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Abstract 

Background  Carbapenem-resistant bacteria are an increasing problem in clinical practice; thus, it is important to 
identify β-lactamase inhibitors (e.g., relebactam) that can restore carbapenem susceptibility. We report analyses of 
relebactam enhancement of imipenem activity against both imipenem-nonsusceptible (NS) and imipenem-sus-
ceptible (S) Pseudomonas aeruginosa and Enterobacterales. Gram-negative bacterial isolates were collected for the 
ongoing Study for Monitoring Antimicrobial Resistance Trends global surveillance program. Clinical and Laboratory 
Standards Institute–defined broth microdilution minimum inhibitory concentrations (MIC) were used to deter-
mine the imipenem and imipenem/relebactam antibacterial susceptibilities of P. aeruginosa and Enterobacterales 
isolates.

Results  Between 2018 and 2020, 36.2% of P. aeruginosa (N = 23,073) and 8.2% of Enterobacterales (N = 91,769) 
isolates were imipenem-NS. Relebactam restored imipenem susceptibility in 64.1% and 49.4% of imipenem-NS P. 
aeruginosa and Enterobacterales isolates, respectively. Restoration of susceptibility was largely observed among 
K. pneumoniae carbapenemase-producing Enterobacterales and carbapenemase-negative P. aeruginosa. Relebac-
tam also caused a lowering of imipenem MIC among imipenem-S P. aeruginosa and Enterobacterales isolates 
from chromosomal Ambler class C β-lactamase (AmpC)–producing species. For both imipenem-NS and imipenem-
S P. aeruginosa isolates, relebactam reduced the imipenem MIC mode from 16 μg/mL to 1 μg/mL and from 2 μg/
mL to 0.5 μg/mL, respectively, compared with imipenem alone.

Conclusions  Relebactam restored imipenem susceptibility among nonsusceptible isolates of P. aeruginosa and 
Enterobacterales and enhanced imipenem susceptibility among susceptible isolates of P. aeruginosa and isolates 
from Enterobacterales species that can produce chromosomal AmpC. The reduced imipenem modal MIC values with 
relebactam may result in a higher probability of target attainment in patients.
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Introduction
Carbapenems, members of the class of broad-spectrum 
antibacterial agents known as β-lactams, are an option 
for multidrug-resistant infections that may fail initial 
lines of therapy [1]. Nonsusceptibility to carbapenem 
treatment is frequently due to synergistic resistance 
mechanisms present within certain pathogenic strains 
(e.g., concurrent porin loss, modification of penicillin-
binding proteins, and/or expression of β-lactamases 
[expanded spectrum or Ambler class C (AmpC), includ-
ing Pseudomonas-derived cephalosporinase (PDC)]) [2, 
3]. AmpC can either be encoded by chromosomal genes, 
inducible upon exposure to certain β-lactam antibacte-
rial agents, such as imipenem [4], or plasmid-acquired 
and generally constitutively expressed [5]. Chromosomal 
AmpC is a particularly important mechanism of resist-
ance for numerous β-lactam antibacterial agents in the 
treatment of P. aeruginosa [6]. In addition, among Enter-
obacterales, certain species such as Citrobacter freundii, 
Enterobacter cloacae, Klebsiella aerogenes, and Serra-
tia marcescens encode a chromosomal AmpC enzyme 
whose expression can be de-repressed, either by genetic 
mutation or the presence of an inducing β-lactam anti-
bacterial, such as imipenem [6]. Some carbapenem-
resistant Enterobacterales isolates do not produce a 
carbapenemase, and resistance is due to the presence of 
an extended spectrum β-lactamase or AmpC enzyme in 
combination with loss of expression of outer membrane 
porins. In addition, certain physiologic conditions among 
critically ill patients, such as augmented renal clearance 
(ARC), may lead to underdosing, which can contribute 
to inadequate response to therapy [7, 8]. Some β-lactams 
are particularly susceptible to subtherapeutic treatment 
exposures that may result from ARC, especially among 
isolates with minimum inhibitory concentrations (MIC) 
at the higher end of the susceptibility range, limiting 
their bactericidal activity [7, 8]. Development of suitable 
β-lactam/β-lactamase inhibitor combinations, such as 
imipenem/cilastatin/relebactam (IMI/REL), capable of 
overcoming loss of carbapenem susceptibility and limit-
ing potential for underexposure, is important because of 
the ongoing global threat of multidrug-resistant bacteria 
and the potential for inadequate dosing in critically ill 
patients [7–13].

Relebactam is an inhibitor of Ambler class A and class 
C (e.g., AmpC) β-lactamases that, when combined with 
imipenem, restores imipenem activity against nonsus-
ceptible isolates and enhances imipenem activity, spe-
cifically against susceptible P. aeruginosa isolates [2]. 
In a fixed-dose combination with imipenem/cilasta-
tin, relebactam was approved in the United States and 
European Union for hospital-acquired pneumonia and 
ventilator-associated pneumonia, bacteraemia associated 

with hospital-acquired pneumonia/ventilator-associated 
pneumonia (European Union only), and infections due to 
aerobic gram-negative organisms in adults with limited 
treatment options (e.g., complicated urinary tract infec-
tions [cUTI] and complicated intra-abdominal infections 
[cIAI]) [14, 15].

Previous analysis of in  vitro activity in imipenem-
nonsusceptible (NS) isolates indicated that relebactam 
lowers MICs through inhibition of β-lactamase activity 
[2, 16]. Here, we expand upon previous reports of rel-
ebactam potentiation of imipenem activity against both 
imipenem-NS and imipenem-susceptible (S) P. aerugi-
nosa surveillance isolates and extend this analysis to both 
imipenem-NS and imipenem-S Enterobacterales isolates 
from the ongoing Study for Monitoring Antimicrobial 
Resistance Trends (SMART) global surveillance program 
[16, 17]. The SMART program was initiated in 2002 and 
includes collection and assessment of clinical isolates by 
hospital laboratories for monitoring antibacterial suscep-
tibility profiles of gram-negative bacteria [17].

Results
Between 2018 and 2020, 23,073 P. aeruginosa isolates 
and 91,769 Enterobacterales isolates were collected from 
patients at sites participating in the SMART program. For 
P. aeruginosa, 36.2% (n = 8356) of isolates were classified 
as imipenem-NS according to the Clinical and Labora-
tory Standards Institute (CLSI) breakpoint (MIC > 2  μg/
mL). For Enterobacterales, 8.2% (n = 7493) of isolates 
were classified as imipenem-NS according to the CLSI 
breakpoint (MIC > 1 μg/mL).

Among P. aeruginosa isolates (N = 23,073), the pres-
ence of relebactam increased imipenem susceptibility 
from 63.8% to 87.0% (Fig. 1A) and reduced the MIC50/90 
from 2/32 to 0.5/4  µg/mL; the mode MIC was reduced 
from 2 to 0.5 µg/mL (Table 1). The addition of relebactam 
restored imipenem susceptibility to 5353 (64.1%) of 8356 
imipenem-NS P. aeruginosa isolates (Fig. 1B), reduced the 
MIC50 from 16 to 2 µg/mL and the mode MIC from 16 
to 1 µg/mL (Table 1). Among molecularly characterized 
isolates, carbapenemases were rarely identified (0.2%) 
in imipenem-NS isolates for which relebactam restored 
susceptibility, and metallo-β-lactamases (MBL) were the 
most common carbapenemase (37.3%) in imipenem-NS 
isolates for which relebactam did not restore imipenem 
susceptibility (see Additional file 1). In addition, relebac-
tam enhanced imipenem susceptibility among isolates 
of P. aeruginosa classified as imipenem-S (n = 14,717) by 
causing a shift toward lower MIC values (Fig. 1C), with 
the MIC50/90 decreasing from 1/2  µg/mL for imipenem 
alone to 0.5/0.5  µg/mL for imipenem/relebactam; the 
mode MIC was reduced from 2 µg/mL for imipenem to 
0.5 µg/mL for imipenem/relebactam (Table 1).
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Among all Enterobacterales isolates (N = 91,769), the 
addition of relebactam increased imipenem susceptibility 
from 91.8% to 95.8% (see Additional file 2A) and reduced 
the MIC50/90 from 0.25/1 to ≤ 0.12/0.5  µg/mL (Table  1). 
For the 7493 isolates of Enterobacterales classified as 
imipenem-NS, the addition of relebactam restored imi-
penem susceptibility in 3704 (49.4%) isolates (see Addi-
tional file  2B) and reduced the MIC50 from > 8 to 2  µg/
mL (Table 1). Among molecularly characterized isolates 
for which relebactam restored imipenem susceptibility, 
a majority (52.4%) encoded K. pneumoniae carbapen-
emases (KPCs), whereas MBLs (53.6%) and oxacillinase 
(OXA)-48 family β-lactamases (44.0%) were common 
among imipenem-NS isolates for which relebactam did 
not restore imipenem susceptibility. In addition, relebac-
tam enhanced imipenem susceptibility among isolates of 

Enterobacterales classified as imipenem-S (N = 84,276) 
by inducing a shift toward lower MIC values (see Addi-
tional file 2C), with the MIC50 being reduced from 0.25 
to ≤ 0.12 µg/mL (Table 1).

Because AmpC-producing Enterobacterales spe-
cies have reduced susceptibility to imipenem [2, 19] 
and imipenem is a potent inducer of AmpC expres-
sion [4], we further analysed Enterobacterales species 
as separate subgroups based upon their capacity for 
chromosomal AmpC production. The chromosomal 
AmpC producers were E. cloacae, S. marcescens, K. 
aerogenes, and C. freundii; the nonproducers were E. 
coli, K. pneumoniae, K. oxytoca, and C. koseri. Among 
all isolates from chromosomal AmpC–producing spe-
cies (n = 13,003), the addition of relebactam increased 
imipenem susceptibility from 87.4% to 95.4% (Fig. 2A) 

Fig. 1  Relebactam restores/enhances the activity of imipenem in Pseudomonas aeruginosa isolates. A all (N = 23,073). B imipenem-NS (N = 8356). 
C imipenem-S (N = 14,717). Percentage represents n/N × 100%, where n was the number of isolates meeting the MIC threshold and N was the 
total number of isolates based on the CLSI 2021 clinical breakpoints for imipenem/relebactam (MIC ≤ 2 μg/mL for susceptibility) and subsequently 
categorized as either S (MIC ≤ 2 μg/mL) or NS (MIC > 2 μg/mL) [18]. The dashed line indicates the CLSI 2021 imipenem/relebactam susceptibility 
breakpoints. The arrows indicate mode MIC values. CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; NS, 
nonsusceptible; S, susceptible
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and reduced the MIC50/90 from 0.5/2 to 0.25/1  µg/
mL; in addition, the mode MIC was reduced from 0.5 
to 0.25  µg/mL (Table  1). Among imipenem-NS iso-
lates from chromosomal AmpC–producing species 
(n = 1634), the addition of relebactam restored sus-
ceptibility to 64.2% of isolates (Fig.  2B), reduced the 
MIC50 from 2 to 1  µg/mL, and the mode MIC from 
2 to 0.25  µg/mL (Table  1). Molecular characteriza-
tion of imipenem-NS isolates for which relebactam 
restored imipenem susceptibility found that carbap-
enemases were present in 16.7% of isolates, with KPC 
as the most common carbapenemase, present in 13.7% 
of isolates (see Additional file  1). MBLs were present 
in 59.4% of imipenem-NS isolates for which relebac-
tam did not restore imipenem susceptibility (see Addi-
tional file 1). With regards to imipenem-S isolates from 

chromosomal AmpC–producing species (n = 11,369), 
the addition of relebactam caused a shift towards 
reduced MICs (Fig. 2C) and reduced the MIC50/90 from 
0.5/1 to 0.25/0.5 µg/mL; in addition, the mode MIC was 
reduced from 0.5 to 0.25 µg/mL (Table 1).

Among all Enterobacterales isolates from chromo-
somal AmpC–nonproducing species (N = 78,766) 
(Fig.  3A), the addition of relebactam increased imipe-
nem susceptibility from 92.6% to 95.9% and reduced 
the MIC50/90 from 0.25/1 to ≤ 0.12/0.5  µg/mL (Table  1). 
Among imipenem-NS isolates from chromosomal 
AmpC–nonproducing species (n = 5859), the addition 
of relebactam restored susceptibility to 45.3% of iso-
lates (Fig. 3B) and reduced the MIC50 from > 8 to 2 µg/
mL (Table  1). Molecular characterization of these iso-
lates found that KPC was present in 68.1% of isolates 

Fig. 2  Relebactam restores the activity of imipenem in chromosomal AmpC–producing Enterobacterales isolates. A all (N = 13,003). B 
imipenem-NS (N = 1634). C imipenem-S (N = 11,369). Percentage represents n/N × 100%, where n was the number of isolates meeting the MIC 
threshold and N was the total number of isolates based on the CLSI 2021 clinical breakpoints for imipenem and imipenem/relebactam (both 
MIC ≤ 1 μg/mL for susceptibility) and subsequently categorized as either S (MIC ≤ 1 μg/mL) or NS (MIC > 1 μg/mL) [18]. The dashed line indicates the 
CLSI 2021 imipenem and imipenem/relebactam susceptibility breakpoints. The arrows indicate mode MIC values. Enterobacterales chromosomal 
AmpC–producing species included Enterobacter cloacae, Serratia marcescens, Klebsiella aerogenes, and Citrobacter freundii. AmpC, Ambler class C 
β-lactamase; CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; NS, nonsusceptible; S, susceptible
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for which relebactam restored imipenem susceptibil-
ity; among isolates for which relebactam did not restore 
imipenem susceptibility, 36.1% encoded an OXA-48 
family β-lactamase, 40.0% encoded an MBL, and 11.8% 
encoded both an OXA-48 family β-lactamase and an 
MBL (see Additional file  1). Among imipenem-S iso-
lates from chromosomal AmpC–nonproducing species 
(n = 72,907), the addition of relebactam resulted in a 
small downward shift in MICs (Fig. 3C) and reduced the 
MIC90 from 0.5 to 0.25 µg/mL (Table 1).

The MIC data were also evaluated using imipenem 
European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) susceptibility breakpoints of  for 
Enterobacterales and 4  µg/mL for P. aeruginosa and 
imipenem/relebactam susceptibility breakpoints of 
2  µg/mL for both Enterobacterales and P. aeruginosa 

(Table 1). The summary statistics using either CLSI or 
EUCAST breakpoints were largely similar for P. aerugi-
nosa and Enterobacterales; they were either identical or 
within a single MIC dilution regardless of which inter-
pretive criteria were applied. One notable difference 
was that for imipenem nonsusceptible isolates from 
chromosomal AmpC-producing Enterobacterales spe-
cies, the imipenem mode MIC increased from 2 µg/mL 
using CLSI criteria to > 8  µg/mL using EUCAST crite-
ria, as those isolates with MICs of 2  µg/mL were cat-
egorized as susceptible. Although there was no longer 
a reduction in the imipenem mode MIC in the presence 
of relebactam for these isolates, the MIC50 was still 
reduced by at least two dilutions, from > 8 to 4 µg/mL.

We evaluated the imipenem/relebactam susceptibility 
of imipenem-nonsusceptible isolates by region because of 

Fig. 3  Relebactam enhances the activity of imipenem among chromosomal AmpC–nonproducing Enterobacterales isolates. A all (N = 78,766). 
B imipenem-NS (N = 5859). C imipenem-S (N = 72,907). Percentage represents n/N × 100%, where n was the number of isolates meeting the MIC 
threshold and N was the total number of isolates based on the CLSI 2021 clinical breakpoints for imipenem and imipenem/relebactam (both 
MIC ≤ 1 μg/mL for susceptibility) and subsequently categorized as either S (MIC ≤ 1 μg/mL) or NS (MIC > 1 μg/mL) [18]. The dashed line indicates the 
CLSI 2021 imipenem and imipenem/relebactam susceptibility breakpoints. The arrows indicate mode MIC values. Enterobacterales chromosomal 
AmpC–nonproducing species included Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca, and Citrobacter koseri. AmpC, Ambler class C 
β-lactamase; CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; NS, nonsusceptible; S, susceptible
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the geographic variation in the prevalence of carbapen-
emase enzymes among Enterobacterales inhibited by rel-
ebactam (i.e., KPC) and those not inhibited by relebactam 
(i.e., MBLs and OXA-48 family β-lactamases)[20], (Addi-
tional file  3). Relebactam restored imipenem susceptibil-
ity to > 70% of imipenem-nonsusceptible Enterobacterales 
isolated from Latin America, North America, or the South 
Pacific, where isolates frequently encode KPC or are car-
bapenemase negative. In Asia and Europe, where OXA-
48 family β-lactamases and MBLs, respectively, are more 
common, relebactam restored imipenem susceptibility to 
42.0% and 45.5%, respectively, of imipenem-NS Enterobac-
terales isolates. In addition, relebactam restored imipenem 
susceptibility to 63.7% to %-75.1% of imipenem-NS P. aer-
uginosa isolates from Asia, Europe, the Middle East, and 
North America, as well as 91.9% of isolates from the South 
Pacific. The rate of imipenem/relebactam susceptibility 
among imipenem-NS P. aeruginosa isolates was lower for 
isolates from Africa (48.3%) and Latin America (52.2%).

Discussion
The present study expanded analysis of previous findings 
demonstrating that relebactam restores imipenem activ-
ity in imipenem-NS Enterobacterales and P. aeruginosa 
isolates and enhances imipenem activity in imipenem-S P. 
aeruginosa isolates [16]. In addition, this study extended 
the analysis of relebactam with imipenem among Entero-
bacterales species and evaluated Enterobacterales species 
as a function of their capacity to produce chromosomally 
encoded AmpC.

Among imipenem-NS isolates, relebactam restored sus-
ceptibility in chromosomal AmpC–nonproducing spe-
cies (e.g., K. pneumoniae), largely by inhibition of KPC, 
and in chromosomal AmpC–producing species (e.g., E. 
cloacae), presumably through inhibition of the chromo-
somal AmpC enzyme. Relebactam restored imipenem 
susceptibility to approximately two-thirds and one-half of 
chromosomal AmpC–producing and AmpC–nonproduc-
ing Enterobacterales species, respectively, demonstrating 
that relebactam-mediated inhibition of β-lactamase activ-
ity can prevent loss of carbapenem susceptibility. Notable 
exceptions to the decreases in MIC values observed with 
imipenem/relebactam occurred in isolates encoding cer-
tain β-lactamases (i.e., MBL and OXA). These isolates were 
minimally affected or unaffected by relebactam, which 
is consistent with lack of inhibition of class B and class D 
β-lactamases [14]. Collectively, these observations support 

previous findings that relebactam at a concentration of 
4 µg/mL lowered imipenem MIC values [2, 16].

The mechanism of action for relebactam is inhibition of 
Class A or Class C β-lactamases to facilitate restoration or 
enhancement of imipenem susceptibility in gram-negative 
bacteria (Fig.  4; Additional file  4). Imipenem enters the 
periplasm through outer membrane porins [21]. Figure 4A 
depicts the effects upon addition of relebactam to imipe-
nem among imipenem-NS P. aeruginosa and Enterobacte-
rales isolates. In the absence of acquired carbapenemases 
(e.g., KPC, MBL, etc.), imipenem nonsusceptibility among 
P. aeruginosa and Enterobacterales is due to two factors: 
1) loss of the imipenem entry porins (e.g., OprD, OmpK36, 
OmpF), which reduces entry of imipenem into the peri-
plasm and 2) induced expression of the chromosomally 
encoded AmpC β-lactamase, which, although an ineffi-
cient carbapenemase, can degrade this reduced concentra-
tion of imipenem. Imipenem is a potent inducer of AmpC 
β-lactamases; therefore, whenever imipenem is present in 
a patient or an in vitro assay, AmpC will be hyperproduced 
[14, 21]. Relebactam likely restores imipenem susceptibil-
ity to these isolates by inhibiting AmpC, thereby allowing 
imipenem, which has entered the cell through nonspecific 
porins, to reach the target penicillin-binding proteins and 
exert its antibacterial effect, as observed for P. aeruginosa 
[16]. Among surveillance and genetically modified isolates, 
it is important to note that neither imipenem nor relebac-
tam are substrates of efflux pumps [16, 22].

In contrast to imipenem-NS isolates, imipenem access 
to the periplasmic space through outer membrane por-
ins (e.g., OprD, OmpK36, OmpF) is efficient in imipenem-
S isolates, and the greater concentration of imipenem in 
the periplasm results in an antibacterial effect, even in the 
presence of induced AmpC (Fig.  4B) [21]. Chromosomal 
AmpC expression leads to an increase in imipenem MIC 
values without resulting in loss of susceptibility. In the 
presence of relebactam, the slow hydrolysis of imipenem 
by chromosomal AmpC is impeded and the MIC values of 
imipenem are thereby lowered, enhancing imipenem sus-
ceptibility [16].

The clinical implications of this lowered imipenem/
relebactam MIC, compared with imipenem alone for 
both P. aeruginosa and the Enterobacterales are informa-
tive for an evaluation of adequacy of dose from a phar-
macokinetic (PK)/pharmacodynamic (PD) perspective. 
The importance of achieving established PD targets with 
standard dosing regimens of older β-lactams has been 

Fig. 4  Effect of relebactam on susceptibility of Pseudomonas aeruginosa and Enterobacterales species to imipenem. A Relebactam restores 
susceptibility to imipenem in imipenem-NS Pseudomonas aeruginosa and Enterobacterales species. B Relebactam decreases imipenem MIC 
values in imipenem-S species. C These effects result in increased free drug pharmacokinetic/pharmacodynamic target (%ƒT > MIC) attainment for 
imipenem. %ƒT, percentage of time of free drug; AmpC, Ambler class C β-lactamase; AUC, area under the concentration–time curve; MIC, minimum 
inhibitory concentration; NS, nonsusceptible; S, susceptible

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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heightened in recent years, given reports of underdos-
ing of these β-lactam agents, particularly among criti-
cally ill patients with ARC [7, 8]. Concerns regarding 
underdosing have led to multiple changes that have had 
implications in routine clinical practice, such as lowering 
of MIC susceptibility breakpoints as a method to ensure 
higher doses are administered [23] and recommenda-
tions to administer prolonged or continuous infusions 
of β-lactams to increase the probability that adequate 
PD exposures are achieved [24, 25]. With this context 
in mind, the established PK/PD target for imipenem, 
and all carbapenems, is the percentage of time the free 
drug concentration remains above the MIC of the infect-
ing organism (%fT > MIC), with maximum bactericidal 
effect achieved at an %ƒT > MIC of 30%–40% [26–29]. 
For the β-lactamase inhibitor relebactam, a ratio of the 
area under the unbound concentration–time curve to 
the MIC (fAUC/MIC) of 7.5 was associated with two-
log kill in preclinical models [28–31]. High (> 90%) joint 
probability of target attainment for both imipenem and 
relebactam has been described for the 1.25-g IMI/REL 
dose (500  mg imipenem/500  mg cilastatin/250  mg rel-
ebactam) at an imipenem/relebactam MIC breakpoint 
of ≤ 2 µg/mL, which covers P. aeruginosa and Enterobac-
terales [24, 25]. Because the MIC is in the denominator 
of each PK/PD target (e.g., fT > MIC and fAUC/MIC), the 
addition of relebactam as a strategy to lower the imipe-
nem MIC is expected to result in higher PD exposures 
(Fig. 4C) and serves as an alternative approach to extend-
ing the infusion to attain higher PD exposures. Although 
purely speculative, higher exposures achieved upon the 
addition of relebactam to imipenem may have contrib-
uted to the efficacy observed in the RESTORE-IMI 1 and 
2 studies [10, 12, 14, 32, 33]. Of particular importance 
are the similar 28-day all-cause mortality and favorable 
clinical and microbiologic response rates among patients 
with normal renal function compared with those with 
ARC (creatinine clearance ≥ 150  mL/min) among par-
ticipants with hospital-acquired/ventilator-associated 
bacterial pneumonia and ARC from the RESTORE-IMI 
2 study [13].

In this study, molecularly characterized imipenem-
nonsusceptible Enterobacterales isolates that remained 
nonsusceptible in the presence of relebactam fre-
quently encoded an OXA-48 family β-lactamase, illus-
trating the lack of activity of relebactam against these 
enzymes. Among the few isolates in which relebactam 
restored susceptibility, the vast majority (84%) had MICs 
of , interpreted as intermediate susceptibility by CLSI 
and susceptible by EUCAST, which was attributable 
to the weak carbapenemase activity of OXA-48 family 
β-lactamases [34]. Imipenem-susceptible isolates were 

not characterized in this study; however, Enterobacte-
rales isolates encoding OXA-48 family β-lactamases are 
frequently susceptible to meropenem [35], suggesting 
these enzymes are likely present in imipenem-susceptible 
isolates as well. Attributing the intermediate imipenem 
susceptibility phenotype to the presence of an OXA-48 
family β-lactamase in a particular isolate is challenging; 
MIC values frequently vary by a single dilution in testing, 
and the presence of additional β-lactamases and resist-
ance mechanisms (e.g., outer membrane porin loss) may 
be contributing factors. Overall, the results of this study 
reinforce prior findings that relebactam is an inhibitor 
class A/C β-lactamase and can restore imipenem suscep-
tibility to isolates encoding these enzymes; correspond-
ingly, the lack of relebactam activity toward class B/D 
β-lactamases is illustrated by the lack of meaningful res-
toration of imipenem susceptibility to isolates encoding 
these enzymes. From a clinical perspective, PK/PD data 
indicate that IMI/REL achieves high probability of tar-
get attainment for isolates with imipenem/relebactam 
MICs ≤ 2 µg/mL (i.e., the EUCAST susceptible, standard-
dosing regimen breakpoint) [33], and limited clinical data 
indicate favorable clinical and microbiologic outcomes in 
a small number of trial participants (n = 3) with imipe-
nem/relebactam-susceptible isolates encoding OXA-48 
family β-lactamases (unpublished data) [12].

A limitation of the study was the range of MICs 
assessed. Wider ranges may have allowed detection of 
larger modal shifts (e.g., among imipenem-NS Entero-
bacterales). The relationship between bacterial suscepti-
bility and antibacterial agent is complex; therefore, MIC 
may not be the best indicator of effectiveness of a par-
ticular antibacterial agent [36]. In addition, we did not 
directly measure AmpC production, but it is well rec-
ognized that this is one of the primary mechanisms of 
resistance of P. aeruginosa and certain Enterobacterales 
species [19, 24, 37] and that relebactam inhibition of 
chromosomally encoded AmpC enzymes is responsible 
for reduction in imipenem MIC values when acquired 
β-lactamases are not present [16].

The results of the present study indicated that encoded 
MBL and OXA genes contributed to certain Enterobac-
terales isolates remaining imipenem-NS after the addi-
tion of relebactam; however, the possibility remains that 
unidentified resistance mechanisms within these iso-
lates contributed to their phenotype. The characterisa-
tion needed to confirm the presence of other resistance 
pathways was beyond the scope of the present study. Fur-
thermore, although imipenem/relebactam circumvents 
certain resistance mechanisms in  vitro with the associ-
ated decrease in MIC described here, other patient-spe-
cific factors may impact effectiveness to a greater extent.
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Conclusions
Relebactam inhibits the ability of AmpC and KPC 
β-lactamases to hydrolyse imipenem in  vitro, thereby 
restoring imipenem susceptibility among nonsusceptible 
isolates and enhancing imipenem susceptibility among 
susceptible isolates of P. aeruginosa and Enterobacterales. 
The reduction of imipenem modal MIC values with rele-
bactam may result in a higher probability of target attain-
ment in patients.

Materials and methods
Between 2018 and 2020, 243 unique participating sites 
collected up to 250 consecutive isolates each of aero-
bic gram-negative bacteria per year for the SMART 
program. Participating sites were located in 219 cit-
ies across 60 countries. The following number of iso-
lates were collected from adult patients (≥ 18  years of 
age) at each site, each year hospitalized with: cUTIs 
(n = 50), cIAIs (n = 50), lower respiratory tract infec-
tions (n = 100), or bloodstream infections (n = 50). One 
isolate per species per patient per year was included. 
After collection, isolates were submitted to a central 
laboratory (International Health Management Associ-
ates, Inc [IHMA], Schaumburg, Illinois, USA) for anal-
ysis. All methods were carried out in accordance with 
the ethical principles Declaration of Helsinki and all 
relevant guidelines and regulations. Ethical approval 
and informed consent were not required because all 
isolates received into the study followed multiple sub-
cultures and were completely de-identified. The second-
ary research use of de-identified isolates is considered 
exempt research according to the Regulations for the 
Protection of Human Subjects in Research of the U.S. 
Department of Health and Human Services, Office for 
Human Research Protections (45 CFR 46).

Confirmation of P. aeruginosa and Enterobacterales 
isolate identity was performed by IHMA using matrix-
assisted laser desorption ionization time-of-flight mass 
spectrometry (Bruker Daltonics, Billerica, Massachusetts, 
USA). Based on current IMI/REL indications, Enterobac-
terales species included in this analysis were Escherichia 
coli, Klebsiella pneumoniae, Enterobacter cloacae, Serra-
tia marcescens, Klebsiella aerogenes, Klebsiella oxytoca, 
and Citrobacter freundii. In addition, Citrobacter koseri 
was also included because it is a carbapenem-resistant 
species that increasingly has been seen in hospital set-
tings [38]. Isolates of Enterobacter cloacae, Serratia 
marcescens, Klebsiella aerogenes, and Citrobacter freundii 
were categorized as potential AmpC-producing species 
based on the presence of an AmpC-encoding gene and 
the potential for derepression due to genetic mutation or 
the presence of an inducing β-lactam antibacterial agent, 
such as imipenem [6].

Antibacterial susceptibility testing was performed at 
IHMA using CLSI standard broth microdilution meth-
ods [39]. The appropriate American Type Culture Collec-
tion control strains were used each day as quality-control 
measures in accordance with CLSI guidelines. Isolates 
were tested for susceptibility to both imipenem alone and 
imipenem/relebactam. Per CLSI recommendations, imi-
penem was diluted according to a two-fold gradient and 
tested in combination with a fixed concentration (4  μg/
mL) of relebactam [18]. For P. aeruginosa, the CLSI break-
points for imipenem and imipenem/relebactam suscepti-
bility were both  [18]. The CLSI breakpoints for imipenem 
and imipenem/relebactam susceptibility were both ≤ 1 μg/
mL for Enterobacterales [18]. Isolates with MIC values that 
exceeded these CLSI breakpoints were deemed nonsus-
ceptible. The range of imipenem and imipenem/relebac-
tam MICs tested for P. aeruginosa was ≤ 0.12 to > 32 µg/mL 
and for Enterobacterales was ≤ 0.12 to > 8 µg/mL.

In this study, isolates of P. aeruginosa and Enterobacte-
rales classified as nonsusceptible to imipenem that were 
characterized molecularly for gene-encoded β-lactamases 
using previously described multiplex polymerase chain 
reaction assays and full-gene DNA sequencing techniques 
[40, 41] were evaluated. Over the current study period 
(2018–2020), 75% of imipenem-NS isolates from the spe-
cies evaluated were analysed. Screening included assess-
ment for gene-encoded MBLs, including imipenemase, 
Verona integron-encoded metallo-β-lactamase, New 
Delhi metallo-β-lactamase, and São Paulo MBL; serine 
β-lactamases (KPC; OXA) and chromosomally encoded 
PDC. The number of imipenem-nonsusceptible isolates 
molecularly characterized from the evaluated species is 
provided in Additional file 1. Isolates in which no carbap-
enemase-encoding genes were identified were character-
ized as carbapenemase negative. Gene-flanking primers 
were used to amplify and sequence (Sanger) all detected 
genes encoding carbapenemases and PDC for all Entero-
bacterales isolates in the study and for P. aeruginosa iso-
lates from 2018 to 2019. P. aeruginosa isolates collected in 
2020 that met the screening criteria were characterized 
by short-read whole-genome sequencing (Illumina HiSeq 
2 × 150 base-pair reads) to a targeted coverage depth of 
100 × [42] and analyzed using the CLC Genomics Work-
bench (Qiagen, Germantown, Maryland, USA). The Res-
Finder database was used to detect β-lactamase genes [43].
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