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Abstract 

As the Human Microbiome Project (HMP) progresses, the relationship between microbes and human health has been 
receiving increasing attention. A growing number of reports support the correlation between cancer and microbes. 
However, most studies have focused on bacteria, rather than fungal communities. In this study, we studied the altera-
tion in lung mycobiome in patients with non-small-cell lung cancer (NSCLC) using metagenomic sequencing and 
qPCR. The higher fungal diversity and more complex network were observed in the patients with NSCLC. In addition, 
Alternaria arborescens was found as the most relevant fungus to NSCLC, and the enrichment of it in cancerous tissue 
was also detected. This study proposes that the changes in fungal communities may be closely related to lung cancer, 
and provides insights into further exploration the relationship between lung cancer and fungi.
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Introduction
Microbes have been implicated in human health [1], and 
some researches have reported that microbes are also 
related to lung cancer [2–6]. The microbial composition 
of the lower airways of lung cancer patients was unique, 
and this microbial alteration is considered associated 

with lung carcinogenesis [7, 8]. A dysregulated microbi-
ota has a role in propagating and maintaining a chronic 
inflammatory environment [9, 10]. Some lung microbes 
affect T helper 17 cells which were key in modulation of 
lung immune status in health and disease [11]. In addi-
tion, microbes can directly affect protumorigenic path-
ways in epithelial cells [7].

Although the opinion that the lungs are sterile has been 
abandoned, researches on lung microbes have mainly 
focused on bacteria [12, 13]. Fungi are often neglected 
due to their low content. However, the mycobiome can 
play a beneficial or pathogenic role [14]. Fungal genera 
that have been detected in the pulmonary mycobiota 
mainly include Candida, Malassezia, Neosartorya, Sac-
charomyces, and Aspergillus. A systematic review showed 
that the human mycobiome, along with its interactions 
with the human bacteriome and the host, is implicated 
in the promotion and progression of carcinogenesis [15]. 
Candida albicans exhibit an oncogenic potential in oral 
cavity cancer [16–19]. Malassezia has been found among 
colorectal carcinoma patients, whilst an increased num-
ber of Basidiomycota have been suggested to be related 
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to more advanced stages of this kind of cancer [20–22]. 
However, the relationship between lung mycobiome and 
lung cancer remains unclear. In this study, we character-
ized the alteration of fungal lung communities in patients 
with NSCLC and the Non-NSCLC groups, and found A. 
arborescens were enriched in NSCLC tissues.

Methods
Study population and sample collection
To study the lung mycobiome in patients with NSCLC 
and to verify the enrichment of key fungi in cancer tis-
sues, 66 patients were enrolled with following inclusion 
criteria: (1) 40 < Age < 70; (2) No antibiotics within three 
months; (3) No immunosuppressive drugs within six 
months. All individuals included in this study had no 
evidence of infection, sepsis or active tuberculosis. The 
research presented here has been performed in accord-
ance with the Declaration of Helsinki, and cases enrolled 
in this study were collected and approved by the ethi-
cal review committees from the second Xiangya hospi-
tal, Central South University, China (Ethical approval 
number: 2019–155). The patients were informed about 
the sample collection and had signed informed consent 
forms.

As for metagenomic sequencing and estimation of lung 
fungal content, the bronchoalveolar lavage (BAL) was 
collected from 38 individuals, including 24 newly diag-
nosed NSCLC and 14 Non-NSCLC patients (Table  1). 
There was no significant difference between the NSCLC 
and Non-NSCLC in terms of age, smoking status, and 
gender. To better quantify the cancer progress, the 
patients were divided into 10 groups according to TNM 

stages (Table 2). The BAL samples were obtained under 
sterile conditions by instillation and aspiration of 20 ml 
of 0.9% NaCl from the bronchoscope. The samples were 
frozen in sterile containers and stored at − 80  °C. The 
same amount of NaCl liquid was also collected as for 
blank control.

The cancer tissues and matched para-cancerous tissues 
from additional 28 patients with NSCLC were included 
for determination of abundance of A. arborescens. The 
cancerous and para-cancerous tissues were separated 
by surgical scissors and put in the sterile lyophilization 
tubes. PBS was used as the control. All samples in the 
study were collected in sterile conditions. The details of 
clinical data are presented in Table 3.

Table 1  Clinical Characteristics of patients for metagenomic 
sequence

All patients are immunocompetent in the cohort

Feature NSCLC patients Non-NSCLC 
Patients

Patients(n = 38) 24(63.2%) 14(36.8%)

Genders(n = 38) p = 0.929 Male 12 Male 8

Female 12 Female 6

Age(n = 38) p = 0.125  ≤ 50 9  ≤ 50 7

 > 50 15  > 50 7

Smoking status(n = 38) p = 1.000 Smoker 4 Smoker 2

Non-smoker 20 Non-smoker 12

TNM staging(n = 22) T1aN0M0 2

T1bN0M0
T1cN0M0
T2aN0M0
T2bN1M0
T3N1M0
T4N0M0
Tia

7
1
8
1
1
1
1

Table 2  Cancer stage

Staging and Grading Cancer Quantitative 
digital

Non-NSCLC 0

Tia 1

T1aN0M0 2

T1bN0M0 3

T1cN0M0 4

T2aN0M0 5

T2bN0M0 6

T2cN0M0 7

T3aN0M0 8

T3bN0M0, T2bN1M0 9

T3cN0M0, T3N1M0, T4N0M0 10

Table 3  Clinical Characteristics of patients for testing A. 
arborescens enrichment

All patients are immunocompetent in the cohort

Feature NSCLC patients

Genders Male 15

Female 13

Age  ≤ 50 13

 > 50 15

Smoking status Smoker 5

Non-smoker 23

TNM staging(n = 28) Tis 7

T1aN0M0 1

T1bN0M0
T1cN0M0
T2aN0M0
T3N0M0
T4N0M0
T4N2M0
T4N1M1a
T1cN2M0
T1bN0M1a

4
3
7
1
1
1
1
1
1
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Metagenomic sequence
The DNA was isolated from samples, and Nanodrop 
(2000/2000c, American) was used to quantify the DNA. 
The DNA with 1.8 < A260/A280 < 2.0 and concentra-
tion > 20  ng/uL was used for following metagenomics 
sequencing. The blank controls and isolation kits were 
used as negative controls to quantify the DNA, but they 
didn’t pass the threshold for sequencing. The metagen-
omic sequencing was performed using the paired-end 
sequencing method on the Illumina platform (San 
Diego, CA, USA). The DNA was sheared by ultrasoni-
cation (Covaries, Woburn, MA). The sheared DNA 
fragments were end-repaired (DNA End Repair Mix) at 
20 °C for 30 min. The DNA fragments were purified by 
QIAquick PCR Purification Kit (Qiagen) and A-tailed 
using A-Tailing Mix. Libraries were checked using Bio-
analyzer 2100 (Agilent) and quantified using the ABI 
StepOnePlus Real-Time PCR System. Libraries were 
sequenced on an Illumina platform.

Estimation of lung fungal content
To estimate the lung fungal content, a qPCR approach 
based on ‘FungiQuant’ was used [23]. The FungiQuant 
primers were FungiQuant-F: 5’-GGR​AAA​CTC​ACC​
AGG​TCC​AG-3’ and FungiQuant-R: 5’-GSWCT​ATC​
CCCAKCACGA-3’ yielding products of approximately 
350  bp in the fungi 18S rRNA gene. E. penicillium 
DNA extracted from DNeasy UltraClean Microbial 
Kit (12,224 Qiamgen, Germany) was used to establish 
a standard curve in tenfold serial dilutions with 10  ng 
– 1 pg in each run. BAL samples were used to extract 
total fungal DNAs (QIAamp UCP Pathogen Mini Kit 
50,214, Qiagen, Germany). The optimized conditions 
included the reaction mixture (20  μl) for qPCR con-
tained ChamQ Universal SYBR Color qPCR Master 
Mix (Vazyme Biotech, Jiangsu, China), forward and 
reverse primer (final concentration 400  nM), the tem-
plet DNA and molecular-grade water, with all reac-
tions performed in triplicates on the 7900HT Real Time 
PCR System (Applied Biosystems). We used the fol-
lowing PCR conditions: 3 min at 50 °C for UNG treat-
ment, 10 min at 95 °C for Taq activation, 15 s at 95 °C 
for denaturation, and 1 min at 65 °C for annealing and 
extension × 50 cycles. Fungal content of each BAL sam-
ple was calculated according to the standard curve.

Fungal taxonomic profile
Raw sequences were processed to remove low-quality 
sequences using fastp [24] (Version 0.21.0). Fastuniq [25] 
(Version 1.1.0) was used to remove duplicates in paired 
short DNA sequence reads in a FASTQ format. Human 

sequences were filtered out using the human reference 
genome (hg37) by bowtie2 [26] (Version 2.3.5).

The remaining high-quality reads were used for taxo-
nomic classification by Kraken2 [27] (Version 2.0.7). 
We used ‘kraken-build’ tools to build the fungi-kraken2 
database (kraken2-build –download-library fungi), and 
all fungal nucleotide sequences from NCBI (www.​ncbi.​
nlm.​nih.​gov) were included. Next, the Bracken was used 
to obtain the read count for different fungi to estimate 
relative abundance. The read counts table of several lev-
els (e.g., phylum, class, order, family, genus, species) were 
rarefied to the minimum fungal read counts to reduce the 
effects of uneven sampling in the cohort by using R pack-
age ‘picante’ [28] (Version 1.8.2). After the above pro-
cessing of the raw sequences, we obtained 41,728 reads 
in each sample, which were annotated to a total of 341 
fungal species.

Fungal diversity in the cohort and rarefaction curve 
analysis
The Shannon–Wiener index and Gini-Simpson index 
were calculated to determine the fungal alpha diver-
sity. In addition, the Bray–Curtis dissimilarity indices 
between samples at the species level were calculated to 
estimate beta diversity by using R package ‘vegan’ [29]. 
The permutational multivariate analysis of variance 
(PERMANOVA) and principal co-ordinates analysis 
(PCoA) were performed to estimate the between sam-
ple (β) diversity. Rarefaction analysis was performed to 
assess the fungi richness in the NSCLC patients and non-
NSCLC. For a given number of samples, we performed 
random sampling 1000 reads in the cohort with replace-
ment and estimated the total number of species that 
could be identified from these samples by the richness 
estimator.

Co‑occurrence network construction and analysis
To explore the different fungal correlations between 
NSCLC and Non-NSCLC groups, the co-occurrence net-
works were constructed based on the relative abundances 
of different fungi at the species level by using FastSpar 
[30] (Version 1.0). Only robust (r > 0.8 or r <  − 0.8) and 
statistically significant (p < 0.05) correlations were incor-
porated into network analysis. Network visualization in 
Fig. 2 and network parameters (i.e., degree, betweenness, 
diameter, and cluster coefficient) analysis were made 
with Gephi (version 0.9.2) using the undirected network 
(where edges have no direction) and the ‘Fruchterman-
Reingold’ layout. Afterwards, we used UMAP algorithm 
in python ‘umap’ library to display all data into one 
plane. The two networks were parsed into modules in 
the ‘igraph’ R package (Version 1.2.6). After modulariz-
ing, the networks were re-visualized according to module 
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attributes and the two sub-networks were extracted by 
using Cytoscape (Version 3.8).

Regression model construction
In order to study the relationship between various fungi 
with the development of NSCLC, we used two regres-
sion models in machine learning. The Ordinary Least 
Square (OLS) model by the function ‘lm’ in R was used 
to estimate adjusted R2 based on cancer stage and relative 
abundance for each fungus. To investigate the effect of 
the inclusion of multiple independent variables (fungi) on 
the regression model, we first reduced the different mul-
tiple variables to two variables using the PCA algorithm. 
The results show that two-dimensional data produced 
by PCA can explain more than 99.95% of the explainable 
variance. Next, we introduced a ridge regression model 
to eliminate the effect of covariance between multiple 
variables on the model. The PCA and ridge regression 
was used by python ‘sklearn’ library.

Key fungi detection between NSCLC and Non‑NSCLC 
groups
The rarefied read counts of fungal taxa at species level 
were used to achieve Random forests by the R pack-
age ‘rfPermute’ (Version 2.1.81), and different species 
were identified by R package ‘DESeq2’ (Version 1.26.0) 
between NSCLC and Non-NSCLC groups.

Test for A. arborescens enrichment
To test enrichment of A. arborescens, we used the nested 
PCR on 28 newly diagnosed patients with NSCLC. 
Nested PCR involves two sequential amplification reac-
tions, each of which uses a different pair of primers. The 
first amplification primers are the paired primers were 
the same as the primers (FungiQuant) for estimating 
fungal content above. The product of the first amplifica-
tion reaction is used as the template for the second PCR, 
which is primed by oligonucleotides that are placed inter-
nal to the first primer pair. And the second primers are 
specific for A. arborescens primers which were designed 
using Primer blast for amplification. Meanwhile, all prim-
ers were validated using gradient qPCR to detect the 
annealing temperature and the specificity of primers. 
Primers were obtained from Sangon Biotech (Shang-
hai, China). The primers for A. arborescens were AA-F: 
5’- CAA​ATA​TGA​AGG​CGG​GCT​GGA-3’, AA-R: 5’-TGT​
CCT​AGT​GGT​GGG​CGA​AC-3’.

Appropriate tissue samples including paired cancer 
tissue and adjacent cancer tissue were used to extract 
total fungal DNAs (Qiagen Blood & Tissue Kit, GER). 
At the same time, an equal volume of PBS DNA was 
extracted as the negative control and the DNA of 

Malassezia globosa was extracted as the positive con-
trol. The first round of amplification was performed 
in a 50  μl reaction mix containing 25  μl Premix Taq 
DNA polymerase (Takara, Dalian, China), 1.2uM for 
each primer and 5ul of template DNA. To minimize 
air-borne contamination, all steps were performed in 
a class 2 laminar flow safety cabinet. The temperature 
profile for amplification was as follows: initial denatura-
tion at 94 °C for 4 min, denaturation at 94 °C for 30 s, 
annealing at 55  °C for 30 s, and extension at 72  °C for 
1  min, for 35 cycles, followed by a final extension at 
72  °C for 10  min. Two percent AGAR gel electropho-
resis was used (120v 35 min) and the FungiQuant DNA 
fragments were cut under the UV light and extracted 
through QIAquick Gel Extraction Kit (Qiagen, GER), 
whose construction was detected by Nanodrop. In the 
step of PCR, an equal amount of DEPC treated water 
was also used to replace the template DNA, which was 
used to exclude the contamination caused by the PCR 
experimental system. The reaction mixture (20  μl) for 
PCR contained ChamQ Universal SYBR Color PCR 
Master Mix (Vazyme Biotech, Jiangsu, China), forward 
and reverse primer (final concentration 400  nM), and 
the extracted FungiQuant DNA fragments (5  ng). The 
Vazymecycling program was 40 cycles and consisted of 
95 °C for 10 s and 56 °C for 30s and 72 °C for 1 min with 
an initial cycle of 50 °C for 2 min and 95 °C for 2 min. 
All steps in nested PCR were described in Additional 
file  1: Fig. S1. In addition, to test for contamination 
in the test for A. arborescens enrichment operation, a 
negative control (possible contamination in the PCR 
and environment) and a positive control were set up in 
the pre-amplification step and examined by using aga-
rose gel electrophoresis. In the nested PCR process, a 
negative control was also set up (containing possible 
contamination during the sample preservation, pre-
amplification and PCR process), and all results showed 
that there was no contamination that could affect the 
results during the test (Additional file 1: Fig. S2).

Assuming that for all templates and primers a cycle 
equally doubles the number of template DNA, the rela-
tive abundance of a certain strain (i) can be calculated 
as follows:

The cycle threshold of strain i primer and common 
primer (total fungus) are represented by CTi and CTc, 
while ΔCT denotes the difference between them. From 
the equation, the logarithm of the relative abundance 
negatively correlates linearly with ΔCT.

Relative abundance (i) =
(
1

2
)
CTi

(
1

2
)
CTc

= (
1

2
)
CTi−CTc

= (
1

2
)
ΔCT
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Other statistical analysis and data visualization
For all statistical analysis and prediction models, python 
3.8.5 and R 3.6.1 were used. The baseline data in Table 1 
were obtained by using R package ‘compareGroups’. The 
data visualization process in this article were imple-
mented in python library ‘matplotlib’ or R package 
‘ggplot2’.

Results
Greater fungal diversity in patients with NSCLC
To explore the mycobiome difference between NSCLC 
and non-NSCLC groups, we performed metagenomic 
sequencing in BAL from these two groups (Fig.  1A). 
The fungal composition in the cohort was dominated by 

the species Lasiodiplodia theobromae and Malassezia 
globosa, representing 64.62% and 11.83% of the fungi, 
respectively, followed by Grosmannia clavigera (4.7%), 
Botrytis fragariae (2.8%) and Aspergillus flavus (2.3%). 
Thus, about 85% of fungi were covered by the top five 
most abundant species in both Non-NSCLC and NSCLC 
patients. Among these five species, Botrytis fragariae 
was more abundant in patients with NSCLC than Non-
NSCLC (Additional file 1: Fig. S3A). The species rarefac-
tion curve for each sample was performed to approach 
saturation, indicating that the sequencing depth was 
adequate and samples in NSCLC exhibited higher rich-
ness (Additional file 1: Fig. S3B). Indeed, the higher fun-
gal α diversity in patients with NSCLC was confirmed 

Fig. 1  Characterization of lung mycobiome. (A) The scheme of the total research design. The α diversity between NSCLC and Non-NSCLC described 
using Shannon–Wiener index (B) and Gini-Simpson index (C), at species level respectively (Wilcoxon test). (D) PCoA based on the Bray–Curtis 
dissimilarity index shows the β diversity, in which the blue circles and orange triangles represent NSCLC and Non-NSCLC, respectively (PERMANOVA, 
p = 0.0012). (E) The relationship between Gini-Simpson index in different samples and cancer stage, which is calculated by the least-squares linear 
regressions, with 95% confidence intervals (gray-shaded areas)
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by the Shannon–Wiener index and Gini-Simpson index 
(p = 0.013) (Fig.  1B-C). The complex compositions of 
fungi were visualized on a two-dimensional plane using 
PCoA analysis and PERMANOVA test, demonstrating 
the significantly different fungal community composi-
tion between the two groups (p = 0.0012) (Fig. 1D). The 
α diversity elevated with the progress of NSCLC (Fig. 1E). 

Furthermore, the fungal communities in patients 
with NSCLC showed a significantly higher β-diversity 
(p = 0.003) (Additional file  1: Fig. S3C). The qPCR was 
also performed to check the fungal content in the lung, 
and it showed increased fungal content in patients with 
NSCLC (Additional file 1: Fig. S3D).

Fig. 2  Networks of co-occurrence fungi across two groups. (A) The relative abundance of each fungi is used to construct the co-occurrence 
networks by sparcc method. Only the nodes with correlation coefficient (r > 0.8 or r <  − 0.8 significant at p < 0.05) are considered. The nodes are 
colored according to phylum. Green edges represent positive correlations and red edges represent negative correlations. Node size is proportional 
to the betweenness centrality of each species, and edge thickness is proportional to the weight of each correlation. (B) UMAP analysis shows each 
node status from NSCLC to Non-NSCLC. The two plots show different nodes in NSCLC and the Non-NSCLC networks from left to right, which paired 
to Fig. 2A. Interactive node means the node of which degree is not zero. (C) The network parameter is calculated in two networks. Total degree 
is the sum of edges on each node, representing the number of other nodes (species) in the network which are connected with the given node. 
Diameter is the largest distance between two nodes in a network. Clustering coefficient shows the extent by which a node is connected to its 
neighbors. Path length represents the nearest distance between two nodes
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More complex co‑occurrence fungi network in patients 
with NSCLC
To study the community differences of fungi between 
the two groups, we constructed two co-occurrence net-
works of NSCLC and non-NSCLC groups. The degree 

distributions of the fungal co-occurrence networks con-
formed to the power-law distribution, indicating that 
the fungal community was constructed in a non-random 
way (Additional file 1: Fig. S4). The pattern of co-occur-
rence was more obvious in the NSCLC network, and the 

Fig. 3  Four sub-networks extracted from Non-NSCLC co-occurrence network and NSCLC co-occurrence network. (A) Two sub-networks extracted 
from Non-NSCLC network, which contain two interactive nodes (blue font) only occurred in Non-NSCLC network but not in NSCLC network. (B) Two 
sub-networks extracted from NSCLC network, which pair with the two networks in Fig. 3A. In the Fig. 3, the nodes with red font are the interactive 
nodes only occurring in NSCLC network and the nodes with black bold font are first neighbor connected with blue font nodes. The grey font nodes 
represent interactive nodes in both networks. And the numbers under each node labels are the adjusted R2 for every species in Ordinary Least 
Square (OLS) model
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majority of taxa belonged to Ascomycota phylum in both 
networks (Fig. 2A).

To better observe the distribution of fungi in the co-
occurrence network in the overall sample, the UMAP 
algorithm was used to downscale the relative abundance 
data. All the fungi are displayed in a two-dimensional 
plane in Fig.  2B. Some kinds of fungi marked in red 
points represented the exclusive taxa in the NSCLC co-
occurrence network, which concentrated in the lower left 
corner of the plane after downscaling. Meanwhile, two 
kinds of fungi marked in blue points presented the exclu-
sive taxa in the Non-NSCLC network. Compared to the 
Non-NSCLC group, fungal communities in the NSCLC 
group had a more complex network with higher edges 
(n = 176), a higher total degree (n = 352), and a higher 
clustering coefficient (0.779, Fig. 2C).

Fungal community structure associated with development 
of NSCLC
We tracked two kinds of fungi (Trichosporon asahii 
and Schizosaccharomyces octosporus) that were iso-
lated (degree was zero) in the co-occurrence networks 
after the transition of pattern from the Non-NSCLC 
to NSCLC, and extracted the sub-networks of them 
(Fig.  3A-B). In the two sub-networks, Fusarium pseu-
dograminearum and Malassezia globsa were as interac-
tive nodes connecting other fungi. With the disruption 
of co-occurrence relationship between T. asahii and 
F. pseudograminearum, more exclusive fungi in the 
NSCLC co-occurrence network uncovered. Further-
more, with the disruption of co-occurrence relationship 
between S. octosporus and M. globosa, this situation 
occurred equally. To explore the effect of fungal com-
munity alteration on the development of NSCLC, we 
constructed a model through ridge regression, which 
suggested that altered fungal community had a greater 
potential for the progression of NSCLC (adjusted R2 
from -0.0518 to 0.1099). Notably, the contribution to 
the development of NSCLC (adjusted R2) for each fun-
gus did not increase with the degree which is the size 
of edges for them (Additional file  1: Fig. S5A). It sug-
gested that the fungi isolated in the networks cannot be 
ignored either.

Alternaria arborescens as key fungi related to NSCLC
To detect key fungi between the patients with NSCLC 
and the non-NSCLC, we used two different methods 
to reduce the randomness and inaccuracy of the algo-
rithm. 17 and 20 distinct kinds of fungi were screened 
out by DESeq2 and Random Forest algorithm, respec-
tively. After combining the two results, 5 kinds of fungi 
(A. arborescens, Eremoyces bilateralis, Aureobasidium 
namibiae, Tilletiopsis washingtonensis and Paraphae-
osphaeria sporulosa) were detected as key fungi (Fig. 4A). 
In addition, the OLS model was used to predict the effect 
of correlation between the single fungus and NSCLC 
development. There were 45 kinds of fungi closely rela-
tive to NSCLC development (Fig.  4B), and these key 
fungi were significantly enriched with the NSCLC devel-
opment (Fig. 4C, p = 0.0012). Not only was A. arborescens 
as the key fungus obtained by both algorithms, but also 
as the fungus with largest adjusted R2 to the progress of 
NSCLC in our OLS model. It was detected that its rela-
tive abundance was gradually increasing as NSCLC 
progressed (Fig.  4D). Although other three key fungi 
showed relationship (Additional file 1: Fig. S5B-D), none 
of them performed a great gradual upward trend. To test 
the generality of the correlation between A. arborescens 
and NSCLC, we performed the nested PCR on another 
cohorts (n = 28), and the results also showed A. arbores-
cens significantly enriched in cancer tissues compared to 
peri-carcinoma tissues (Fig. 4E, p = 0.00005).

Discussion
In this study, the higher fungal diversity and more com-
plex network were observed in patients with NSCLC com-
pared to Non-NSCLC group. Machine learning model 
based on the fungi relative abundance and cancer pro-
gress was built, and we found the alteration of fungi com-
munity relative to the NSCLC. In addition, A. arborescens 
was detected as the most relative fungus with NSCLC, 
and also showed significantly higher relative abundance 
in cancer tissues compared to that of para-cancerous tis-
sues. These data suggest an association between a distinct 
human mycobiome and cancer in the lung.

Firstly, we provided the description of lung myco-
biota composition, and the top two abundant kinds 

Fig. 4  Detection of the relative key fungi with NSCLC. (A) Two methods are used to find key differential fungi between two groups. The volcano 
plot demonstrates the differential abundance of fungi between NSCLC and Non-NSCLC. Points are colored according to the number of log2 fold 
change with passed thresholds (p < 0.05 and |log2 fold change|> 1) which are calculated by DEseq2. The bar chart of key fungi between two groups 
which is determined by Random forest model (p < 0.05). (B) The fungi associated with NSCLC progress. We sorted each fungus by the adjusted R2 
calculated from OLS model. Only the fungi with p < 0.05 and FDR < 0.2 are showed. (C) A venn graph shows the comprehensive results of the three 
methods. The hypergeometric test is used to check if the five key fungi detected by two methods (DEseq2 and Random Forest) enrich with the 
NSCLC development. (D) A line chart shows the variation between the log10 mean relative abundance of the A. arborescens and cancer stage. (E) 
Another cohort is used to confirm the enrichment of A. arborescens in the tissue of NSCLC (Paired Wilcoxon test, p = 0.00005)

(See figure on next page.)
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of fungi are L. theobromae and M. globosa in both 
groups. Although L. theobromae is a fungus as yet 
undescribed as a common resident of the lung micro-
biome, there are many fungi that do not have apparent 

host-specificity and are rather ubiquitous [31, 32]. 
Moreover, it is reported L. theobromae is associated 
with human health [33, 34]. M. globosa is also a skin-
associated microbe and it was found relative to cancer 

Fig. 4  (See legend on previous page.)
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in the recent studies [35, 36]. Secondly, the increased 
diversity of mycobiota was observed in the lung envi-
ronment of patients with NSCLC, and the alpha-diver-
sity of mycobiota in NSCLC patients was positively 
associated with clinical stages. There is a strong link 
between lung cancer, microbes, and inflammatory sta-
tus [36–39]. Although the higher bacterial diversity was 
usually considered as benefits in the gut [40], the diver-
sity of fungi increases significantly after infection [20]. 
This increased diversity was also detected in patients 
with Crohn’s disease [37, 41].

Co-occurrence network offers an approach to explore 
the microbial community structure, maintenance and 
dynamics [7], which can be applied to statistically 
explore the taxa that are highly connected in the com-
munity [42, 43]. As shown in the Fig.  2, the co-occur-
rence network analysis of fungi in this study suggested 
the variation in fungal communities and the enhanced 
complexity of interactions among fungi in patients 
with NSCLC. Meanwhile, in the UMAP analysis, most 
of the fungi which were added to the NSCLC network 
in red color were clustered around these two isolated 
blue nodes. This is consistent with the results in our 
extracted sub-networks analysis in Fig.  3. Compared 
to S. octosporu, there are more exclusive taxa in the 
NSCLC co-occurrence network occurred, when T. asa-
hii was isolated from the Non-NSCLC network. F. pseu-
dograminearum and M. globosa are not only normally 
detected in the environment but also detected in BAL 
samples [44]. In our study, they are also interactive nodes 
linked to altered nodes between two groups. It reported 
that the common microbial composition of lungs con-
tains environment-microorganism and the composition 
of respiratory microbiota is influenced by environmental 
factors [45, 46].

Furthermore, the construction of machine learning-
based regression models helps us to better understand 
the impact of different fungi and changing co-occur-
rence networks on the progression of NSCLC. As one 
of the key fungi, A. arborescens had the most significant 
correlation with the progression of NSCLC. Although A. 
arborescens mainly cause disease in plants, the airborne 
spores they produce can invade human respiratory 
tracts and cause respiratory and lung diseases. A. arbo-
rescens is one species of Alternaria genus. Alternaria 
is one kind of fungi that can also lead to infection in 
humans, and its spores are one of the most effective air 
allergens [47–50]. In addition, Alternaria is an oppor-
tunistic fungus, which can infect immunocompromised 
patients [51]. A recent study revealed that Alternaria 
can influence the development of cancer by affecting the 
immune system [36, 52]. Notably, several papers have 

reported the enrichment of microbes in cancer tissues 
and their possible role in the development of cancer by 
affecting immune and infection status [53–55]. In our 
study, another batch of samples from tumor and para-
cancerous tissues was also used to detect A. arborescens 
enrichment in cancerous tissues of NSCLC, and this 
enrichment increased credibility and avoided the bias of 
the results due to fungal infection. The reasons of alter-
ation of lung microbiome can be varied and complex. 
This change can be mainly caused by microbial migra-
tion, elimination and growth rates [56–58]. It has also 
been reported that microbial metabolites of the gut may 
cause the immune system alterations thus affecting the 
respiratory microbiota [11, 59, 60]. Although microbes 
might directly affect protumorigenic pathways in epi-
thelial cells [7], it is still unclear to determine the causal 
roles of fungal alterations.

Nevertheless, there are some limitations in our study. 
For instance, larger clinical cohorts need to be covered 
in the future. In addition, some microbial alterations in 
the lung caused by other conditions may compromise 
the results. Therefore, functional studies on mice are 
also needed to confirm our proposed effect of altered 
fungal community on NSCLC. Overall, our present 
study has taken the steps toward bringing a new per-
spective to elucidate the potential relationship between 
NSCLC and mycobiota. Based on detected fungal sig-
natures, novel targeted treatment modalities in person-
alized medicine may emerge with the modification or 
restoration of a healthy fungal community in patients 
with cancer.

Conclusions
In this study, we focused on the alteration of lung myc-
obiome in patients with NSCLC. Compared to Non-
NSCLC group, the mycobiome in the lungs of patients 
with NSCLC showed greater fungal diversity. By using 
ridge regression model, we indicated the fungal co-occur-
rence network structure may be associated with NSCLC 
progress. In addition, A. arborescens was detected as the 
most relative key fungus to NSCLC, and we also found it 
enriched in the cancer tissues. Our study provides inval-
uable insights into further exploration in the relationship 
between NSCLC and fungi.
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Additional file 1: Fig. S1 This is the scheme from sample processing 
to nested PCR. Firstly, the DNA of the tissue samples, Fungus positive 
control and the environment blank control (EBC) are extracted. Next, we 
performed the first amplification by PCR. And after that, the Agarose gel 
electrophoresis demonstrates contamination-free amplification. Lane 1: 
DNA marker, Lane 2: The 18S rRNA fragement DNA of Malassezia globosa, 
which is the positive control.  Lane 3 - 8: Six clinical samples were ran-
domly selected for testing. Lane 9: The DNA of PBS, which is the nega-
tive control. In addition, 18S fragments including EBC (located at 300bp) 
are cut with UV light and extracted DNA again. At last, we performed the 
nested PCR to estimate the relative abundance of microbes. In this step, 
we additionally included the Non-template control group (NTC) used to 
exclude nested PCR reagent contamination. Fig. S2 It shows the ampli-
fication and melting curves of the nested PCR. The graphs from top row 
represent the amplification curve of clinical samples and negative control, 
respectively. As for graphs from bottom row, they are melting curves. The 
two peaks in the left column represent the carcinoma tissue and the para-
carcinoma group. There is no effective peak on the right column which 
means Negative control (EBC and NTC group). Fig. S3 (A) barplot shows 
the fungal composition of both NSCLC and Non-NSCLC groups. The top 
15 fungi in terms of relative abundance were shown in the picture, and 
other were classified as ‘Others’. (B) Species rarefaction curves in red and 
black indicate NSCLC and non-NSCLC groups, respectively. (C) Differ-
ences in beta-diversity between the mycobiome in patients with NSCLC 
and non-NSCLC groups were estimated based on a Bray-Curtisdistance 
matrix of all 38 samples (Wilcoxon test, p = 0.003). (D) The fungal content 
of patients with NSCLC and Non-NSCLC groups by using qPCR (t test, p 
=0.031). Fig. S4 The degree distribution for co-occurrence networks in 
NSCLC and Non-NSCLC group, respectively. The p-values are calculated by 
using permutation test. Fig. S5 (A) The plot only shows the fungi of which 
degree is not zero in NSCLC co-occurrence network, and different points 
mean different fungi’s adjusted R2. Based on their distribution, we fit 
these points to a trend line, and calculated p value and R2.The p-values 
are calculated by permutation test. (B, C and D) The line charts show the 
variation between the log10 mean relative abundance of different fungi 
and cancer stage.
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