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Abstract
Background Swine production expanded in the last decades. Efforts have been made to improve meat production 
and to understand its relationship to pig gut microbiota. Copper (Cu) is a usual supplement to growth performance 
in animal production. Here, two performance studies were conducted to investigate the effects of three different 
sources of Cu on the microbiota of piglets. A total of 256 weaned piglets were randomly allocated into 4 treatments 
(10 replicates per treatment of 4 piglets per pen in Trial 1 and 8 replicates of 3 piglets per pen in Trial 2). Treatments 
included a control group (fed 10 mg/kg of Cu from CuSO4), a group fed at 160 mg/kg of Copper (II) sulfate (CuSO4) 
or tri-basic copper chloride (TBCC), and a group fed with Cu methionine hydroxy analogue chelated (Cu-MHAC) at 
150, 80, and 50 mg/kg in Phases 1 (24–35 d), 2 (36–49 d), and 3 (50–70 d), respectively. At 70 d, the cecum luminal 
contents from one pig per pen were collected and polled for 16 S rRNA sequencing (V3/V4 regions). Parameters were 
analyzed in a completely randomized block design, in which each experiment was considered as a block.

Results A total of 1337 Operational Taxonomic Units (OTUs) were identified. Dominance and Simpson ecological 
metrics were statistically different between control and treated groups (P < 0.10) showing that different Cu sources 
altered the gut microbiota composition with the proliferation of some bacteria that improve gut health. A high 
abundance of Prevotella was observed in all treatments while other genera were enriched and differentially 
modulated, according to the Cu source and dosage. The supplementation with Cu-MHAC can modify a group of 
bacteria involved in feed efficiency (FE) and short chain fatty acids (SCFA) production (Clostridium XIVa, Desulfovibrio, 
and Megasphera). These bacteria are also important players in the activation of ghrelin and growth hormones that 
were previously reported to correlate with Cu-MHAC supplementation.

Conclusions These results indicated that some genera seem to be directly affected by the Cu source offered to the 
animals. TBCC and Cu-MHAC (even in low doses) can promote healthy modifications in the gut bacterial composition, 
being a promising source of supplementation for piglets.
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Background
The microbiota in the mammalian gastrointestinal tract 
(GIT) has about 1014 bacteria [1]. Species interact and 
contribute to the metabolism in processes such as energy 
acquisition from food [2]. The cecum is one of the most 
microorganisms diverse to the gastrointestinal segments. 
The high prevalence of fermentative microorganisms is 
supported by the meaningful function of the large intes-
tine (cecum and colon), in absorbing short-chain fatty 
acids (SCFA), in addition to vitamin K, B7, potassium, 
and sodium [3]. The large intestine contains gut-associ-
ated lymphoid tissues (GALT) that are important sites for 
intestinal effector lymphocyte generation, thus contribut-
ing to adaptive immune responses [4].

The complex gut microbiota influences intestinal 
homeostasis and immunologic process, for example, the 
anti-inflammatory role [5]. Some factors such as age, 
diet, and drugs are known to be microbiota composi-
tion modifiers [6]. Several GIT microbiomes have been 
studied to elucidate their role in the modulation of gut 
health, such as human [7, 8], bovine [9], chicken [10, 11], 
and swine [12, 13]. Swine is the second most widely eaten 
meat worldwide, after poultry [14], so efforts to improve 
production are essential to develop the industries and 
increase the availability of this food to the population. 
In the piglet post-weaning transition, GIT microbiota 
changes [15] can increase the incidence of diarrheal 
infection [16, 17]. To prevent diseases and improve feed 
efficiency, antibiotics are still widely used. However, anti-
biotics are banned in several countries. Supplements 
could be used as an alternative, but studies comparing 
the benefits and synergistic and adverse effects of alter-
native supplements must be thoroughly studied [16, 18].

The feed supplements usually administered are pre-
biotics, plant extracts, and minerals, among others [19, 
20]. Trace minerals are required for animal development 
while presenting antimicrobial properties when used in 
doses higher than the nutritional requirements [21]. For 
instance, zinc (Zn) is fundamental to biological processes 
in mammals [21], and its supplementation as zinc oxide 
(ZnO) has decreased diarrhea cases, improving piglet 
growth [19, 20]. Copper (Cu) is crucial to many metal-
loenzymes, cellular protection against oxidative stress 
and metabolic reactions [19], and it has been used for 
its potential antibiotic properties since ancient times 
[22]. The uptake of Cu seemed to be regulated by differ-
ent transporters and transport mechanisms and depends 
on the source with which it is associated [23]. A study on 
supplementation with tribasic copper chloride (TBCC) 
and copper sulfate (CuSO4) showed that both improved 
performance in weaning pigs [24]. However, evidence 
indicates that TBCC has fewer adverse effects on animals 
than CuSO4 [19].

Despite the benefits, some undesirable effects are asso-
ciated with supra-nutritional levels of Cu (125 to 250 mg/
kg) depending on the source (i.e., antagonisms, vitamin 
oxidation, high excretion, presence of contaminants, 
etc.). The organic source Copper methionine hydroxy 
analogue chelated (Cu-MHAC) has been demonstrated 
to be more bioavailable, so lower concentrations are 
needed for similar growth promoter effects [25]. In addi-
tion, piglets fed lower levels of Cu through Cu-MHAC 
had an improvement in general performance than when 
fed CuSO4 and TBCC. The results also suggested an 
increase in mRNA expression of ghrelin and serum 
growth hormone (GH) levels in the animals [26]. To add 
to the knowledge on the mode of action of Cu sources, 
this study investigated the cecal microbiota composition 
of piglets after dietary supplementation with Cu-MHAC, 
CuSO4, or TBCC.

Methods
Animal and sample collection The experimental proce-
dures followed Gonzalez-Esquerra et al. [26]. Two trials 
of equal design were conducted sequentially in the same 
open-side barn piglet facility with slatted-floor pens. The 
barn was not cleaned before the trials to simulate common 
adverse conditions. A total of 256 commercially acquired 
Agroceres PIC piglets weaned at 24 ± 2 d were used. Trial 1 
(summer) included 160 piglets (80 barrows and 80 guilts) 
weighted 5,43 ± 0,90  kg and Trial 2 (spring) included 96 
piglets (48 barrows and 48 f ) weighted 4,73 ± 0,95 kg. Pigs 
were allocated to four treatments in a completely ran-
domized block design with ten replicates per treatment. 
We used four pigs per replicate in Trial 1 and three pigs 
per replicate in Trial 2 in four treatments. All groups were 
fed corn, soybean meal, and dairy by products based diets 
and submitted to dietary treatments from 24 to 70 days 
as follows: (i) the Control received 10 mg/kg of Cu from 
copper sulfate, (ii) the second group was supplemented 
with 160  mg/kg Cu from CuSO4, (iii) the third group 
supplemented with 150 (from 24 to 35 d), 80 (36 to 49 d) 
and 50 mg/kg Cu (50 to 70 d) from Cu-MHAC, and (iv) 
the fourth group supplemented with 160 mg/kg Cu from 
TBCC. Zinc oxide was included during the first 2 phases 
post-weaning at 2,200 and 1,500 mg/kg as commonly used 
in piglets in Brazil. Feed and water were provided ad libi-
tum throughout the entire experimental period and the 
diets contained antibiotics (halquinol at 200 g/ton in all 
phases and amoxicillin at 255 g/ton in Phase 2 only). At 
70 d of age, animals were sacrificed and the cecum lumi-
nal contents from one pig per pen (72 animals) were col-
lected, snap-frozen in liquid nitrogen, and stored at -80 ºC 
until analyses.

DNA extraction and 16  S rRNA sequencing The 
genomic DNA purification, quantification, sequencing, 



Page 3 of 11Paganin et al. BMC Microbiology           (2023) 23:92 

read processing, and phylogenetic analyses were per-
formed as previously described (9). Briefly, genomic DNA 
from each sample was purified using QIAamp Fast DNA 
Stool Mini Kit (QIAGEN, Hilden, Germany) following the 
manufacturer. Then, DNA quality was evaluated by aga-
rose gel electrophoresis and quantified using the NanoVue 
Plus spectrophotometer (GE Healthcare, Marlborough, 
USA). After quantification, all samples were diluted at 50 
ng/µL. Four pools per treatment (two pools per trial) were 
produced using the same volume (5 µL) of 4 samples for 
Trial 1 and 3 samples for Trial 2. The pooled samples from 
the cecum were used to amplify approximately 460 bp of 
the 16  S ribosomal RNA by PCR using specific primers 
V3 and V4 (Klindworth et al., 2013). PCR products were 
used to build the metagenomics library for sequencing 
using MiSeq Reagent kit v3 (600 cycles) (Illumina Inc., 
San Diego, California, USA). The sequencing of partial 
16 S ribosomal RNA was performed by next-generation 
sequencing using the Illumina MiSeq platform that pro-
duced thousands of 300 bp paired-end reads (2 × 300 bp) 
for each library.

Bioinformatics analysis The reads from each pool were 
analyzed on USEARCH (version 10.0.240) [27]. The pair 
of reads were merged with a minimum of 200 bp and fil-
tered by the quality and unique abundance. This data was 
used for the rarefaction curve, alpha diversity calculation, 
and Venn diagram (http://bioinformatics.psb.ugent.be/
webtools/Venn/). We tested a total of eleven alpha met-
rics regarding diversity (Richness, Chao 1, Shannon, Jost, 
and Jost 1) and evenness (Simpson, Dominance, Equi-
tability, Robbins, Berger, and Parker). The phylogenetic 
categories found were compared to the Ribosomal Data 
Project (RDP) classifier [28] with 0.80 to a cutoff on the 
USEARCH.

Statistical analyses Data were analyzed in a completely 
randomized block design using PROC GLM of SAS 9.3 
(SAS Inc., NC, 2011) with each experiment used as a block. 
Differences among means were compared by Tukey’s least 
significant difference. Orthogonal contrasts were used to 
test relevant comparisons which included the effect of 
Cu-MHAC vs. feeding inorganic Cu (CuSO4 and TBCC), 
CuSO4 vs. TBCC, and nutritional vs. supra-nutritional 
Cu levels (Control vs. Others). Differences among the 
groups were considered significant when p-value < 0.05 
while p-values ranging from 0.05 to 0.10 was denoted as 
a statistical trend since they were also biologically rel-
evant, as previously demonstrated [29]. Analysis of vari-
ance (ANOVA) was used to determine if the means of the 
treatments were different. Non-parametric statistics were 
applied to the data that did not meet the assumptions of 
the statistical model using the Freedman test. The hierar-
chical cluster of the heatmap made with pvclust (version 

2.0.0) [30] aimed at grouping treatments and OTUs, test-
ing with 10,000 interactions.

Data availability 16  S sequencing data for the control 
and all treatments have been submitted to the NCBI under 
BioProject ID: PRJNA798269 and in the following link: 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA798269.

Results and discussion
Treatments with different copper sources and levels were 
related to the modification of the microbial composition in 
piglets
We sequenced 16 pooled samples from the cecum of 
256 animals (four replicates of each treatment: Control, 
Cu-MHAC, CuSO4, and TBCC). Pooled samples were 
used to reduce individual variabilities focusing on the 
modifications produced by the treatments. Our analy-
ses revealed that 1,858,722 high-quality sequences were 
obtained and distributed in 1,337 Operational Taxo-
nomic Units (OTUs) (Table S1). Although the number 
of reads and OTUs was different among samples, the 
rarefaction plots (Fig. S1a) of the variables (OTUs and 
reads), and (Fig. S1b) of the Chao1 (alpha diversity met-
ric), with the data subsampled (± 10,000 per sample), 
showed that all curves were rarefied, so the collected data 
were representative of the sampled diversity. Beta diver-
sity (Bray-Curtis dissimilarity) analysis indicated that the 
diversity of the samples collected in the same trial was 
more similar, considering the bacterial community for 
each one, as observed in Principal component analysis 
(PCA) in Fig. S1c. The impact of the treatment can be 
considered lower, considering this beta diversity metric.

Eleven alpha diversity metrics analyzed were divided 
into richness and equitability categories. Table  1 shows 
the mean of each metric by treatment, the coefficient of 
variation of the mean (CVmean), and the statistics of the 
mean. The uniformity and equitability index measured by 
Buzas-Gibson, Robbins, and equitability metrics showed 
a significant statistical difference between the two trials 
(used as blocks). The gut environment has great impor-
tance on the microbiota composition and microbial 
metabolism. Sometimes, a small change in environmental 
factors such as temperature or pH could lead to drastic 
alterations [31]. Alterations could be related to the season 
in which that trial was conducted. Considering the effect 
of treatment, the mean of treatments of Dominance and 
Simpson diversity metrics tended to indicate differences 
(P < 0.10) in the analysis of variance (ANOVA), pointing 
to an effect of high levels of Cu on the evenness of the 
microorganisms in the gut (as seen by contrasting Con-
trol vs. Others). The decrease in Simpson and increase 
in Dominance diversity indexes indicate that Cu-MHAC 
tended to increase the microorganism diversity com-
pared to TBCC (P < 0.10 by contrast) (Table 1).

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA798269
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Treatments with different copper sources regulate piglets’ 
gut microbiota
A total of 946 OTUs were shared among treatments, 
while some OTUs were exclusive to one treatment 
(Fig. 1A). The Control treatment presented 23 exclusive 
OTUs, CuSO4 presented 20, Cu-MHAC presented 36, 
and TBCC presented 29. Although some of these OTUs 
were from the Firmicutes phylum, they were represented 
by different OTUs related to a specific treatment, indicat-
ing that they may represent different species of this phy-
lum. Firmicutes is abundant in swine gut microbiota [32, 
33], comprising the class Clostridia that embraces strict 
anaerobe genera as Clostridium, Ruminococcus, Dorea, 
and Eubacterium. These members can be associated with 
gut homeostasis, immune system, or recognized patho-
gens on a global scale, like Clostridium difficile [34–37].

The genus Lysobacter (OTU 1,263), the order Clostridi-
ales (OTU 1,247), and the family Ruminococcaceae (OTU 
1,247) were only found in the Control group. Several spe-
cies of Lysobacter are associated with antibiotic sources 
and with cooper resistance [38], while Ruminococcaceae 
has been shown as adjuvants to immune checkpoint 
inhibitors and negatively associated with the presence 
of endotoxin [39]. Species from the Clostridiales order 
were reported to attenuate inflammation and allergic dis-
eases. In addition to the OTU 1,247 found exclusively in 
the control group, we found a specific genus known as 
Clostridium cluster XIVa. This genus plays an important 
role in intestinal homeostasis, and it was increased with 
TBCC treatment, as later discussed (Table 2).

Cloacibacterium (OTU 266) was found exclusively in 
animals treated with Cu-MHAC. Cloacibacterium has 
four recognized species [40] and it was statistically more 

abundant in unreactive (“health”) ileocecal lymph nodes, 
in comparison to pathologically changed nodes of slaugh-
tered pigs [29], suggesting a benefit for swine health.

The complete analysis of the OTUs revealed the ensem-
ble of 18 phyla. The four prevalent phyla in all treatments 
were Bacteroidetes, Firmicutes, Proteobacteria, and Spi-
rochaetes. The clustering using the Euclidean distance 
showed the clusterization between CuSO4 and TBCC 
and another cluster between Cu-MHAC and control 
samples (Fig. 1B, Table S2, and Fig. S2), as also found in 
a study that analyzed the cecal microbiota of piglets after 
antibiotic supplementation [41]. Bacteroidetes is a com-
ponent of several microbiomes and the phylum is domi-
nant in post-weaning piglet feces [15]. Their members are 
associated with the degradation of polysaccharides and 
proteins [42] contributing to gut homeostasis and health 
[43]. Bacteroidetes together with Firmicutes are related to 
obesity in humans [44, 45] and could be involved in the 
weight gain in swine.

Cu-MHAC showed (numerically) the lowest mean 
of Proteobacteria and Spirochaetes (approximately 
− 1.4 and − 2.1-fold compared to the other treatments), 
while TBCC showed the highest mean of both phyla 
(P > 0.05) (Table S2). A predominance of Proteobacte-
ria has been reported in the wastewater of a farm envi-
ronment, and its proportion was correlated to several 
disorders, including dysbiosis and inflammatory bowel 
disease (IBD), suggesting a close relationship between 
these bacteria and inflammation [46–50]. Spirochaetes 
includes a large group of motile bacteria with four clini-
cally important genera: Treponema, Borrelia, Leptospira, 
and Brachyspira. They are disease agents for syphilis 
and Lyme disease. Bacteria included in this phylum are 

Table 1 Alpha diversity metrics means by treatment, ANOVA, and orthogonal contrasts analysis
Treatment Alpha diversity metrics

Berger 
Parker

Buzas 
Gibson

Chao 1 Dominance Equitability Jost Jost 1 Richness Robbins Shannon Simp-
son

Control 0.1190 0.0011 723.2250 0.9692 0.6827 49.1000 88.9250 722.0000 0.1607 1.9475 0.0306

Cu-MHAC 0.0998 0.0008 199.1000 0.9750 0.6957 59.6000 104.7500 798.0000 0.1400 2.0150 0.0250

CuSO4 0.0968 0.0011 745.4000 0.9787 0.6940 59.4500 101.0750 744.2500 0.1477 1.9900 0.0212

TBCC 0.1212 0.0008 796.0500 0.9700 0.6832 51.8500 96.7000 795.0000 0.1367 1.9825 0.0301

CVmean (%) 30.7300 38.1200 8.7000 0.5000 3.2600 21.6200 17.0200 8.7400 17.6000 3.6300 17.9800

P-value for 
ANOVA
Trial 0.5294 0.0167** 0.1433 0.9306 0.0689* 0.4072 0.2818 0.1436 0.0434** 0.2635 0.8741

Treatment 0.6451 0.4934 0.3300 0.0908* 0.7711 0.5155 0.5890 0.3313 0.5784 0.6298 0.0892*

P-value for 
Orthogonal 
contrasts
Control vs. Others 0.5141 0.3868 0.1666 0.0920* 0.5374 0.2762 0.2410 0.1671 0.2219 0.2703 0.0989*

Cu-MHAC vs. 
(CuSO4 + TBCC)

0.5177 0.2288 0.2272 0.0916* 0.7495 0.6191 0.9732 0.2281 0.5642 0.8466 0.0867*

CuSO4 vs. TBCC 0.3860 0.7304 0.9495 0.1772 0.4476 0.3765 0.5084 0.9505 0.8616 0.5370 0.1676
Significance level was considered p-value < 0.05**, and p-value from 0.05 to 0.10 indicated a statistical trend*. Coefficient of variation of the mean (CVmean)
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common in pigs and adult chickens with colitis/typhlitis, 
diarrhea, poor growth rates, and weight loss [51, 52].

Euryarchaeota abundance was high in the Con-
trol group than in copper-treated animals (P = 0.0442 
by orthogonal contrast) and numerically lower in Cu-
MHAC treated animals (P = 0.0812). This phylum is one 
of the most prevalent in the gut of swine and, together 
with Proteobacteria and Fusobacteria, are known as 
harmful to the intestine [53, 54]. The occurrence of mem-
bers from Synergistetes was also decreased in the Cu-
MHAC treatment. The abundance of this phylum was 
decreased with the elevation of Cu2+ and Zn2+ concentra-
tions in swine wastewater and it was apparently involved 
in crude fiber (CF) digestibility [55, 56].

The cluster of the twenty most prevalent genera 
together with the “Unassigned” bacteria formed 2 dis-
tinct groups: a cluster of Cu-MHAC and Control, and 
another of CuSO4 and TBCC. (Fig. 1C). These most prev-
alent genera have been reported in several studies show-
ing implications for modification of metabolic sources or 
biological activities [41, 57, 58] (Table S3). Among them, 
Prevotella prevailed numerically (mean = 32.8%; P > 0.10) 
(Table 2), especially in Cu-MHAC. This is in agreement 
with previous studies that showed a high abundance of 
the genus in the pig colon [59] and cecum [60]. Prevotella 
includes species that can be associated with (i) inflam-
matory features [61], (ii) high dietary consumption of 
carbohydrates [62] and fibers [63], (iii) increasing glyco-
gen storage and protection against glucose intolerance 
[64], and (iv) more prevalent in healthy than diarrheic 
fecal samples of pigs [65, 66]. Therefore, the prevalence 
of this genus in the cecal microbiota can offer advantages 
to the health of piglets. In addition, in a recent study of 
our group, we showed that Cu-MHAC supplementa-
tion is accompanied by a significant increase of ghrelin 
mRNA in pigs [26]. The increase in ghrelin likely a stimu-
lator of GH secretion thus acting as a positive factor in 
the performance of pigs and increasing weight gain [26]. 
Consistently, Queipo-Ortuño et al. found a relationship 
between gut microbiota and appetite-regulating hor-
mones that associates ghrelin levels with an increase in 
the Prevotella genus in rats’ gut [67]. Considering that 
the piglets employed in this study had been also studied 
by Gonzalez-Esquerra [26], our results strongly supports 
the same relationship observed in rats. The increase of 
ghrelin and Prevotella phyla observed in the Cu-MHAC 
treatment was also important for a better feed conver-
sion ratio (FCR) in our pigs. Additionally, the Cu-MHAC 
treatment also showed a numerical enrichment (Fig. 1C) 
in Oscillibacter (mean = 2.53%; P = 0.1450) which is a 
genus that has a recognized role in anti-inflammatory 
metabolites production [68].

Using 16  S rRNA sequencing, we were unable to dif-
ferentiate between the Escherichia and Shigella genera 

since their V3-V4 sequences are identical. Although a 
previous study reported a decrease in Escherichia 
coli persistence after piglets received CuSO4 (175  mg 
kg-1) [69]. Our results showed a different pattern, since 
the category in which Escherichia and Shigella were 
grouped increased in all Cu treatments as shown by 
orthogonal contrast (P = 0.0245). Interestingly, the high-
est mean (mean = 3.8026) was recorded in the TBCC 
group (Table 2). Thus, because the 16 S analysis bias, this 
enrichment could be caused by an increase in Shigella or 
other Escherichia species that are commonly related to 
enteric diseases [70, 71]. Nonetheless, further studies are 
needed to clarify this point.

CuSO4 showed numerical enrichment in (i) Helico-
bacter (mean = 0.1985; P = 0.1110) (Fig.  1C) includes 
pathogenic members for animals and humans [72] caus-
ing colitis [47]; (ii) Roseburia (mean = 3.0873; P = 0.2500) 
that correlates with anti-inflammatory properties 
due to SCFAs production [73]; and (iii) Succinivibrio 
(mean = 5.9400; P = 0.2242), which produces succinate 
[74] and is a potential fiber-degrader [75]. Meanwhile, 
the Control had increased (Table  2) (i) Megasphaera 
(mean = 1.6950; P = 0.0686), which produces amino acids 
and vitamins [76], and (ii) Paracteroides (mean = 2.7010) 
and Bacteroides (mean = 1.5775; P = 0.2582), both bacte-
riocin producers that can protect the gut against exog-
enous microorganisms [77].

The administration of different copper sources influenced 
the specific modulation of Clostridium XIVa, Desulfovibrio, 
and Megasphera
The 20 most prevalent genera were compared among 
Cu treated and control groups, taking into account the 
trial and treatment. The results showed that nine bac-
terial groups (Prevotella, Treponema, Clostridium, 
Desulfovibrio, Megasphera, Streptococcus, Roseburia, 
Acidominococcus, and Escherichia/Shigella) were dif-
ferentially regulated (P < 0.05) between the two different 
trials. This indicates an impact of the environment on 
the microbiota since trials were done in different sea-
sons. However, Clostridium XIVa, Desulfovibrio, and 
Megasphera had a regulation by treatment or source of 
Cu. Desulfovibrio increased when higher levels of Cu 
were used (P < 0.05 by contrast). In addition, CuSO4, 
Cu-MHAC, and TBCC increased Desulfovibrio preva-
lence compared to the Control (P < 0.001). An incre-
ment in the cluster Clostridium XIVa was observed only 
when the organic source or TBCC was used instead of 
CuSO4 (P < 0.05). For this cluster of bacteria, high levels 
of CuSO4 seem to have a role in the reduction of these 
microorganisms, since their abundance was lower and 
not different from the Control (Table  2). Megasphera 
(P = 0.0686) abundance was reduced by supra-nutritional 
levels of Cu (P < 0.05 by contrast).
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Desulfovibrio strains play an important role in the 
growth performance and health improvement of piglets 
during the early-weaned stage (Table S4). An increase in 
this group of bacteria was associated with a reduction in 
gut colonization of pathogens and an increase in energy 
conversion [79]. Additionally, Desulfovibrio was involved 
in the removal of the excess hydrogen generated by the 
microbiota during digestion, and this withdrawal has 
also been associated with the improvement of continu-
ous SCFA production that was inhibited by an excess of 
hydrogen [80].

Clostridium XIVa, also known as Clostridium coccoi-
des group, is a group of microorganisms that help the 
host to use nutrients that cannot be properly digested. 
These bacteria are also known as good SCFAs producers, 

playing an important role in intestinal homeostasis [81]. 
Shi et al. in observed an increase in these bacteria in the 
group of piglets supplemented with early food introduc-
tion (milk) that had an increase in SCFA production. 
SCFAs could contribute to the decrease of pro-inflam-
matory cytokines reducing the proliferation of pathogens 
[82] and contributing to the health of piglets (Table S4).

The homeostasis of the gut is a combination of several 
factors as the production of metabolites from both the 
host and its microbiota as well as the interaction of these 
metabolites between them. SCFAs have been reported to 
affect appetite regulation and energy homeostasis [83] 
and the gut microbiota-derived acetate was described as 
stimulating ghrelin secretion [84]. Gonzalez-Esquerra et 
al. [26] showed that the individuals used in this study and 

Fig. 1 Taxonomic distribution of treatments with different copper supplementations. Venn diagram of intersections and exclusive numbers of OTUs 
from the Control, CuSO4, Cu-MHAC, and TBCC treatments. The identified OTUs are in at least two samples (A). Phylum composition relative abundance by 
treatment (B). Heatmap showing the twenty most prevalent genera and the “Unassigned” bacteria by treatment. The color gradient indicates the lowest 
(blue) and highest (red) abundances. The taxonomic levels (domain, phylum, class, order, and family) were indicated in Table S2. The clustering was made 
using the Euclidean distance and complete linkage method in the web tool ClustVis [78], and analyzed by pvclust Fig. S2 [30] (C)
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Table 2 Comparison of the relative abundance means among the top 20 genera by treatment
Treatment Genus

Prevotella Treponema Bacteroides Oscillibacter1 Clostridium_XlVa Desulfovibrio Parabacteroides

Control 29.8750 0.8400 1.5775 1.8825 1.1975 0.4638 2.7010

Cu-MHAC 32.7500 0.7343 0.4158 2.5275 1.4253 0.7847 0.5435

CuSO4 30.1500 1.4365 0.6033 2.4675 0.6033 0.5585 0.9645

TBCC 28.8250 1.4660 0.5840 1.2625 1.6445 0.6310 0.4895

CVmean (%) 8.1 65.8 182.0 0.145 44.7 14.3

P-value
Trial < 0.0001** 0.0086** 0.1741 - <0.0001** <0.0001** 0.0982*

Treatment 0.2009 0.1291 0.9817 0.1450 0.0207** 0.0006* 0.2582

P-value for 
Orthogonal 
contrasts
Control x All 0.6330 0.3315 0.9809 - 0.2251 0.0013** 0.0589*

Cu-MHAC vs. 
(CuSO4 + TBCC)

0.6814 0.5422 0.9995 - 0.0044** 0.0033** 0.6705

CuSO4 vs. TBCC 0.0460** 0.0373** 0.6903 - 0.5215 0.0042** 0.9644

Treatment Genus
Clos-
tridium_
sensu_
stricto

Succinivibrio Campylobacter Fusobacterium1 Alloprevotella Megasphaera Streptococcus

Control 1.2180 3.2515 1.6853 0.0755 5.0100 1.6950 0.5623

Cu-MHAC 1.1588 2.6115 1.6738 0.0260 3.2875 1.1105 0.7545

CuSO4 1.2220 5.9400 0.5828 0.7720 3.2275 1.0575 0.9475

TBCC 0.8010 4.0150 1.9038 0.4353 5.6900 0.9105 0.9150

CVmean (%) 50.2 55.9 142.2 0.615 73.4 32.6 88.4

P-value
Trial 0.4086 0.1974 0.0091** - 0.0016** 0.2694 0.0001**

Treatment 0.6702 0.2242 0.7304 0.6150 0.1038 0.0686* 0.6839

P-value for 
Orthogonal 
contrasts
Control x All 0.6315 0.4784 0.4870 - 0.8135 0.0125** 0.7089

Cu-MHAC vs. 
(CuSO4 + TBCC)

0.4892 0.0786* 0.9196 - 0.8283 0.8470 0.2664

CuSO4 vs. TBCC 0.3796 0.3888 0.3944 - 0.0183** 0.4819 0.9192

Treatment Genus
Roseburia Actinobacillus Helicobacter Phascolarctobacterium Acidaminococcus Escherichia /Shigella

Control 1.9198 0.1473 0.0933 2.0000 1.0195 2.3318

Cu-MHAC 1.4760 0.2163 0.0355 2.8350 0.8313 3.2350

CuSO4 3.0873 0.5953 0.1985 2.5850 0.5483 3.6100

TBCC 1.8483 0.2998 0.1353 2.8750 0.4458 3.8026

CVmean (%) 40.6 166.4 97.7 29.8 53.0 60.2

P-value
Trial <0.000** 0.0235** 0.3746 0.2148 0.0021** 0.0053**

Treatment 0.2500 0.7069 0.1110 0.3879 0.3475 0.1279

P-value for 
Orthogonal 
contrasts
Control x All 0.4989 0.3105 0.7716 0.1121 0.2960 0.0245**

Cu-MHAC vs. 
(CuSO4 + TBCC)

0.0672* 0.7067 0.0405* 0.5771 0.8475 0.6287

CuSO4 vs. TBCC 0.7312 0.7139 0.1733 0.9425 0.1476 0.6391
Significance level was considered p-value < 0.05**, and p-value from 0.05 to 0.10 indicated a statistical trend*. Coefficient of variation of the mean (CVmean)

1 Freedman test
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treated with Cu-MHAC had an increase in weight gain 
and the expression of mRNA for Ghrelin when compared 
to TBCC treatment. Prevotella is another genus involved 
in SCFA production, which was numerically increased in 
the group treated with Cu-MHAC. Finally, Megasphaera 
decreased after the Cu-MHAC treatment. These bacteria 
were usually found with an increment in the intestines 
of pigs in response to Lactobacillus and were correlated 
with intestinal disorders or immune responses in pigs. 
Additionally, they could be increased by the mycotoxins 
Deoxynivalenol (DON) and zearalenone (ZEN) which are 
frequently increased in the gut by ingestion of contami-
nated maize and grain cereals. Altogether, these results 
showed that different sources of copper in the pig diet 
promoted the proliferation of different genera of bacteria 
and that the interaction of the microbiota and the host 
could stimulate several genetic factors involved in gut 
health that could also modulate feed efficiency (FE), an 
important variable to swine production (Table S4).

Conclusions
Different copper sources can modulate the cecal micro-
biota even of healthy piglets fed with antibiotics as 
growth promoters. Dominance and Simpson ecological 
indexes usually differed, showing a prevalence of specific 
genera according to treatment. Some groups of bacteria 
seem to be directly affected by the source of copper that 
was offered to the animals. Overall, Cu-MHAC can be a 
beneficial supplement even in low doses, since it seems 
to affect the diversity of bacteria, mainly Desulfovibrio 
and Clostridium_XIVa that are involved in the improve-
ment of gut health and FE and SCFAs production (Table 
S4). The increase in SCFAs, especially acetate, could be 
involved in the modulation of ghrelin and growth hor-
mone expression on top of improving performance 
as previously reported by our group [26]. A graphical 
abstract summarizing the methods and main results is 
shown in Fig S3.
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