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Abstract 

Background The development of sequencing technologies to evaluate bacterial microbiota composition has 
allowed new insights into the importance of microbial ecology. However, the variety of methodologies used among 
amplicon sequencing workflows leads to uncertainty about best practices as well as reproducibility and replicabil-
ity among microbiome studies. Using a bacterial mock community composed of 37 soil isolates, we performed a 
comprehensive methodological evaluation of workflows, each with a different combination of methodological factors 
spanning sample preparation to bioinformatic analysis to define sources of artifacts that affect coverage, accuracy, 
and biases in the resulting compositional profiles.

Results Of the workflows examined, those using the V4-V4 primer set enabled the highest level of concordance 
between the original mock community and resulting microbiome sequence composition. Use of a high-fidelity 
polymerase, or a lower-fidelity polymerase with an increased PCR elongation time, limited chimera formation. Bioin-
formatic pipelines presented a trade-off between the fraction of distinct community members identified (coverage) 
and fraction of correct sequences (accuracy). DADA2 and QIIME2 assembled V4-V4 reads amplified by Taq polymerase 
resulted in the highest accuracy (100%) but had a coverage of only 52%. Using mothur to assemble and denoise 
V4-V4 reads resulted in a coverage of 75%, albeit with marginally lower accuracy (99.5%).

Conclusions Optimization of microbiome workflows is critical for accuracy and to support reproducibility and repli-
cability among microbiome studies. These considerations will help reveal the guiding principles of microbial ecology 
and impact the translation of microbiome research to human and environmental health.

Keywords 16S rRNA, QIIME2, Mothur, DADA2, PCR artifacts, PCR biases, PCR errors, Chimera, Polymerase, Sequencing 
errors

Background
The use of next-generation sequencing in biologi-
cal research laboratories has offered important insight 
into the role of microbial ecology to environmental and 
human health [1]. Workflows to generate compositional 
microbiome data from a sample requires several labora-
tory-based sample preparation and computational steps. 
First, genomic DNA (gDNA) is extracted from the bac-
teria present in individual samples through physical 
or chemical lysing [2–4]. From the gDNA, typically the 
16S rRNA marker gene is amplified using polymerase 
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chain reaction (PCR) and labeled with sample-specific 
index sequences [5, 6]. The amplicons are then pooled 
and sequenced using a single- or paired-end sequencing 
approach. Finally, resulting reads are computationally 
demultiplexed using the sample-specific index sequences. 
With paired-end sequencing, two reads (R1 and R2) for 
each 16S rRNA template are produced by the instrument 
and are typically denoised by trimming and removing 
low-quality sequences before or after merging [7].

While techniques to study the microbiome have been 
adopted across many scientific fields, standardization 
of workflows to produce microbiome data has lagged, 
prompting researchers to develop in-house workflows 
[8, 9]. Thus, methodological preferences at each step of 
a custom workflow (e.g. differing 16S rRNA primer sets, 
polymerases, PCR cycling conditions, and/or imple-
mentation of different bioinformatic software [10–12]) 
make it difficult to identify methodological choices that 
maximize a workflow’s ability to correctly return all dis-
tinct sequences (coverage) and maximize the proportion 
of correct sequences (accuracy). Furthermore, in-house 
workflows oftentimes do not contain steps to mitigate 
biases nor common artifacts including reagent kit con-
taminants or cross-talk among index sequences [13, 14].

A study using data from the Human Microbiome Pro-
ject and METAgenomics of the Human Intestinal Tract 
project illustrated this challenge when it failed to dem-
onstrate a significant association between body mass 
index and taxonomic composition despite prior reports 
of associations in both mice and humans [15]. In this 
study, the authors suggested the failure to replicate previ-
ous findings was likely due, in-part, to different methodo-
logical options used to prepare samples for sequencing. 
Another study focused on the microbial ecology of coral 
species found discrepant results from amplicon sequence 
data prepared by two different labs whose protocols dif-
fered only in DNA polymerase and sequencing platform 
[16]. The authors emphasized caution when comparing 
and interpreting studies that combine amplicon sequence 
data across studies, even when only subtle differences 
exist between methodologies. Thus, replication among 
microbiome studies may benefit from the establishment 
of best practices for preparation and analysis of microbi-
ome samples. This is also important to consider for the 
eventual adoption of microbiome-based clinical diagnos-
tics which can be critically impacted by inaccurate work-
flows [10, 11, 17–21].

To circumvent inaccuracies as a result of different 
workflow methodologies among microbiome studies, 
microbial ecologists have made progress investigating 
the impact of individual library preparation factors on 
sequencing results (for review see [12]). Several reports 
have affirmed the significant impact of 16S rRNA primer 

selection on resulting microbiota composition, which 
sometimes depends on other workflow factors like the 
DNA extraction kit [3] or the sequencing platform used 
[22, 23]. Others have noted the importance of pairing 
specific sequencing platforms with the appropriate bio-
informatic pipelines for data analysis [24] or using spe-
cific polymerases with the appropriately determined 
number of PCR cycles to minimize artifacts [25]. How-
ever, a comprehensive multi-factorial assessment of 
microbiome workflows that also considers bioinformatic 
processing of reads is lacking. In this study, we selected 
several factors, spanning sample preparation to bioinfor-
matic processing, which we suspected a priori would be 
the most impactful to microbiome workflow accuracy. 
Our study revealed the importance of selecting elonga-
tion times that correspond with a particular polymerase 
while preparing microbiome libraries. Additionally, we 
demonstrate the advantages of mothur when used with 
particular sample preparation methodologies. With these 
data we identified a set of factors that may improve cov-
erage and accuracy of a microbiome study and contribute 
toward improved reproducibility and replicability in the 
microbiome field.

Results
Prior to bioinformatic denoising, we observed i7 and i5 
sequence combinations among the raw reads that were 
not representative of sample index combinations inten-
tionally included in the sequencing run. Reads corre-
sponding to these unexpected index combinations are 
considered cross-talk artifacts and their occurrence sets 
the lower-detection limit for sample reads by providing 
a background of reads with unknown origin when sam-
ples are multiplexed for sequencing. We found an aver-
age cross-talk rate of 0.23% among samples indexed 
with the 1-step PCR approach and an average of 0.27% 
among samples indexed with the 2-step PCR approach 
(Supplemental Fig.  1). Consistent with previous studies 
that found similarly low rates of cross-talk (< 1%) [14], 
we found that i7 and i5 index reads had significantly 
lower mean Q-score among unexpected combinations 
as compared to expected in each sequencing run (1-step 
PCR i7 expected Q34.8 ± 0.8, unexpected Q28.6 ± 3.3, 
t(352.9) = 31.3, p < 0.001, g = 2.3; 1-step PCR i5 expected 
Q35.0 ± 0.1, unexpected Q31.3 ± 3.1, t(305.1) = 21.1, 
p < 0.001, g = 1.5; 2-step PCR i7 expected Q33.8 ± 2.5, 
unexpected Q29.1 ± 4.4, t(417.1) = 14.2, p < 0.001, 
g = 1.3; 2-step PCR i5 expected Q34.5 ± 1.3, unexpected 
Q30.8 ± 4.7, t(306.6) = 12.2, p < 0.001, g = 1.0). There was 
no apparent difference across sample preparation meth-
ods, underscoring a potential benefit of removing reads 
with low-quality index sequences generated by the Illu-
mina sequencing platform.
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Quality of raw reads depends on the sequence read and its 
corresponding 16S rRNA primer set
Rarified sequence reads were evaluated prior to pro-
grammatic denoising and amplicon assembly to deter-
mine the effect of different library preparation factors on 
basic read characteristics, including string edit distance 
to the nearest mock community member and mean read 
Q-scores. We found that sequence read (R1 vs. R2) and 
the corresponding 16S rRNA regions (V4-V4 vs. V3-V4 
vs. V4-V5) had the largest effect sizes regarding read 
characteristics. Additionally, R1 sequences had a lower 
edit distance to their nearest mock 16S rRNA sequence 
and had improved Q-scores over the same cumula-
tive fraction of R2 sequences (Edit distance: D = 0.76, 
p < 0.001; Q-scores: D = 0.65, p < 0.001) (Fig.  1A). After 

trimming to the high-quality region of each read, the 
average length remained longer for R1 than the same 
cumulative fraction of R2 reads (D = 0.64, p < 0.001). 
Considering the 16S rRNA amplification region, reads 
produced with the V4-V5 primer set had a higher average 
edit distance to the nearest mock 16S rRNA sequences 
(V3-V4 vs. V4-V5: D = 0.35, p = 6.8E-13; V4-V4 vs. 
V4-V5: D = 0.42, p < 0.001), the lowest average Q-score 
compared to the same cumulative fraction of reads pro-
duced from the V3-V4 or V4-V4 primer sets sequences 
(V3-V4 vs. V4-V5: D = 0.47, p < 0.001; V4-V4 vs. V4-V5: 
D = 0.59, p < 0.001), and the shortest average length after 
trimming (V3-V4 vs. V4-V5: D = 0.68, p < 0.001; V4-V4 
vs. V4-V5: D = 0.82, p < 0.001) (Fig.  1B). The reads pro-
duced with the V4-V4 primer set had a lower average edit 

Fig. 1 The sequence read and primer set influence edit distance and Q-score. A R1 had consistently higher Q-scores than the same cumulative 
fraction of R2, likely limiting errors that would otherwise result in mismatches and allowing for greater overlap during amplicon assembly. B Reads 
corresponding to the V4-V4 primer set had the lowest edit distance and highest Q-scores than the same cumulative fraction of reads corresponding 
to the V3-V4 and V4-V5 primer sets. Data shown represent kernel density estimates with green boxplots and white circles representing median 
values. Empirical cumulative distributions were significantly different (KS test p value < 0.001) among all factor levels compared within each plot
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distance to their nearest mock 16S rRNA sequence and 
the highest average Q-score compared the same cumu-
lative fraction of other primer sets examined (Edit dis-
tance: V3-V4 vs. V4-V4 D = 0.37, p = 1.9E-14; Q-scores: 
V3-V4 vs. V4-V4 D = 0.37, p = 1.9E-14). Taken together, 
these results suggest the highest overall quality prior to 
downstream bioinformatic processing was among R1 
reads and that those corresponding to the V4-V5 region 
had lowest quality compared to the other regions evalu-
ated. Though we are unable to confirm this, it is possible 
the PCR conditions selected in our evaluation were not 
optimal for the V4-V5 primer-region, leading to lower 
overall read quality.

Exact matches to the mock community reveal a trade‑off 
between accuracy and coverage
Trade-offs between accuracy and coverage are often 
observed when measuring the effect of experimental fac-
tors on accuracy. We estimated accuracy as the fraction 
of resulting sequence variants that exactly matched the 
16S rRNA sequence of the mock community members 
and coverage as the fraction of unique mock community 
members identified. We found that among raw reads, 
accuracy and coverage were significantly impacted by 
primer set, polymerase, and the PCR indexing approach 
used. Overall, the accuracy was low on average, indicat-
ing that a limited number of raw reads exactly matched 
the mock community sequences when taken immediately 
from the sequencer (Fig. 2). Conversely, overall coverage 
was higher on average, indicating that despite many erro-
neous reads, the breadth of mock community members 
in the original sample was well represented. Regardless of 
the protocol used, the V4-V4 primer set was associated 
with the highest accuracy and coverage (Fig.  2A). Raw 
reads corresponding with KAPA HiFi had higher accu-
racy than both iTaq and SsoAdvanced (F(2, 306) = 136.2, 
p < 0.001, η2 = 0.23), and accuracy was maximized when 
KAPA HiFi was paired with the V4-V4 primer set (F(4, 
306) = 49.7, p < 0.001, η2 = 0.17) (Fig.  2A) or 2-step PCR 
indexing (F(2, 306) = 50.8, p < 0.001, η2 = 0.09) (Fig.  2B). 
However, samples amplified with iTaq and SsoAdvanced 
had significantly higher coverage than KAPA (F(2, 
306) = 21.5, p < 0.001, η2 = 0.02) when paired with the 
V4-V4 primer set (F(4, 306) = 34.4, p < 0.001, η2 = 0.06). 
Despite having the best overall coverage, the 1-step PCR 
indexing approach provided inferior accuracy com-
pared to 2-step PCR indexing (F(1, 306) = 85.2, p < 0.001, 
η2 = 0.07), especially when paired with the V4-V4 primer 
set (Fig. 2A).

After processing reads using each microbiome pro-
gram, we found that accuracy and coverage were 
impacted by primer set, polymerase, PCR indexing 
approach, and the specific bioinformatic processing 

program used. We observed lower accuracy corre-
sponding with the V3-V4 and V4-V5 primer sets (F(2, 
464) = 171.3, p < 0.001, η2 = 0.24) (Fig.  3), and the 
highest coverage when samples were amplified with 
the V4-V4 primer set (F(2, 464) = 565.7, p < 0.001, 
η2 = 0.34). The accuracy among different polymer-
ase enzymes was lowest with KAPA HiFi and SsoAd-
vanced (F(2, 464) = 17.6, p = 4.5E-08, η2 = 0.02). 
When considering the PCR indexing approach, we 
observed significantly higher accuracy (F(1, 464) = 97.4, 
p < 0.001, η2 = 0.07) and coverage with 1-step PCR (F(1, 
464) = 391.1, p < 0.001, η2 = 0.12). Comparing bioin-
formatic processing programs, we found that mothur 
had significantly lower accuracy than both DADA2 and 
QIIME2 due to a higher number of inexact matches 
among the representative OTUs (F(2, 464) = 13.6, 
p = 1.9E-06, η2 = 0.02). In contrast, the coverage of 
DADA2 and QIIME2 allowed for a maximal recall of 
approximately 52% of the original mock community 
sequences, which was significantly lower than the 75% 
maximally recalled using mothur (F(2, 464) = 233.9, 
p < 0.001, η2 = 0.14). Although data processed with 
mothur had lower accuracy on average, it was just as 
high as that of DADA2 and QIIME2 when good qual-
ity data with fewer inexact matches was processed 
(mothur = 99.5% vs DADA2/QIIME2 = 100%).

Primer‑dimers and off‑target amplification were 
uncommon among library preparation protocols
After classification and binning of exact matches, remain-
ing inexact sequence variants were queried for primer 
sequences to identify primer-dimers. Among all samples, 
only 30 sequence variants (242 total reads, < 0.02%) were 
classified as primer-dimers. The successful elimination of 
primer-dimers was likely due to the size selectivity of the 
magnetic beads used for PCR library cleanup, allowing us 
to consider primer-dimers negligible artifacts in the pre-
sent study. After primer-dimer classification, remaining 
inexact sequence variants were classified using IDTAXA 
to reveal three unique sequence variants (78 total reads) 
marked as potential off-target amplicons (Supplemental 
table 2). Subsequent BLAST analysis revealed that among 
them a single sequence variant matched to a 16S rRNA 
sequence in the database. The other two sequence vari-
ants did not match 16S rRNA sequences, did not have 
any significant hits (E-value < 0.01), and their nucleotide 
composition was of low complexity with homopolymeric 
DNA tracts. Therefore, these two sequence variants (77 
total reads, < 0.01%) were likely sequencing failures or 
other sequencing artifacts. Like primer-dimers, the low 
prevalence of off-target amplicons allowed us to consider 
them negligible artifacts in this study.
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Chimeras are mitigated by increasing PCR elongation 
times
Chimeras were identified among inexact matches 
using a combination of program-specific chimera 
finding software (VSEARCH in mothur and remove-
BimeraDenovo in DADA2 and QIIME2), followed by 

FindChimeras from the DECIPHER package. The use of 
a second chimera finding method allowed us to iden-
tify chimeras not found by a microbiome bioinfor-
matic processing pipeline [26]. We found that, of all 
rarified reads processed, 3.3% were putatively chimeric. 
There was a significant effect of elongation time on 

Fig. 2 Sample preparation significantly impacts coverage and accuracy of amplicon sequencing workflows prior to bioinformatic processing. 
The workflow with the highest coverage in this study could recall 83% of the original mock community members from the raw reads using the 
V4-V4 region of the 16S rRNA marker gene while the workflow with the highest accuracy could only recall approximately 13% of the original mock 
community members. A The V4-V4 primer set was associated with the highest accuracy and coverage. Raw reads corresponding with KAPA HiFi had 
higher accuracy than both iTaq and SsoAdvanced, and accuracy was maximized when KAPA HiFi was paired with the V4-V4 primer set. 1-step PCR 
had the best overall coverage but provided inferior accuracy. B The workflow with the highest coverage in this study was amplified with KAPA HiFi 
and 1-step PCR while the workflow with the highest accuracy was amplified with KAPA HiFi and 2-step PCR
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the fraction of chimeras detected (F(4, 1010) = 101.5, 
p < 0.001, η2 = 0.06), such that increasing elongation 
time reduced the average fraction of chimeric sequence 
reads from 0.04 (15 s) to 0.02 (180 s) over the range of 
elongation times tested. There was a significant interac-
tion between elongation time and the primer set used 
(F(8, 1010) = 23.5, p < 0.001, η2 = 0.03), revealing that 
more chimeras were detected in reads corresponding 
to the V3-V4 primer set at elongation times ≤ 60  s as 
compared to the reads corresponding to the V4-V4 and 
V4-V5 primer sets (Fig. 4A). The polymerase used was 
found to be another important factor when considering 
elongation time and was consistent across primers (F(2, 
1010) = 447, p < 0.001, η2 = 0.12), such that sequences 
amplified with KAPA HiFi generally had fewer chime-
ras detected regardless of elongation time (Fig.  4B). 
Over the range of times tested, the fraction of chime-
ras detected with KAPA HiFi tended to decrease with 

increasing elongation time, but this  was not statisti-
cally  significant, suggesting 30  s is sufficient to limit 
chimera formation with KAPA HiFi (F(4, 355) = 1.6, 
p = 0.18, η2 = 0.02).

Bioinformatic processing programs influence 
representation of rare sequence variants
Remaining inexact matches were classified as contain-
ing mismatches from the 16S rRNA sequences of mock 
community members or as contaminant sequences. We 
found that contaminants of low abundance were more 
prevalent after data processing by mothur than either 
QIIME2 or DADA2 (Fig.  5). Evaluating the fate of the 
359 contaminant reads that were removed by DADA2 
and QIIME2 pipelines but not mothur revealed their 
omission with the filterAndTrim (67% of removed con-
taminants) or dada (33% of removed contaminants) 
functions. Upon examining the experimental origins of 
the contaminant reads, 71% were associated with specific 

Fig. 3 Trade-off between accuracy and coverage depends on a combination of methodological factors. The workflow with the highest coverage in 
this study could recall 75% of the original mock community members using mothur to process reads from the V4-V4 region of the 16S rRNA marker 
gene amplified using 1-step PCR. The workflows with the highest accuracy could only recall approximately 52% of the original mock community 
members using DADA2 or QIIME2. If high quality data was provided, the accuracy of mothur processed data was as good as data processed with 
DADA2 or QIIME2
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sample subsets, with 42% of those originating from the 
negative control samples and the remaining 29% originat-
ing from samples prepared with the V3-V4 primer set. 
Those associated with the V3-V4 primer set are likely due 
to contamination introduced during commercial primer 
synthesis or handling within our laboratory. It is likely 
that the contaminants could be identified and removed 
using bioinformatic approaches such as with the decon-
tam R package [27].

Methodological factors contribute to bias in observations 
of the community
Among microbiome studies, it is common to evaluate 
community composition through presence-absence or 
relative abundance of community members. Our evalu-
ation of accuracy and coverage of exact matches revealed 
that 1-step PCR with the V4-V4 primer set followed by 
bioinformatic processing with mothur best represented 
the expected presence of the original mock pool (pre-
cision). However, approximately 25% of the original 
mock community members were not identified in the 
best-case methodologies tested here. To incorporate the 
impact of methodological factors on relative abundance, 

we correlated the rank of each mock member’s approxi-
mate relative abundance in the original gDNA pool to 
the resulting relative abundance of exact matches among 
each methodology after bioinformatic processing. The 
correlations revealed that the polymerase, primer set, 
PCR indexing approach, and bioinformatic processing 
program can introduce significant bias into estimates of 
relative abundance. Using the V3-V4 or V4-V4 primer 
contributed a limited amount of bias relative to the 
V4-V5 primer set (F(2, 464) = 642.0, p < 0.001, η2 = 0.52) 
(Fig. 6). Evaluating different polymerases revealed KAPA 
HiFi contributed elevated bias compared to the others 
(F(2, 464) = 46.4, p < 0.001, η2 = 0.04) while the 1-step 
PCR indexing approach resulted in significantly higher 
correlation than 2-step PCR (F(1, 464) = 152.3, p < 0.001, 
η2 = 0.06). Bioinformatic processing with mothur best 
correlated with the relative abundance of mock mem-
bers in the original DNA pool compared to DADA2 or 
QIIME2 (F(2, 464) = 6.2, p = 0.002, η2 = 0.005).

Fig. 4 Increasing elongation time significantly reduced the fraction of chimeras that could be detected. A Chimera detection remained highest 
for samples amplified with the V3-V4 primer set and B lowest for samples amplified with KAPA HiFi polymerase. However, increasing elongation 
time with KAPA HiFi did not significantly reduce the fraction of chimeras detected. Data shown represent the putatively chimeric fraction of rarified 
sequence reads, with means signified with green circles and medians with wide black bars
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Discussion
There is a growing appreciation for the sources and mag-
nitude of errors and biases in microbiome data. This is 
largely a result of many methodological options avail-
able at each step of microbiome sample processing and 
bioinformatic analysis workflows and becomes critical 
when considering the degree of standardization required 
for translation of microbiome data to improving human 
and environmental health [11, 21, 28]. Here, we reported 
a full-factorial evaluation of microbiome workflows, 
including 180 variations of PCR cycling conditions and 
amplicon library preparation methods along with three 
different bioinformatic analyses. We found that all work-
flow factors introduce artifacts and biases to differing 
degrees which could impact downstream interpretation 
of microbiome composition. The only factor in which we 
did not detect meaningful differences was annealing tem-
perature, but this may be due to the lack of mismatches 
between the primer sequences and 16S rRNA sequences 
of the our mock community members [29].

The 16S rRNA gene contains nine variable regions 
that differ in nucleotide sequence among bacterial phyla 
(Supplemental Fig. 2). Thus, ‘universal’ PCR primers are 
designed to amplify the chosen region and to maximize 

differentiation between bacterial groups in microbiome 
studies. Prior work suggests longer coverage of the 16S 
rRNA gene, such as using primers for V3-V4 or that 
combining sequences from different regions, allows for 
superior taxonomic resolution [30]. This is supported 
by in silico studies that report optimal coverage of taxa 
in the SILVA database with the V3-V4 primer set and by 
verification among laboratory-based evaluations [31, 32]. 
Like previous studies evaluating primers, we found that 
primers providing longer 16S rRNA coverage result in 
elevated error rates and reduced Q-scores among reads 
produced on the Illumina sequencing platform. These 
characteristics are critical to maximize the accurate 
merging of R1 and R2 into amplicons, as downstream 
denoising and assembly involves trimming reads to their 
higher quality region or culling reads if they are below a 
defined Q-score threshold [33]. Other evaluations pro-
vide further in silico and sequence-based experimental 
evidence that targeting 16S rRNA gene variable regions 
with short read sequencing platforms cannot achieve the 
taxonomic resolution afforded by sequencing the entire 
gene [34]. However, until long-read sequencing technolo-
gies are sufficiently accurate and high-throughput [35], 

Fig. 5 Detection of low abundance contaminants varied among bioinformatic processing programs. Contaminants were found primarily in mothur 
processed data and could largely be traced back to samples corresponding to the V3-V4 primer set or to negative controls. Data shown represent 
total read abundance for all inexact sequence variants collapsed into a consensus sequence within 15% distance. Consensus sequences were 
considered mismatches were if they clustered with a 16S rRNA sequence from the mock community. White heatmap cells indicate the consensus 
sequence was not represented among the corresponding data. The dendrogram represents a UPGMA tree constructed from the distances among 
consensus sequences
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we suggest selecting a reasonable primer set that pro-
vides shorter coverage of the 16S rRNA gene.

In addition to maximizing sequence read overlap, our 
assessment demonstrated additional advantages for using 
primers with shorter sequence coverage. Chimeras are 
PCR artifacts that can artificially inflate microbiome sam-
ple diversity and plague public taxonomy databases [36]. 
We identified a higher prevalence of chimeras among 
sequence variants produced with the V3-V4 primer set 
compared to others when elongation time was greater 
than 60  s. Mapping nucleotide entropy over the length 
the 16S rRNA gene revealed that there is a conserved 
region with low entropy at the midpoint of the V3-V4 
amplicon region (Supplemental Fig.  2). Prior investiga-
tions suggest these chimeric breakpoint locations are 
non-random and clustered around conserved sequence 
regions [37]. Thus, it is likely that in combination with 
the read length produced from the V3-V4 primer set 
(approximately 432 nts), this conserved region promotes 

chimeras that can be detected with chimera finding soft-
ware. Though the V4-V5 primer set also encompasses a 
conserved region, it is distally situated, likely reducing 
the probability of chimeras, or increasing the difficulty of 
their detection.

Regardless of the primer set used, increasing elon-
gation time reduces the number of chimeras detected 
among the sequence variants when iTaq or SsoAdvanced 
polymerases are used. High-fidelity polymerases like 
KAPA HiFi have higher processivity, improved accuracy, 
and a lower error rate, allowing for continuous amplifi-
cation and low dissociation from the DNA template. For 
these reasons, it is likely that each PCR cycle with KAPA 
HiFi resulted in complete synthesis, thus limiting the 
frequency of chimera formation even with only a 30  s 
elongation [38]. Prior studies similarly highlighted the 
benefits of KAPA HiFi on chimera formation, including 
its lower rate of chimera formation relative to other poly-
merases which is independent of elongation time [25, 39, 

Fig. 6 Compositional biases vary depending on the methodological factors used in each workflow. Correlation to the original mock community 
member estimated abundance was maximized when conducting 1-step PCR with the V4-V4 primer set and iTaq followed by denoising and read 
assembly with mothur. Data shown represent Spearman’s rank correlation between qPCR-derived approximate relative abundance of individuals 
originally included in the mock community to the relative abundance of exact sequence variants output from the bioinformatic processing 
programs
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40]. It is critically important to mitigate chimera forma-
tion during PCR as bioinformatic algorithms likely can-
not detect all chimeras [26].

We found that the presence of contaminant sequences 
depended upon which bioinformatic processing program 
was used. Specifically, low-abundance contaminants were 
primarily retained among data processed by mothur. 
Low-abundance contaminants were largely removed dur-
ing the filter and trimming process, which screens for 
high quality sequences over a threshold sequence length, 
and during the process of inferring sample ASV compo-
sition. Many low-abundance mismatches and contami-
nants were represented by a single read after processing 
with mothur and was thus automatically removed by 
DADA2 and QIIME2. Further, some mismatch and con-
taminant reads from mothur processed data had lower 
Q-scores at specific positions along their length, sug-
gesting that the user-definable criteria during filtering 
(e.g., a threshold for the maximum number of expected 
errors) also accounts for differences observed between 
programs. Recent work has found that the practice of 
removing rare sequences distorts the accurate composi-
tional representation in a sample, making it more difficult 
to detect differences between treatments and dispropor-
tionately impacting samples with lower sequence depth 
[41]. Further, this practice may be problematic for some 
research goals, particularly among studies investigating 
the rare biosphere, dietary profiles, or topology of trophic 
networks [42, 43]. In these investigations it is preferred to 
identify those sequences that are not ubiquitous among 
samples and are distant to BLAST matches.

Using a mock community for our studies gave us the 
benefit of a priori knowledge of sequence representa-
tion, providing the confidence to identify contaminant 
sequences among mothur processed data that may have 
otherwise been considered part of the rare biosphere. 
Evaluating the factor-based origins of the contaminant 
reads, we found the V3-V4 primer set likely served as 
an inadvertent source of contamination due to sample 
handling or from the “kit-ome” [13]. These contami-
nants can have a profound impact on samples with low 
biomass, where differences in types and abundances of 
contaminant DNA may drive differences in composi-
tion between samples [44–46]. Thus, including nega-
tive controls in each sequencing run of a microbiome 
study is critical for determining background contami-
nation and sequencing error rates. Furthermore, data 
from negative controls can be used to differentiate and 
remove contaminants [13, 47, 48].

We also identified contaminants in the negative control 
samples that could not be tied to a specific methodologi-
cal factor. We believe these reads are a result of sample 
cross-talk, which is thought to be due to cluster overlap 

on the flow cell during Illumina sequencing [14, 15]. In 
anticipation of evaluating cross-talk, we generated reads 
from every possible index combination, including those 
that were not used for a sample, allowing us to determine 
that cross-talk rates in our sequencing runs fell in line 
with what is typically observed in the absence of excess 
adapter [14, 49–51]. Overall, the unexpected index com-
binations tended to have poor quality index reads and 
the corresponding quality was below Q30. It is important 
to note that without generating reads from every pos-
sible index combination, it would have been impossible 
to dismiss the impact of cross-talk in our study. Without 
mitigation by quality filtering index reads, or in the case 
that negative controls are not sequenced in each run, 
programs may unknowingly inflate sample diversity met-
rics through cross-talk. Thus, with the rapid and recent 
emergence of sequencing centers that are establishing 
microbiome pipelines, we repeat the call for cross-talk 
evaluation to become part of standard microbiome data 
analysis workflows [52].

Our findings underscored a trade-off between accuracy 
and coverage a researcher must consider when design-
ing a microbiome study. Specifically, we observed among 
the raw data that overall accuracy was remarkably low, 
particularly for workflows with acceptable levels of cov-
erage. The workflow with the highest coverage in our 
study could recall 83% of the original mock community 
members among the raw data, demonstrating the maxi-
mal coverage we would expect to observe after denois-
ing. As this workflow employed KAPA HiFi to amplify 
the V4-V4 region, it was likely a reduced incorporation of 
chimeric reads, along with the overall advantage of using 
the V4-V4 primer set, which contributed to its accuracy.

An impactful finding of our study is that sample pro-
cessing steps were found to interact with bioinformatic 
processing methods. Although we observed a significant 
global improvement in accuracy after denoising, assem-
bling and denoising with mothur maximized accuracy 
and coverage while limiting compositional biases. We 
found that amplifying reads from the V4-V4 region using 
1-step PCR with iTaq and ≥ 120  s elongation time, or 
KAPA HiFi with a 30 s elongation time, resulted in accu-
rate sequences after denoising, while using the V4-V5 
primer set resulted in poor quality sequences. Lastly, 
using iTaq or SsoAdvanced with short elongation times 
(≤ 60 s) resulted in high rates of chimera formation that 
may have negative downstream impacts on sample diver-
sity estimates. Thus, to improve sequencing results, we 
generally suggest amplifying reads from the V4-V4 region 
using 1-step PCR with KAPA HiFi and a 30 s elongation 
time. We also do not recommend removing chimeric 
sequences if using KAPA HiFi, as this likely unnecessarily 
removes too many real sequences to be worthwhile. This 
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recommendation is based on the fact that samples with 
KAPA HiFi showed no relationship between elongation 
time and chimeric fraction, suggesting even the short-
est elongation time (15 s) was sufficient for full template 
completion. Recent studies have underscored the prob-
lematic nature of uncommon and spurious taxa among 
16S rRNA data for confounding richness estimates and 
comparisons [53]. This problem becomes compounded 
when attempting to use data at low taxonomic levels. The 
16S rRNA gene is reported to have poor phylogenetic 
concordance and it is preferred to use whole genome 
sequences or multiple coding ribosomal gene sequences 
for species delineation instead [54]. While the negative 
impacts of inaccurate workflows depend upon the down-
stream application, a small number of errors may still be 
correctly classified and result in the same conclusions. 
Thus, our aim was to evaluate workflow output without 
assuming downstream applications.

There are limitations to our study that are important 
for consideration. First, specific recommendations for 
microbiome workflows are difficult to make due to the 
limited phylogenetic diversity and structure of the mock 
community we used. Although it is one of the more 
diverse communities used in these types of studies, it 
does not recapitulate the possible diversity of bacteria 
among environmental samples [55]. Furthermore, the 
mock community we used likely impacted the perfor-
mance of the bioinformatic processing programs tested. 
If the parameters among each program were custom-
ized to our mock community we could expect alternative 
outcomes, however, we assumed that many microbiome 
researchers employ default standard operating proce-
dures provided by the software developers [44]. There-
fore, we aimed to examine the data under these typical 
conditions. Another limitation is that our study repre-
sents a “simplistic” model in that our community is made 
using purified and pooled gDNA which excludes both 
sample specific characteristics such as presence of inhibi-
tors as well as the impacts of other attributes including 
choice of DNA extraction methodology, starting tem-
plate concentration, or taxonomic assignment. There is 
a trade-off between taxonomic resolution and accuracy 
that must be considered separately from our study as our 
mock community is insufficiently diverse to model this 
trade-off. Shorter amplicons reduce taxonomic resolu-
tion and limit the ability to assign taxonomy at the genus 
level. Until long-read sequencing technologies are suffi-
ciently validated and high-throughput, we suggest avoid-
ing sacrificing good quality reads and instead selecting 
primer sets that provide less coverage of the 16S rRNA 
gene [34, 56]. Finally, evaluating the rarefaction curves 
for each sample we found sub-sampling 4000 raw reads 
for those indexed with 1-step PCR was sufficient to 

ensure accuracy and coverage in our study was not due 
to chance (Supplemental Fig.  3A), while sub-sampling 
1000 raw reads from samples indexed with 2-step PCR 
appeared to be only moderately sufficient (Supplemental 
Fig.  3B). We acknowledge it is challenging to sequence 
with enough depth to ensure accuracy and coverage of a 
community while managing technical issues like gDNA 
extraction, PCR efficiency, and multiplexing [12].

Conclusions
With a lack of standardized methodologies, reproducibil-
ity and replicability among microbiome studies remains 
problematic. In our evaluation of different methodologi-
cal combinations of sample preparation and bioinfor-
matic analysis workflows, we identified important factors 
to improve accuracy and coverage of a microbiome study 
while limiting biases. We believe these results underscore 
which parameters have greater influence over the accu-
racy of a microbiome study and provide a framework for 
optimizing workflows to a researcher’s needs. This work 
is important at the level of an individual study to deter-
mine guiding principles of microbial ecology but also 
toward the wider goal of addressing the reproducibility 
crisis that exists in the rapidly advancing microbiome 
field.

Methods
Purified bacterial isolates (n = 37) from soil with near full-
length 16S rRNA gene sequences determined by Sanger 
sequencing (GenBank MN186620-MN186656) were 
inoculated on individual Luria–Bertani agar plates and 
incubated overnight (28  °C) (Supplemental Fig.  4; Sup-
plemental Table  1) [57]. A single colony of each isolate 
was transferred to individual 0.2 mL thin-wall PCR tubes 
containing 100 μL sterile DNA grade water and soni-
cated at 50% amplitude for 60 s using a sonic dismembra-
tor with cup horn attachment [58]. Each suspension was 
subsequently centrifuged (60 s at 14,000 relative centrifu-
gal force) and the resulting input supernatants contain-
ing gDNA were quantified using qPCR. The approximate 
16S rRNA copy number of each isolate was determined 
using V4-V4 primers with 58  °C annealing temperature 
(Table  1). Next, gDNA from each isolate was pooled at 
equal volumes to serve as an uneven mock bacterial com-
munity of known presence and approximate abundance. 
Some divergent isolates were found to be polymorphic 
in specific regions of the 16S rRNA sequence while oth-
ers were identical in a region. Thus, we expected that the 
37 isolates corresponded to 27 unique sequence variants 
for the V3-V4 region, 23 sequence variants for the V4-V4 
region, and 25 sequence variants for the V4-V5 region.

To compare the impact of library preparation factors, 
we performed all possible methodological combinations 
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(180 combinations total) in duplicate for three poly-
merases, three alternative primer pairs, two indexing 
approaches (1-step or 2-step), five alternative elonga-
tion times, and two annealing temperature offsets (Sup-
plemental table  3). PCR was performed using primers 
flanking either the V3-V4 or V4-V4 regions of the 16S 
rRNA gene or the top-scoring primer pair predicted by 
DesignSignatures (Table  1) [26, 62]. The DesignSigna-
tures primer set spans the V4-V5 region and was gener-
ated with the default parameters to maximize coverage 
and accuracy to 6,482 genera in the Genome Taxonomy 
Database r89 bacterial and archaeal 16S rRNA database 
[63]. For the 1-step PCR indexing approach, primers con-
sisted of the 16S rRNA region-specific sequence, an eight 
nucleotide (nt) sequence index, and adapters specific to 
the Illumina MiSeq. All primer sets were subjected to 
gradient PCR to determine their empirical melting tem-
perature  (Tm) with the pooled mock bacterial community 
gDNA as a template (Supplemental table 4).

PCR indexing
For 1-step PCR indexing, a total of 2 μL of each primer 
(10  μM) and 5 μL PCR pre-mix (iTaq Universal SYBR 
Green Supermix, SsoAdvanced Universal SYBR Green 
Supermix, or KAPA HiFi HotStart Real-time PCR Mas-
ter Mix) were used for each reaction. A total of 1 μL of 
pooled gDNA was then added to each reaction. The 
cycling conditions on an Applied Biosystems StepO-
nePlus Real-Time PCR system began with an initial 
denaturation of 98  °C for 15  s followed by 40 cycles of 
annealing for 30  s, and elongation at 80  °C for 15, 30, 
60, 120, or 180 s. The resulting indexed amplicons were 
pooled into a single library.

PCR cycling conditions for 2-step PCR indexing were 
as described above but with corresponding non-indexed 
primer pairs. Following the initial PCR, the resulting 
amplicons were diluted 1:50 and used as a template for 
five additional cycles of amplification to incorporate the 
corresponding indices used in the 1-step PCR [6, 64, 
65]. A negative DNA template control was included for 

all 2-step PCR combinations; however, a single indexed 
primer pair was used among all negative controls that 
shared the same non-indexed primer pair. The resulting 
indexed amplicons were pooled into a single library sepa-
rate from the 1-step PCR library.

Library clean‑up and sequencing
An equal volume of each pooled amplicon library was 
independently cleaned and concentrated using Agen-
court AMPure XP PCR purification beads according to 
manufacturer’s instructions. The two libraries (1-step and 
2-step PCR) were subsequently spiked with 15% PhiX 
control DNA and sequenced in independent runs by the 
Center for Medicine and the Microbiome at the Univer-
sity of Pittsburgh on an Illumina MiSeq System with cus-
tom sequencing primers and a 2 × 300 bp MiSeq Reagent 
Kit v3 (Supplemental table  5). Sequences were demulti-
plexed and converted from base call files to FASTQ files 
using MiSeq Reporter software (v.2.6.2.3). FASTQ files 
for both index reads (i7 and i5) were generated by speci-
fying the CreateFastqForIndexReads setting in the MiSeq 
Reporter.exe.config file. Raw reads are available from the 
Sequence Read Archive (BioProject PRJNA638427).

Bioinformatic workflow
Raw index reads and associated Phred-scaled index read 
quality (Q) scores were generated for every possible i7 
and i5 combination in each sequencing run, including 
those combinations that were not specifically assigned to 
a sample. These were evaluated for cross-talk by calculat-
ing the proportion of reads assigned to unexpected ver-
sus expected index combinations [66]. Sample sequence 
reads (R1 and R2) were controlled for uneven sampling 
by reviewing the overall sequence read count distribution 
and rarified for consistency by randomly sub-sampling 
sequence reads with replacement approximately at the 
first quartile of each sequencing run (1-step PCR: 4000 
reads per sample; 2-step PCR: 1000 reads per sample) 
prior to subsequent analyses [67].

Table 1 Primers used in the multi-factorial study

a Determined relative to the E. coli strain K-12 MG1655 16S rRNA gene sequence (GenBank accession number U00096)

Primer Sequence (5’‑3’) E. coli positionsa Variable regions Amplicon sizea 
(nt)

Reference

357f CCT ACG GGA GGC AGCAG 344–360 V3-V4 432 Stackebrandt 1991 [59]

806r GGA CTA CNVGGG TWT CTAAT 792–811 Apprill 2015 [60]

515f GTG YCA GCMGCC GCG GTAA 520–538 V4-V4 254 Parada 2016 [61]

806r GGA CTA CNVGGG TWT CTAAT 792–811 Apprill 2015 [60]

541f GYC AGC MGCMGCG GTA ATAC 522–541 V4-V5 373 Present study

914r GYC CCC GTC WAT TCMTTT GAG TTT 914–937
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Two approaches were undertaken to assess the impact 
of library preparation factors on the raw data. First, a 
custom script was used to determine mean string edit 
distance to the nearest mock community member for 
reads of each sample and mean Q-scores [68, 69]. Raw 
sequence reads were then trimmed based on Q-score 
using the TrimDNA function in DECIPHER v.2.25.3 
and remaining reads were evaluated for mean sam-
ple read length (Additional File 1) [70]. Second, raw 
sequence reads for each sample were aligned with the 
pairwiseAlignment function and merged into amplicons 
with a minimum overlap of 50 nt. Amplicons were then 
trimmed to the high-quality region with a minimum 
length of 200 nt using TrimDNA and clustered with the 
Clusterize function at a similarity threshold of 100%. The 
resulting clusters were matched to the mock community 
sequences with the vcountPattern function to determine 
the quantity of clusters that exactly matched to the mock 
community. To evaluate sequencing depth at the selected 
sub-sampling level (1-step PCR: 4000 reads per sample; 
2-step PCR: 1000 reads per sample), a rarefaction curve 
was constructed for each sample with rarecurve from the 
resulting count table for exact matches.

All microbiome pipelines recommend read trimming 
as a preliminary step. Since the corresponding ampli-
con size of the V4-V4 primer set is approximately 254 
nt, adapter read through occurred with the 2 × 300  bp 
MiSeq Reagent Kit and required trimming prior to sub-
sequent processing. Next, trimming lengths to maxi-
mize read merging during downstream bioinformatic 
processing were pre-determined with a moving aver-
age (window size of 10) to the mean Q-scores along the 
original raw R1 and R2 sequences of each primer set. 
Trimming lengths were selected such that mean Q-score 
remained above Q30 or the minimum merged overlap of 
R1 and R2 remained at least 30 nts. Raw sequence reads 
from each of the 180 workflows were then processed 
using the microbiome programs DADA2, QIIME2, and 
mothur, resulting in a final total of 540 different workflow 
combinations.

The microbiome program DADA2 v.1.14.0 was applied 
independently to raw sequence data from each sample 
with standard parameters defined in the pipeline tutorial 
[71]. Briefly, sequence reads were filtered for a maximum 
of two expected errors in each read and trimmed accord-
ing to pre-determined lengths based on moving average 
Q-score as described. For 1-step PCR, V3-V4 reads were 
trimmed to 295 and 189 nts, V4-V4 reads to 0 (no trunca-
tion) and 189 nts, and V4-V5 reads to 207 and 194 nts for 
R1 and R2, respectively. For 2-step PCR the V3-V4 reads 
were trimmed to 287 and 173 nts, V4-V4 to 0 and 186 
nts, and V4-V5 to 187 and 214 nts. The DADA2 inference 
algorithm was then applied to the resulting sequence 

reads prior to merging and ASV construction. In the 
rare case that mergePairs failed for a particular sample, 
only R1 was used in the DADA2 pipeline [22]. Chimeric 
sequences were identified and removed from the ASV 
table using the DADA2 function removeBimeraDenovo.

The command-line QIIME 2 core v.2020.2 distribution 
was installed within a conda v.4.8.3 environment and was 
applied independently to raw sequence data from each 
sample with standard parameters defined in the QIIME2 
"Atacama soil microbiome" and "Moving pictures" tuto-
rials [72]. Briefly, sequence reads were processed using 
the q2-dada2 plugin (DADA2 v.1.10.0 and R v.3.5.1) for 
trimming, merging, chimera removal, and ASV determi-
nation [71]. In the rare case that qiime dada2 denoise-
paired failed to merge reads due to the low quality of a 
particular sample, qiime dada2 denoise-single was imple-
mented for only the R1 read in the QIIME2 pipeline.

Mothur v.1.43.0 was also applied independently to raw 
sequence data from each sample with standard param-
eters defined in the MiSeq standard operating proce-
dures [73]. Briefly, sequence reads were merged with a 
maximum of 8 homopolymers, 0 ambiguous bases, and 
a maximum amplicon length depending on the corre-
sponding primer set (V3-V4: 450; V4-V4: 275; V4-V5: 
400) (Supplemental Fig. 2). A customized reference align-
ment was constructed for each primer set with the small 
subunit rRNA (SSU) SILVA database (v.r132) and only 
those amplicons aligning to the appropriate regions were 
retained [74]. Unique amplicons were filtered and those 
with up to two nucleotide differences were pre-clustered. 
Next, chimeras were removed from the pre-clustered 
amplicons using VSEARCH v.2.13.3 and remaining reads 
were clustered into OTUs at ≥ 97% similarity cutoff [75]. 
The most abundant sequence variant in each cluster was 
selected as the OTU representative using get.oturep.

Results assessment
For each analysis pipeline, tables containing variant 
counts were exported along with a FASTA file con-
taining each representative sequence variant. Rep-
resentatives were then assigned to a category: exact 
match, primer-dimer, chimera, off-target amplifica-
tion, mismatched, or contamination. Briefly, sample-
wise sequence variants were evaluated using a custom 
script that extracts sequences matching the mock com-
munity 16S rRNA sequences exactly (string edit dis-
tance of zero excluding length differences). The inexact 
matches were then examined for substrings containing 
a match to the sample’s respective primer sequence. 
Those which matched were removed as primer-dimers. 
Remaining sequence variants were then examined for 
chimeras using DECIPHER’s FindChimeras web tool 
with short-length sequence parameters and compiled 
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with chimeras identified earlier with program specific 
implementations of chimera finding tools [26]. All 
inexact matches that were not identified as primer-
dimers or chimeras were classified using IDTAXA 
with a modified SSU SILVA database (r132) [74, 76]. 
Sequences that could not be classified ("unclassified_
Root") were presumed off-target amplification and 
subsequently evaluated for sequence similarity using 
the Basic Local Alignment Search Tool (BLAST) web-
interface v.2.10.0 + using the non-redundant nucleo-
tide sequence database [77]. Matched targets with the 
lowest Expect (E) values to each inexact match query 
sequence were examined to confirm those likely to be 
off-target amplification. Query sequences that were 
closest to a non-16S rRNA sequence were considered 
off-target amplification. The remaining sequence vari-
ants (those matching a 16S rRNA sequence in BLAST) 
along with the sequence variants previously classified 
as 16S rRNA with IDTAXA were presumed to be con-
taminants or mismatched variants of mock commu-
nity members. Inexact query sequence variants were 
defined as mismatches if they were within the same 
clade as a mock reference sequence when clustered 
using the average-linkage method and a 15% distance 
cutoff. Any inexact query sequences remaining were 
considered contamination.

After classifying sequence variants from all workflows, 
we calculated the relative abundance of exact matches 
(mock member output relative abundance = mock 
member read count / sum of read counts for all exact 
matches in the corresponding workflow), accuracy (accu-
racy = number of sequence reads from a workflow that 
exactly match mock sequence variants / total number of 
denoised sequence reads from the same workflow), and 
coverage (coverage = number of unique sequence vari-
ants from a workflow that exactly match mock sequence 
variants / total number of expected unique sequence 
variants for the same workflow) for each workflow. For 
example, if there are 1192 reads remaining for a workflow 
after denoising and 1141 of them exactly match a mock 
sequence variant, the accuracy is 1141 / 1192 = 0.95. If 
the reads from this same workflow that used the V4-V5 
primer set collapses into 10 unique sequence variants 
(ASVs or OTUs) that exactly match mock sequence vari-
ants, the coverage for the workflow is 10 / 25 = 0.4. In this 
particular case, 95% of reads from a sample mapped to a 
member of the mock community while 40% of the mock 
community members were identified. These data were 
used for scatter plots to visualize the trade-off between 
accuracy and coverage. Compositional bias was then 
determined by correlation between the qPCR estimated 
(input) relative abundance of individuals and the relative 
abundance of exact matches (output) with Spearman’s 

rank correlation coefficient (ρ) using the cor function in 
R. Workflows without output exact matches were omit-
ted from the correlation.

Statistical analyses
R v.4.0.3 was used for all statistical analyses [78]. The 
impact of each methodological factor on raw R1 and R2 
sequences was evaluated by calculating their respec-
tive proportion of variation explained (proportion of 
variation explained = factor sum of squares / total sum 
of squares). Differences between expected and unex-
pected index combinations for cross-talk were cal-
culated using the t.test function and represented as 
mean ± standard deviation with effect size reported 
using the Hedges g (g) for independent groups (g = dif-
ference in group means / pooled and weighted standard 
deviation). Differences in distributions for the aver-
age edit distance, Q-score, and trimmed read length 
for the raw sequences were calculated using a two-
sided Kolmogorov–Smirnov test (KS test) with the ks.
test function in R and effect size (D) provided by the 
KS test statistic. Analysis of variation with considera-
tion of second-order interaction effects was performed 
with the aov function and used to evaluate differences 
among means of coverage, accuracy, and ρ for factors 
relating to categorically binned sequences. For all sig-
nificant differences in factors, we computed the Tuk-
ey’s Honestly Significant Difference with TukeyHSD 
to assess the significance of differences between pairs 
of group means and eta squared (η2) to compute the 
percentage of variance accounted for by each factor 
(η2 = sum of squares between factors / sum of squares 
total). Lines of best fit for scatter plots were smoothed 
with lowess in R. Differences among groups were con-
sidered statistically significant if the calculated p value 
was less than 0.05. Heatmaps were constructed with the 
R packages reshape2 v.1.4.4, circlize v.0.4.12, and Com-
plexHeatmap v.2.7.1 [79–81]. Violin plots represent-
ing factor sample average were constructed using the 
R package vioplot v.0.3.4 [82]. Rarefaction curves were 
constructed using the R package vegan v. 2.6.4 [83].
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