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Abstract 

Background It has been demonstrated in the literature that a dysbiotic microbiome could have a negative impact 
on the host immune system and promote disease onset or exacerbation. Co-occurrence networks have been widely 
adopted to identify biomarkers and keystone taxa in the pathogenesis of microbiome-related diseases. Despite 
the promising results that network-driven approaches have led to in various human diseases, there is a dearth 
of research pertaining to key taxa that contribute to the pathogenesis of lung cancer. Therefore, our primary goal 
in this study is to explore co-existing relationships among members of the lung microbial community and any poten-
tial gained or lost interactions in lung cancer.

Results Using integrative and network-based approaches, we integrated four studies assessing the microbiome 
of lung biopsies of cancer patients. Differential abundance analyses showed that several bacterial taxa are different 
between tumor and tumor-adjacent normal tissues (FDR adjusted p-value < 0.05). Four, fifteen, and twelve signifi-
cantly different associations were found at phylum, family, and genus levels. Diversity analyses suggested reduced 
alpha diversity in the tumor microbiome. However, beta diversity analysis did not show any discernible pattern 
between groups. In addition, four distinct modules of bacterial families were detected by the DBSCAN cluster-
ing method. Finally, in the co-occurrence network context, Actinobacteria, Firmicutes, Bacteroidetes, and Chloroflexi 
at the phylum level and Bifidobacterium, Massilia, Sphingobacterium, and Ochrobactrum at the genus level showed 
the highest degree of rewiring.

Conclusions Despite the absence of statistically significant differences in the relative abundance of certain taxa 
between groups, it is imperative not to overlook them for further exploration. This is because they may hold pivotal 
central roles in the broader network of bacterial taxa (e.g., Bifidobacterium and Massilia). These findings emphasize 
the importance of a network analysis approach for studying the lung microbiome since it could facilitate identify-
ing key microbial taxa in lung cancer pathogenesis. Relying exclusively on differentially abundant taxa may not be 
enough to fully grasp the complex interplay between lung cancer and the microbiome. Therefore, a network-based 
approach can offer deeper insights and a more comprehensive understanding of the underlying mechanisms.
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Background
Lung cancer is a global challenge causing over 1.3 mil-
lion deaths per year. The histology of lung cancer is het-
erogeneous, with different patterns of progression and 
prognosis, and is usually diagnosed in advanced stages, 
with a survival rate of about five years after diagno-
sis [1]. Therefore, identifying early-stage patients with 
a higher risk of disease recurrence can increase the 
survival rate of lung cancer [2]. As demonstrated, the 
microbiome populations residing in lower airways may 
get imbalanced in the structure and composition (dys-
biosis state) during respiratory diseases such as Asthma, 
COPD, and lung cancer [3]. Accordingly, metagenomic 
studies have demonstrated an association between lung 
microbiome dysbiosis and lung cancer [4, 5]. Cameron 
et  al. suggested potential bacterial biomarkers for lung 
cancer in sputum microbiome samples and showed 
that Streptococcus viridans and Granulicatella adiacens 
were significantly higher in lung cancer [1]. Yu et  al. 
reported higher levels of Thermus and lower levels of 
Ralstonia in tumor tissues from patients with advanced 
lung cancer compared with non-malignant lung tissues, 
suggesting an essential role for these bacteria in lung 
cancer progression [4]. In addition, Lee et  al. detected 
an increased abundance of Veillonella and Megasphaera 
in bronchoalveolar lavage fluid specimens of lung can-
cer patients [6]. These changes in the microbiome com-
munity may reflect biochemical changes in the lungs of 
cancer patients, which are associated with an increased 
anaerobic environment and altered metabolism of pyri-
doxal/polyamine and nitrogen.

Most of the prior studies have mainly focused on the 
differentially abundant taxa, and whether these taxa 
play a key role in lung cancer development or progres-
sion remains to be answered. To fully understand the 
contributions of these taxa to lung cancer, it is crucial 
to understand the structure of the lung microbial com-
munity through co-occurrence networks [7], in which 
nodes represent bacterial taxa and edges represent 
the interdependent relationships amongst them [8]. 
Accordingly, new studies have used a network analysis 
approach to visually represent the interrelations among 
lung microbial community members. This approach 
can help to identify key taxa and shed light on the con-
tribution of specific taxa to the functioning of a par-
ticular ecosystem. They try to find the behavior of the 
microbiome as an integrated network rather than in 
an individual manner in various diseases. For example, 
Greenblum et al. conducted a study that integrated gut 
microbiome metagenomic data for obesity and inflam-
matory bowel disease (IBD) to create community-
level metabolic networks. Their findings showed that 

differences in gene-level and network-level topology 
associated with these two diseases tend to occur at the 
periphery of the metabolic network and are enriched 
for topologically derived metabolic inputs. They also 
indicated that the microbiome of obese individuals is 
less modular [9]. Layeghifard et al. introduced an unsu-
pervised approach to identify key taxa in the sputum 
microbiome of cystic fibrosis patients. They defined key 
taxa based on relative abundance, prevalence, and co-
occurrence network interconnectedness. They found 
that taxa with the highest network interconnectedness 
tracked changes in patient health significantly better 
than taxa with the highest abundance or prevalence. In 
addition, they found that network interconnectedness 
most strongly delineated the taxa among clinical states 
and that anaerobic bacteria were over-represented dur-
ing cystic fibrosis exacerbations [10]. Einarsson et  al. 
also performed a co-occurrence network analysis of 
the microbiome of the human airways. They revealed a 
core community structure with several key microbiome 
taxa critical to health and disease [11].

Conflicting results from existing studies in microbi-
ome research can often be attributed to factors such as 
the personalized nature of the microbiome, small sample 
sizes, and variations across studies platforms. Research-
ers should consider combining multiple datasets to over-
come these challenges and achieve more robust and 
reliable outcomes. In the previous study, we performed 
a meta-analysis on several lung microbiome datasets 
to integrate and evaluate the alterations of the lung 
microbiome in lung cancer patients [12]. In this study, 
we applied an integrative and systems biology approach 
to provide a more comprehensive understanding of the 
interaction between the lung microbiome and lung can-
cer. By integrating the same sets of 16S rRNA sequenc-
ing data on lung biopsies from our previous study, our 
analysis aimed to compare the diversity indices and clus-
tering properties of the lung microbiome between can-
cer and non-cancer biopsy samples and reconstruct the 
co-occurrence network for the lung microbial commu-
nity in lung cancer.

Results
Datasets characteristics
The systematic search and study selection process, 
along with exclusion criteria, were summarized in 
Fig.  1. The main characteristics of the included stud-
ies are presented in Table  1. In all the included stud-
ies, lung biopsy specimens have been used, which were 
taken during surgical or bronchoscopy procedures. 
Lung tumor tissues were matched with tumor-adja-
cent normal tissues (located as far as possible with no 
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evidence of tumor nuclei) of the same patient. As can 
be seen from the table, we restricted our study to inte-
grating studies with a similar design and experimental 
procedure. The included studies were homogeneous in 
terms of the amplified hypervariable region of the 16S 
rRNA gene, sequencing platform, and age. The raw data 

of the studies mentioned above were then processed 
using a standard pipeline to minimize inter-study batch 
effects. The case group included tumor tissues related 
to two subtypes of NSCLC, including adenocarcinoma 
and squamous cell carcinoma; tumor-adjacent normal 
tissues were considered the control group.

Fig. 1 Systematic search process

Table 1 Characteristics of included studies

Case: lung tumor tissues, Control: tumor-adjacent normal tissues, NA: Not Available, * Five regions of the 16S rRNA gene were amplified and sequenced on Illumina 
HiSeq, MiSeq, or NextSeq. ** Dataset 2 (published) and Dataset 3 (unpublished) were separately available in SRA. With further assessment, we noticed both datasets 
had been taken from the same population. Therefore, we omitted the repeated samples and considered these two separate studies

Datasets Accession 16S HV region Sequencing platform Case (No.) Control (No.) Age (YO.) References

1 PRJNA624822 * * 245 231 40–90 [13]

2 PRJNA303190 V3–V4 Illumina MiSeq 50 207 40–80 [4]

3 PRJNA327258 NA Illumina MiSeq 27 26 40–80 **

4 PRJNA647170 V3–V4 Illumina MiSeq 25 24 52–72 [14]

347 488
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Taxonomic diversity in lung cancer
To determine the common microbiome composition of 
four selected datasets, the relative frequency tables of 

all datasets were merged and analyzed based on shared 
microbial taxa at the phylum, family, and genus levels. The 
results for the genus level have been presented in Fig. 2. 

Fig. 2 Scaled relative frequency of shared genera across different datasets. The heatmap displays the variation in the microbiome composition 
at the genus level. The average relative frequency of the shared genera has been shown. D1: Dataset 1, D2: Dataset 2, D3: Dataset 3, D4: Dataset 4
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Further results for phylum and family levels are shown in 
Additional file 1.

In the first phase of diversity analyses, we examined 
alpha diversity, which focuses on diversity within a sam-
ple. The calculated Shannon and Simpson indices were 
visualized using Boxplots. Figures 3, 4 and 5 provide the 
resulting Boxplots at various taxonomic levels. A Wil-
coxon Rank Sum Test was used to further investigate 
if sample type (tumor vs. tumor-adjacent normal tis-
sue) is associated with the variation of diversity indices. 
As shown in Fig. 3, a statistically significant difference 
between the two groups was more evident at the phy-
lum level. Family and genus levels also displayed some 
differences in alpha diversity between groups. These 
results suggest a reduced diversity in tumor tissues 
compared to normal tissues. In the second phase and 
to investigate how the overall taxonomic composition 

of the lung microbiome differs between groups, we 
estimated beta diversity, which is quantified based 
on dissimilarities among samples. We employed the 
Bray–Curtis index as a commonly used beta diversity 
measure for all pairs of samples based on the relative 
abundance values. Since we are dealing with high-
dimensional data, we need to retain a limited num-
ber of dimensions (usually the first two or three) for 
data visualization. Principal Coordinates Analysis was 
adopted for this purpose, and according to its results, 
Figs. 6, 7 and 8, no distinct pattern was observed across 
different taxonomic levels between case and control 
groups, suggesting the disease may not dramatically 
alter the structure of the lung microbial community. To 
test whether the group variable could explain the varia-
tion in microbiome composition between the two com-
munities, we performed a PERMANOVA test, and the 

Fig. 3 Alpha diversity at the phylum level. A Observed phyla B Shannon diversity index (aka Shannon–Wiener index) C Simpson index. Boxplots 
summarize estimated alpha diversity based on different metrics within each group and show differences between cases and controls. Asterisks 
represent a significant result from the Wilcoxon Rank Sum Test. Case: lung tumor tissues, Control: tumor-adjacent normal tissues, ***p < 0.001
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results suggested that the microbiome composition is 
significantly different between groups. However, closer 
inspection of the results shows that the two groups 
have significantly different multivariate dispersions. In 
other words, the assumption of variance homogeneity 
between groups does not hold, partly explaining the 
PERMANOVA test results.

Additionally, the results of diversity for each dataset 
are as follows. For the alpha diversity analysis: dataset 
1 did not show any significant difference between the 
case and control groups at any taxonomic levels. In 
dataset 2, only at the genus level, the Simpson index 
showed a statistically significant difference indicating 
an increase in alpha diversity in the case group. In data-
set 3, only at the family level, the richness of observed 

families was significantly different between the two 
groups, suggesting an increase in the richness of the 
case group. Finally, in dataset 4, the Shannon and Simp-
son indices were significantly different between the two 
groups at all three taxonomic levels (phylum, family, 
and genus), indicating a decrease in the alpha diversity 
of the case group.

Furthermore, the results of beta diversity analysis did 
not show any significant differences in the microbial 
composition between the case and control groups at the 
phylum level. These differences were only significant in 
dataset 3 at the family and genus levels. All the results of 
diversity analyses in individual datasets, along with their 
corresponding plots, have been presented in Additional 
file 2.

Fig. 4 Alpha diversity at the family level. A Observed families B Shannon diversity index (aka Shannon–Wiener index) C Simpson index. Boxplots 
summarize estimated alpha diversity based on different metrics within each group and show differences between cases and controls. Asterisks 
represent a significant result from the Wilcoxon Rank Sum Test. Case: lung tumor tissues, Control: tumor-adjacent normal tissues, *p < 0.05, 
***p < 0.001
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Differentially abundant taxa and detected clusters
The statistically significant differences (FDR adjusted 
p-value < 0.05) between cases and controls at phylum, 
family, and genus levels were summarized in Table 2. The 
two groups showed the differential abundance of sev-
eral bacterial phyla (n = 4), families (n = 15), and genera 
(n = 12). The DBSCAN clustering method was imple-
mented at the family level. This method could detect four 
distinct modules of bacterial families shown in Table  3. 
Only 24 nodes were included in the clusters, but the rest 
of the nodes in the network were not clustered. DBSCAN 
could not detect any modules at the genus level.

Rewired Co‑occurrence networks
We analyzed differential co-occurrence networks at differ-
ent taxonomic levels. The rewired network at the phylum 

level is shown in Fig.  9. The green edges represent the 
gained interactions, and the dashed red edges represent 
the lost interactions in the transition from health to the 
disease state. Firmicutes and Actinobacteria revealed the 
highest rewiring degree, in which Firmicutes had three 
gained and two lost interactions. In contrast, Actinobac-
teria had two gained and three lost interactions in lung 
cancer compared to the normal condition. At the phy-
lum level, we did not detect any changed directions. At 
the genus level (Fig.  10), we could detect 53 nodes and 
373 significant rewired interactions. The green edges rep-
resent the gained interactions, and the dashed red edges 
represent the lost interactions in transitioning from health 
to disease. Massilia, Bifidobacterium, Sphingobacterium, 
and Ochrobactrum had the highest rewiring degree.

Fig. 5 Alpha diversity at the genus level. A Observed genera B Shannon diversity index (aka Shannon–Wiener index) C Simpson index. Boxplots 
summarize estimated alpha diversity based on different metrics within each group and show differences between cases and controls. Asterisks 
represent a significant result from the Wilcoxon Rank Sum Test. Case: lung tumor tissues, Control: tumor-adjacent normal tissues, *p < 0.05, 
***p < 0.001
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Furthermore, Massilia, Bifidobacterium, and Sphingob-
acterium revealed the highest closeness in the differential 
co-occurrence network. We did not detect any changed 
directions at the genus level. The result obtained at the 
family level is presented in Additional file 3, in which we 
could detect 70 nodes and 556 significant rewired inter-
actions. Similarly, the green edges represent the gained 
interactions, the dashed red edges represent the lost 
interactions, and the dashed blue edges represent the 
changed directions in the transition from health to the 
disease state. The direction of the interactions between 
two pairs of bacteria (Methylobacteriaceae and Oxalo-
bacteraceae & Bacillaceae and Bacteroidaceae) have 
changed in the disease state compared with the normal 
condition.

The characteristics and indices of network nodes at 
the phylum and genus levels were determined. Accord-
ing to the degree index and the obtained results, Actino-
bacteria (with a degree of 5 and betweenness centrality 
of 0.348), Firmicutes (with a degree of 5 and between-
ness centrality of 0.239), Bacteroidetes (with a degree of 
4 and betweenness centrality of 0.204), and Chloroflexi 
(with a degree of 4 and betweenness centrality of 0.309) 
are the most critical nodes in the phylum-level network, 
and Bifidobacterium (with a degree of 21 and between-
ness centrality of 0.0421), Massilia (with a degree of 
21 and betweenness centrality of 0.0263), Sphingob-
acterium (with a degree of 20 and betweenness cen-
trality of 0.0287), and Ochrobactrum (with a degree of 
20 and betweenness centrality of 0.0215) are the most 

Fig. 6 Beta diversity at the phylum level. A PCoA plot based on Bray–Curtis dissimilarity shows the differences in the lung microbiome composition 
between cases and controls. Each dot represents the microbiome of a sample, and asterisks indicate a significant result from PERMANOVA. 
B Boxplots show dispersion within and between groups. Asterisks denote a significant result from ANOVA. Case: lung tumor tissues, Control: 
tumor-adjacent normal tissues, *p < 0.05, ***p < 0.001
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critical nodes in the genus-level network. The results of 
the most important hubs are presented in Table 4. The 
complete details of the network analysis can be found in 
Additional file 4.

Discussion
Although it is worthwhile to identify microbial taxa 
whose abundance undergoes a significant change in 
the disease state, it does not provide further informa-
tion regarding how these differentially abundant taxa 
interact with other microbial community members. A 
taxon may not be in abundance, yet it may play a cen-
tral role in the ecological structure and function of 
the microbial community for the detection and treat-
ment of respiratory diseases. In the previous study, 

we evaluated the alterations of the lung microbiome 
in lung cancer [12]. Here we tried to merge the same 
datasets to determine the microbiome diversity and 
conduct a network-based analysis of the lung microbi-
ome in lung cancer.

Our diversity analyses suggested a decreased alpha 
diversity in lung cancer. Additionally, we did not find a 
marked difference between the two groups in the taxo-
nomic composition (beta diversity). Different stud-
ies reported different alpha and beta diversity results in 
lung cancer, including increased alpha diversity [15, 16], 
decreased alpha diversity [17, 18], increased beta diver-
sity [19, 20], decreased beta diversity [17, 21, 22], and no 
diversity changes [21, 23]. Overall, these results indicate 
that there is still no definite consensus about the diversity 

Fig. 7 Beta diversity at the family level. A PCoA plot based on Bray–Curtis dissimilarity shows the differences in the lung microbiome composition 
between cases and controls. Each dot represents the microbiome of a sample, and asterisks indicate a significant result from PERMANOVA. 
B Boxplots show dispersion within and between groups. Asterisks denote a significant result from ANOVA. Case: lung tumor tissues, Control: 
tumor-adjacent normal tissues, ***p < 0.001
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of the lung microbiome composition in lung cancer. One 
of the advantages of the included studies is that they all 
used lung biopsies as the best clinical sample for examin-
ing the lower respiratory tract microbiome with minimal 
contamination by the upper respiratory tract microflora. 
Our previous meta-analysis showed decreased rela-
tive abundance of Actinobacteria (at the phylum level), 
Corynebacteriaceae and Halomonadaceae (at the family 
level), and Corynebacterium, Lachnoanaerobaculum, and 
Halomonas (at the genus level) in lung cancer patients. 
The co-occurrence network analyses here showed that 
Actinobacteria (with a degree of 5 and betweenness cen-
trality of 0.348) and Firmicutes (with a degree of 5 and 
betweenness centrality of 0.239) are the most important 
nodes in the phylum-level network, and Bifidobacterium 

(with a degree of 21 and betweenness centrality of 
0.0421), Massilia (with a degree of 21 and betweenness 
centrality of 0.0263), Sphingobacterium (with a degree of 
20 and betweenness centrality of 0.0287), and Ochrobac-
trum (with a degree of 20 and betweenness centrality of 
0.0215) are the most important nodes in the genus-level 
network. Actinobacteria had a significant role in both our 
previous meta-analysis and the current study. In our pre-
vious study, Actinobacteria was found to be differentially 
abundant between groups, while in the current study, it 
emerged as the most important node of the network at 
the phylum level with a degree of 5 and betweenness cen-
trality of 0.348. However, most other taxa exhibited no 
such relationship. This suggests that other factors beyond 
differential abundance may play a role in determining 

Fig. 8 Beta diversity at the genus level. A PCoA plot based on Bray–Curtis dissimilarity shows the differences in the lung microbiome composition 
between cases and controls. Each dot represents the microbiome of a sample, and asterisks indicate a significant result from PERMANOVA. 
B Boxplots show dispersion within and between groups. Asterisks denote a significant result from ANOVA. Case: lung tumor tissues, Control: 
tumor-adjacent normal tissues, *p < 0.05, ***p < 0.001



Page 11 of 19Najafi et al. BMC Microbiology          (2023) 23:182  

the significance of different taxa within the microbi-
ome. Furthermore, we observed that some connections 
between taxa were lost, and new connections were made 
in the disease state. Moreover, although in the phylum-
level network, Proteobacteria was not a key node (with 
a degree of 1 and no betweenness centrality), most of 
the important nodes in the genus-level network, includ-
ing Massilia, Ochrobactrum, Pseudoxanthomonas, and 
Sphingobium belong to this phylum.

The relative abundance of Firmicutes and Bacteroi-
detes (specifically the F/B ratio) is considered a cri-
terion for microbiome analyses in several diseases, 
including obesity [24]. The results of the phylum-level 
co-occurrence network showed no interaction (either 

gained or lost) between these two phyla in the dis-
ease state. Actinobacteria, which co-exists with Bac-
teroidetes and OD1 in the absence of the disease, lost 
these interactions and gained two new interactions 
with Firmicutes and Proteobacteria in the disease state. 
Additionally, Firmicutes lost its interaction with Cyano-
bacteria and gained a new co-occurrence relation-
ship with Thermi and TM7 phyla in the disease state. 
Therefore, the increased rate of TM7 and Thermi phyla 
during lung cancer may be somewhat due to a positive 
co-occurrence with Firmicutes. Analogous to Firmi-
cutes, Actinobacteria may be regarded as an important 
network node since these two nodes showed more 
interactions with other nodes. Our study found Massi-
lia and Bifidobacterium as the most important nodes in 
the genus-level co-occurrence network with a degree 
of 21. However, none of these genera showed a signifi-
cant difference in abundance between the two groups. 
A few studies to date have reported Massilia in asso-
ciation with lung cancer. A recent study evaluating lung 
tumor tissue microbiome in lung cancer reported that 
Massilia is more abundant in tumor tissues than in 
normal tissues [25]. According to the mentioned study, 
tumorigenesis may provide a microenvironment that 
promotes the growth of Massilia. Massilia and Sphin-
gobacterium can degrade polycyclic aromatic hydro-
carbons, a well-known carcinogen in cigarette smoke, 
as a major risk factor in lung cancer patients. In addi-
tion, another study also detected Massilia in patients 
with pancreatic cancer [26]. Although the relative 
abundance of Cyanobacteria did not change over the 

Table 2 Significant differences in the relative abundance of bacterial taxa between cases and controls

Phyla (adjusted p‑value) Families (adjusted p‑value) Genera (adjusted p‑value)

Bacteroidetes (0.0002) Weeksellaceae (0.044) Bacteroides (0.030)
Flavobacterium (0.030)Bacteroidaceae (0.044)

Chitinophagaceae (0.004)

Proteobacteria (0.001) Bradyrhizobiaceae (0.0003) Enhydrobacter (0.004)
Methylobacterium (0.006)
Sphingomonas (0.006)
Brevundimonas (0.030)
Herbaspirillum (0.032)

Caulobacteraceae (0.004)

Enterobacteriaceae (0.039)

Alcaligenaceae (0.028)

Methylobacteriaceae (0.031)

Hyphomicrobiaceae (0.005)

OD1 (0.005) - -

Firmicutes (0.017) Staphylococcaceae (0.004) Lactobacillus (0.006)

Lactobacillaceae (0.008)

The corresponding phyla were not statistically significant of the phylum Actinobacteria:
Mycobacteriaceae (0.006)
Nocardioidaceae (0.027)
Micrococcaceae (0.039)
of the phylum Deinococcota:
Deinococcaceae (0.031)

of the phylum Actinobacteria:
Mycobacterium (0.006)
Nocardioides (0.032)
Gardnerella (0.028)
of the phylum Deinococcota:
Deinococcus (0.030)

Table 3 Four modules of bacterial families detected by DBSCAN

Modules Bacterial families

Module A Alteromonadaceae, Oxalobacte-
raceae, Brucellaceae, Aurantimona-
daceae

Module B Veillonellaceae, Coriobacteriaceae, 
Clostridiaceae, Ruminococcaceae, 
Porphyromonadaceae, Paenibacil-
laceae, Flavobacteriaceae, Deinococ-
caceae, Beijerinckiaceae, Rhodo-
bacteraceae, Lachnospiraceae, 
Enterococcaceae, Phyllobacte-
riaceae, Moraxellaceae

Module C Comamonadaceae, Rhodocyclaceae

Module D Thermaceae, Verrucomicrobiaceae, 
Parachlamydiaceae, Legionellaceae
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disease state, its interactions in the network changed 
during the disease, and it gained a new interaction with 
Thermi. Cyanobacteria can produce toxin metabolites 
and increase inflammation in the lung [27]. However, 
the results obtained in this study may be different, and 
Cyanobacteria could potentially play alternative roles 
as an effective node. Although the relative frequency of 
the phylum Verrucomicrobia (including Akkermansia 
spp.) did not significantly change (Table  2), it formed 
co-occurrence interactions with both Chloroflexi and 
Tenericutes in the phylum-level network. Akkermansia 
has an effective role in reducing inflammation by pro-
ducing short-chain fatty acids through the breakdown 
of mucin. Verrucomicrobia and Chlamydiae are sister 
phyla that differ in conserved signature indels (CSIs). 
Interestingly, new connections have been established 
in the network between Verrucomicrobia and two other 
phyla (Tenericutes and Chloroflexi). However, in the 
case of Chlamydiae, its interactions with Firmicutes 

and Bacteroidetes have been lost. We could not find 
any significant difference in the relative abundance of 
Veillonella, Streptococcus, and Prevotella between cases 
and controls, however, Streptococcus and Prevotella 
were found to be important nodes as indicated in the 
genus-level network. OD1 and TM7 are among a large 
group of bacteria known as “Candidate Phyla Radia-
tion” (CPR) bacteria [28]. OD1 has been recently found 
in cystic fibrosis, indicating a potentially important role 
in causing microbiome dysbiosis in the respiratory sys-
tem [29, 30]. TM7 is another CPR phylum with a dem-
onstrated epibiotic parasitic lifestyle. A few species of 
TM7 have been found to be in association with Actino-
bacteria [31, 32]. In the phylum-level co-occurrence 
network, TM7 (with a degree of 1) interacted indirectly 
through Firmicutes with Actinobacteria, suggesting its 
probable feeding on Actinobacteria during the disease 
state. It is still unclear what exact role these phyla play 
in the disease state. Regarding the poor degree of TM7, 

Fig. 9 Rewired co-occurrence network at the phylum level. Nodes represent bacterial phyla, and edges represent the statistically significant 
associations between nodes. The green edges are indicators of gained interactions, and the dashed red edges are indicators of lost interactions 
in the disease state



Page 13 of 19Najafi et al. BMC Microbiology          (2023) 23:182  

it may be a driver node, which needs further research to 
be answered. In addition, our study identified no fam-
ily or genus of OD1, which may be due to the unknown 
identity of most members of this phylum [31].

We found a significant difference in the relative abun-
dance of Bacteroidetes (as an important node in the 
phylum-level network with a degree of 4 and between-
ness centrality of 0.204) between health and disease 
states, as indicated in other lung diseases such as cystic 
fibrosis [10]. Producing anaerobic fermentative acidic 
products such as short-chain fatty acids can result in 
airway inflammation, tissue damage, and airway remod-
eling [10]. Although no significant difference was seen 
in the relative abundance of Comamonadaceae, it was 
found in a distinct module along with Rhodocyclaceae 
as the result of the DBSCAN clustering algorithm sug-
gested. They are closely related to acetate-utilizing 
denitrifiers families that are probably involved in deni-
trification. In another study, the Comamonadaceae 
family has been associated with airway hyper-reactivity 
in asthma patients [33].

The clustering of microbiome taxa is as impor-
tant as differential abundance and diversity analyses. 
Accordingly, several microbiome studies have used the 

DBSCAN clustering method due to some of its features 
[34]. Specifically, the DBSCAN algorithm requires two 
parameters: 1) the radius of the circle, which speci-
fies the neighborhood or region to check the density, 
and 2) the minimum number of features or data points 
required inside that circle. Since metagenomics data 
are considered high-dimensional with multiple noise 
and outliers, the abovementioned features make this 
algorithm particularly suitable for microbiome data 
analysis. Unfortunately, we could not sufficiently inter-
pret the results obtained by DBSCAN, which may be 
due to the lack of annotation servers to help us pro-
vide further information about these modules. If such 
servers are enriched, a better understanding of the 
metabolic commonalities of these bacteria and their 
association with lung cancer could be acquired. As 
mentioned earlier, one of the advantages of this study 
is that it is based on the lung biopsy specimen, which 
best represents the respiratory microbiome. How-
ever, the study is limited by the lack of information on 
patients’ metadata. The importance of this limitation 
lies in the fact that distinguishing between the two 
subtypes of NSCLC could have affected the final pic-
ture of the lung microbial community in the disease 

Fig. 10 Rewired co-occurrence network at the genus level. Nodes represent bacterial genera, and edges represent the statistically significant 
associations between nodes. The green edges are indicators of gained interactions, and the dashed red edges are indicators of lost interactions 
in the disease state
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state since the composition of the lung microbiome 
may be unique in each of these subtypes. In conclu-
sion, we tried to determine how interactions of the 
lung microbiome members change in the disease state 
and examine the respiratory microbiome using a com-
bination of integrative and network-based approaches. 
As a valuable finding, we observed that the differen-
tially abundant taxa did not necessarily play a central 
role in the co-occurrence network. Several genera 
(e.g., Bifidobacterium and Massilia) appeared in the 
network with key roles, while their relative abundance 
was not significantly different in health and disease 
states. These findings may provide new insights into 
the identification of key members of the lung micro-
bial community in the context of lung cancer, under-
scoring the importance of further research to advance 
the understanding of their functions and interactions.

Conclusions
The present study had two primary aims. Firstly, we 
integrated several metagenomic studies on lung cancer 
to achieve more robust results regarding changes in the 

relative abundance of taxa and diversity indices of the 
lung microbiome content in patients with NSCLC. We 
adopted a standardized approach whereby raw sequence 
data in each study were processed into relative abundance 
data independently before integrating them. This method 
was preferred due to its ability to mitigate the impact of 
potential technical variations across studies while ensur-
ing the comparability of different datasets. Our analyses 
showed significant differences in the relative abundance 
of bacterial taxa at different taxonomic levels and sug-
gested reduced alpha diversity in the tumor microbiome 
compared to normal controls. However, considering the 
inconsistencies across microbiome studies, there is still 
no conclusive evidence regarding the diversity of the lung 
microbiome in lung cancer. Secondly, we attempted to 
evaluate the co-existing relationships among the com-
munity members. The findings of this study suggest that 
while Proteobacteria did not appear to play a significant 
role in the broader network of bacterial phyla, several 
important nodes in the genus-level network (e.g., Massi-
lia, Ochrobactrum, Pseudoxanthomonas, and Sphingo-
bium) belong to this phylum. This finding highlights the 

Table 4 Characteristics of the most importantnodes at phylum and genus levels

Level Degree Betweenness 
Centrality

Closeness Centrality Clustering 
Coefficient

Neighborhood 
Connectivity

Genus

 Bifidobacterium 21 0.042161 0.606383 0.22381 13.71429

 Massilia 21 0.026314 0.6 0.333333 15.2381

 Sphingobacterium 20 0.028788 0.606383 0.284211 15.1

 Ochrobactrum 20 0.021511 0.587629 0.294737 15.45

 Pseudoxanthomonas 19 0.037796 0.6 0.25731 14.10526

 Gardnerella 19 0.028166 0.587629 0.251462 14.47368

 Sphingobium 19 0.027283 0.587629 0.274854 14.84211

 Abiotrophia 19 0.022107 0.575758 0.263158 15.05263

 Atopobium 18 0.03409 0.564356 0.24183 13.77778

 Parvimonas 17 0.021138 0.57 0.205882 13.94118

 Granulicatella 17 0.018293 0.575758 0.286765 14.94118

 Neisseria 16 0.02016 0.57 0.241667 15.375

 Porphyromonas 16 0.019818 0.57 0.275 15.125

 Rhodococcus 16 0.018362 0.57 0.291667 14.5

 Deinococcus 16 0.015364 0.564356 0.383333 15.25

 Arthrobacter 16 0.013134 0.553398 0.308333 15.625

Phylum

 Actinobacteria 5 0.348718 0.538462 0 3

 Firmicutes 5 0.239927 0.466667 0.1 2.8

 Bacteroidetes 4 0.204396 0.518519 0 3.5

 Chloroflexi 4 0.309524 0.482759 0 2.75
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need to examine these specific bacterial genera more 
closely to better understand their potential role in the 
pathogenesis of lung cancer. Furthermore, it is impor-
tant to note that certain taxa that exhibit no statistically 
significant differences between groups should not be 
dismissed from further investigation, as they may hold 
central roles within the network. For instance, Actinobac-
teria and its genus Bifidobacterium have been found to 
play crucial roles in the co-occurrence networks despite 
not showing significant group differences. Interestingly, 
of the four most important microbial nodes at the genus 
level (e.g., Bifidobacterium, Massilia, Sphingobacterium, 
and Ochrobactrum), none were significantly different in 
terms of relative abundance between the two groups but 
appeared to have vital roles in the network. In addition, 
we identified four distinct clusters of closely related bac-
terial families in lung cancer patients. Further research 
could explore how the metabolic commonalities of these 
clustered bacteria are associated with lung cancer and 
whether distinct microbiome compositions are asso-
ciated with specific subtypes or stages of lung cancer. 
These findings may provide insights into identifying the 
key members of the lung microbial community that con-
tribute to the pathogenesis of the disease.

Methods
Systematic literature search
A systematic literature search of PubMed was conducted 
to identify metagenomic studies related to lung cancer. 
The combination of the following keywords was used for 
the systematic search: ((“Lung Cancer” [Title/Abstract]) 
OR (“Pulmonary Neoplasm” [Title/Abstract])) AND 
((“Microbiome” [Title/Abstract]) OR (“Metagenom*” 
[Title/Abstract])), which was last finalized on January 8, 
2021. High-throughput sequencing (aka next-generation 
sequencing (NGS)) repositories, including Sequence 
Read Archive (SRA, NCBI), Gene Expression Omnibus 
(GEO, NCBI), ArrayExpress (EMBL-EBI), and MGnify 
(EMBL-EBI) were also surveyed. The full text of poten-
tially eligible articles was assessed after initial screen-
ing and excluding articles unrelated to the topic. We 
excluded studies that relied on clinical respiratory sam-
ples other than lung biopsy (such as sputum, bronchial 
washings, or bronchoalveolar lavage samples) or lacked 
an accession number, as well as studies that implemented 
a clinical intervention or lacked accompanying clinical 
information. Finally, five case–control studies with avail-
able raw sequence data were selected for quantitative 
analysis. During the process of identifying common taxa 
from the datasets to reconstruct the co-occurrence net-
works, we chose to exclude 14 samples (as the smallest 
dataset with the accession number “PRJNA472758”) in 
the screening step and proceed with the analysis of the 

remaining four datasets, which comprise a total of 835 
biopsy samples.

Regarding integrating these datasets, it is worth noting 
that although these datasets were not wholly homogene-
ous, we combined them based on specific criteria such 
as similar platforms and 16S rRNA PCR protocols. As is 
common in microbiome studies, we utilized relative fre-
quency data instead of raw data. This approach allowed 
us to make comparisons between variables within and 
across datasets.

Quality control and data pre‑processing
The 16S rRNA sequence data  were processed  using 
QIIME 2 (version 2020.6) pipeline [35]. Before running 
the QIIME scripts, the quality of sequences was visual-
ized using the FastQC tool [36], which provides quality 
control checks on raw sequence data and facilitates the 
choice of filtering parameters (e.g., trimming and trun-
cating parameters). All values assigned to the filtering 
parameters can be found in Additional file  5. Once the 
QC checks were completed, demultiplexed paired-end 
reads in FASTQ format were imported into QIIME. The 
reads were then denoised into amplicon sequence vari-
ants (ASVs). The denoising approach was adopted since it 
has a number of advantages over the clustering approach 
and OTU picking process [37]. The DADA2 method 
[38] was employed for the denoising step to remove 
non-biological or low-quality reads, correct sequencing 
errors, and join forward and reverse reads. This proce-
dure resulted in a matrix (aka feature table) representing 
the number of times each feature (ASV) is observed in 
each sample. We completed the taxonomy classification 
step by comparing our ASVs to the Greengenes reference 
database (version 13.8) [39] with known taxonomies to 
identify the bacterial taxa in samples. The whole process 
was repeated for each included dataset. Finally, the four 
resulting feature tables were merged into a single table 
based on which analyses were carried out.

Estimation of diversity indices
Shannon and Simpson diversity indices were used to 
calculate the alpha diversity. The estimated indices 
were then visualized using Boxplots to make compari-
sons between groups. A Wilcoxon Rank Sum Test was 
used to determine whether the two groups’ differences 
were statistically significant. To assess whether or 
not two communities are different in terms of overall 
taxonomic composition, we measured beta diversity 
based on Bray–Curtis dissimilarity, and the resulting 
dissimilarity matrix was then plotted using ordination 
techniques. Specifically, principal coordinate analy-
sis (PCoA) was adopted to visualize the microbiome 
variation between samples. To evaluate whether the 
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Fig. 11 An overall workflow including data acquisition and preparation steps followed by downstream analyses
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sample type has a significant effect on overall lung 
microbiome composition, a permutational multivari-
ate analysis of variance (PERMANOVA) was used. 
Beta-dispersion was quantified to measure  variance 
homogeneity and then subjected  to analysis of vari-
ance (ANOVA) to determine statistical significance. 
Significance levels were set at 5%, and all analyses 
were carried out using R. In particular, the vegan pack-
age [40] was used for diversity quantification, ggplot2 
[41] for data visualization, and stats [42] for statistical 
hypothesis testing. In order to comprehensively inves-
tigate alpha and beta diversity, all relevant analyses 
were undertaken on the merged dataset and the indi-
vidual datasets of each study.

Differential abundance analysis and clustering
To check the normality of the data, we first conducted the 
Shapiro–Wilk test, and as the data were not normally dis-
tributed., the Wilcoxon Rank Sum Test was used to make 
a comparison between cases and controls at phylum, 
family, and genus taxonomic levels. Benjamini-Hochberg 
(BH) method, which controls the false discovery rate 
(FDR), was used to adjust for multiple comparisons. To 
detect the modules at family and genus levels, we imple-
mented the density-based spatial clustering of applica-
tions with noise (DBSCAN) clustering method [43] using 
the dbscan R package (v1.1–5). The Euclidean distance 
was used for clustering.

Construction of Co‑occurrence networks
The differential networks represent the dynamic changes 
between two conditions, such as interactions between 
taxa in transition from normal condition to disease state. 
In this study, to construct the differential co-occurrence 
networks at different taxonomic levels, Pearson corre-
lation coefficients (PCC) were computed for bacterial 
taxa. The analyses were performed at phylum, family, 
and genus levels. The co-occurrence networks were con-
structed for health and disease states, respectively. The 
statistically significant interactions/PCCs were selected 
for the final networks, and the non-significant PCCs were 
transformed to zero.

Moreover, the differential network was reconstructed 
at each taxonomic level to detect the changed interac-
tions (rewiring) in the transition from health to dis-
ease state. In the differential network, if an interaction 
between taxa emerged in cancer while it did not exist 
in the normal condition, we called it a “gained interac-
tion”. In contrast, if an interaction disappeared in can-
cer while it existed in the normal condition, we called 
it a “lost interaction”. Finally, if the sign of interactions 
were changed between normal and cancer, we called 

it a “changed direction”. Important nodes in the net-
work were determined according to the degree index. 
To this end, a cut-off of greater than or equal to 4 was 
considered for the phylum-level network, and a cut-off 
of greater than 15 was considered for the genus-level 
network. All network construction computations were 
implemented in R, and the networks were visualized 
using Cytoscape software [44]. An overall workflow is 
presented in Fig. 11.
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