations were conducted on goat 
farms throughout Guangxi between 2013 and 2021. 
Nasal swabs were collected from live goats whose res-
piratory health status was determined by physical exami-
nation of vital parameters and respiratory tract signs.
Culture-based assays of pathogenic microorganisms were 
performed using MacConkey agar plates (Oxoid Ltd., 
Basingstoke, United Kingdom), blood agar plates (Oxoid 
Ltd., Basingstoke, United Kingdom), and chocolate agar 
plates (Difco, BD, Le Pont de Claix, France), according to 
the manufacturer’s instructions. Further identification of 
individual colonies was performed via PCR and Sanger 
sequencing using universal 16S rRNA gene primers 
(27F/1492R:5’-AGA​GTT​TGATCMTGG​CTC​AG-3’/5’-
CGG​TTA​CCT​TGT​TAC​GAC​TT-3’).

Through opening the thoracic and abdominal cavi-
ties, lung tissue (n = 3, Nanning Shitang Sheep Station, 
Mashan Lidang Sheep Station and Yizhou Sheep Station) 
were obtained from three goats that died from respira-
tory diseases. This experiment was conducted in accord-
ance with the ethical principles of experimental animal 
welfare of the Committee on Experimental Animal Ethics 
of the Institute of Veterinary Guangxi Zhuang Autono-
mous Region. After lung tissue (less than 0.5  cm thick) 
was fixed in pre-chilled 4% paraformaldehyde (pH 7.2) 
at 4 ℃ for 24 h, the paraffin sections were prepared and 
stained with hematoxylin and eosin. The pathological 
morphology of goat lungs was observed using a Nikon 
ECLIPSE E200 microscope (Nikon Corp., Tokyo, Japan).

Subsequently, the above lung tissue and nasal swabs 
(n = 6, Beihai Baishan Sheep Station, Dahua Baidan 
Sheep Station, Fusui Guangyang Sheep Station, Gaotian 
Sheep Station and Hengxian Sheep Station) were applied 
for further research. To cultivate and isolate Myco-
plasma spp., 0.45-µM filtered material was inoculated 
onto SP-4 agar plates and liquid SP-4 media at 37 °C for 
15 days in aerobiosis. Colonies resembling fried eggs, fer-
mented glucose, or hydrolyzed arginine were identified 
as the genus Mycoplasma. PCR was performed to con-
firm the presence of M. ovipneumoniae. Two fragments 
were amplified by PCR assay using M1A1:5ʹ-CGA​AAC​
TCC​CGT​GGA​TGC​TA-3ʹ/5ʹ-TTC​AAC​AAT​TTG​CGG​
ATT​AA-3ʹ, and M1B1:5ʹ-CGG​AGC​CAT​AAA​GTT​GTA​
AT-3ʹ/5ʹ-CGA​AAC​TCC​CGT​GGA​TGC​TA-3ʹ as specific 
primers. For M. ovipneumoniae identification, Sanger 
sequencing and sequence alignments were performed to 
identify M. ovipneumoniae.

Genomic DNA extraction and WGS
DNA was extracted and purified from overnight cul-
tures (MRS broth) of M. ovipneumoniae using a GeneJET 
Genomic DNA Purification Kit (Thermo Fisher Scien-
tific, Cleveland, OH, USA) according to standard meth-
ods. And genomic DNA was transferred from the column 
into sterile ddH2O, and stored at − 20 °C.

Before sequencing, DNA was visualized on a 1% aga-
rose gel (w/v), and DNA quantification was performed on 
the Qubit® Fluorometer 3.0 (Invitrogen, Carlsbad, CA, 
USA). Illumina libraries were constructed on a Hamilton 
Microlab STAR platform (Hamilton, Bonaduz, Switzer-
land), followed by quantification using the Kapa Library 
Quantification Kit (Illumina, San Diego, CA, USA). WGS 
was performed using the HiSeq platform (Illumina, San 
Diego, CA, USA). In the final step, raw sequencing data 
were downloaded for genome assembly and bioinfor-
matic analyses.

Genome assembly
Before genome assembly, adapters were excluded 
using Trimmomatic (version 0.36) with a sliding cut-
off of Q15 [38]. Subsequently, complete contigs were 
assembled de novo using SPAdes (version 3.6.2) [39], 
followed by quality assessment using the QUAST tool 
[40]. For M. ovipneumoniae identification, pairwise 
average nucleotide identity (ANI) was calculated using 
the Pyani tool and visualized in a heatmap using the 
Heatmaply program [41].

Population genetic structure and phylogenetic analysis
Before PARSNP analysis, the ATCC 29419 genome was 
used as a reference. Rapid core-genome alignment and 
visualization were performed using the Parsnp analytical 
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tool [42]. The Gubbins software was used for putative 
recombination detection and elimination [43]. In addi-
tion, the genetic population structure was inferred using 
BAPS version 6.0 [44], followed by the establishment of 
an SNP-based neighbor-joining phylogenetic tree [45].

Genome properties and pan‑genome analysis
Genome properties (open reading frame, location, and 
function) were determined using the Prokka software 
(version 1.11) [46]. In addition, the visualization and 
exploration of pan-genome data were processed based 
on gff and FASTA files using Roary software with a 
90.0% identity threshold [47]. Moreover, virulence 
factors were screened against the Virulence Factor 
Database (http://​www.​mgc.​ac.​cn/​VFs/) [48], but also 
antibiotic resistance genotypes were predicted using 
ResFinder (https://​cge.​cbs.​dtu.​dk/​servi​ces/​ResFi​nder/) 
[49], Comprehensive Antibiotic Resistance Database 
(https://​card.​mcmas​ter.​ca/) [50], and ARG-ANNOT 
databases [51].
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