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Abstract 

Background  Electronic cigarettes (ECs) have been widely used by young individuals in the U.S. while being consid‑
ered less harmful than conventional tobacco cigarettes. However, ECs have increasingly been regarded as a health 
risk, producing detrimental chemicals that may cause, combined with poor oral hygiene, substantial inflammation in 
gingival and subgingival sites. In this paper, we first report that EC smoking significantly increases the odds of gingival 
inflammation. Then, through mediation analysis, we seek to identify and explain the mechanism that underlies the 
relationship between EC smoking and gingival inflammation via the oral microbiome.

Methods  We collected saliva and subgingival samples from 75 EC users and 75 non-users between 18 and 34 years 
in age and profiled their microbial compositions via 16S rRNA amplicon sequencing. We conducted raw sequence 
data processing, denoising and taxonomic annotations using QIIME2 based on the expanded human oral microbi‑
ome database (eHOMD). We then created functional annotations (i.e., KEGG pathways) using PICRUSt2.

Results  We found significant increases in α-diversity for EC users and disparities in β-diversity between EC users 
and non-users. We also found significant disparities between EC users and non-users in the relative abundance of 36 
microbial taxa in the saliva site and 71 microbial taxa in the subgingival site. Finally, we found that 1 microbial taxon in 
the saliva site and 18 microbial taxa in the subgingival site significantly mediated the effects of EC smoking on gingi‑
val inflammation. The mediators on the genus level, for example, include Actinomyces, Rothia, Neisseria, and Enterococ-
cus in the subgingival site. In addition, we report significant disparities between EC users and non-users in the relative 
abundance of 71 KEGG pathways in the subgingival site.

Conclusions  These findings reveal that continued EC use can further increase microbial dysbiosis that may lead to 
periodontal disease. Our findings also suggest that continued surveillance for the effect of ECs on the oral microbi‑
ome and its transmission to oral diseases is needed.
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Background
Smoking remains the most common cause of prevent-
able death in the U.S. [1]. Because of this, cigarette 
smoking has been the target of one of the most robust 
public health campaigns in the U.S., ultimately leading to 
a decline in traditional cigarette use, particularly among 
younger members of the population [2]. Between 2011 
and 2017, the proportion of high school students report-
ing cigarette use within the last thirty days declined from 
15.8% to 7.6% [2]. However, at the same time, the use of 
non-combusted tobacco products, particularly electronic 
cigarettes (ECs), has increased.

ECs were initially introduced as tobacco cessation aids, 
but they have later found traction as a primary method 
of nicotine delivery, particularly among tobacco naïve 
adolescents and younger adults. Unlike traditional ciga-
rettes, in which tobacco is burned releasing nicotine 
along with other combustion byproducts into the oral 
cavity and respiratory tracts of users, ECs deliver nico-
tine via an aerosolized vape liquid. EC aerosol contains 
nicotine at highly variable concentrations (approximately 
1.2 mg/cartridge) [3], as well as other substances includ-
ing acetaldehyde, acrolein, formaldehyde, propylene gly-
col, glycerin, ethanol, acetol, and propylene oxide [4, 5]. 
While the harms associated with traditional cigarette use 
are well-understood and predominantly secondary to 
exposure to combustion products, less is known about 
the local and systemic effects of aerosolized nicotine and 
other components of vape liquid, particularly over time. 
Despite these unknowns, EC use is now more common 
than cigarettes among adolescents in the U.S., with an 
increase in use from 1.5% of high school students in 2011 
to 11.3% in 2016 [6]. The CDC reports a 14.4% increase in 
EC sales between 2014 and 2015 alone, with a concurrent 
307.7% increase in the sale of vape liquids [7]. As of 2019, 
almost 21% of high school-age adolescents reported use 
of electronic cigarettes in the preceding month [8].

The increasing use of ECs, and subsequent exposure 
to nicotine, particularly among younger members of 
the population, is of concern for several reasons. First, 
ECs may act as a bridge to traditional combustion-
based products [9]. ECs are marketed in a way that is 
appealing to younger people; vaporizers are designed to 
resemble devices other than cigarettes, including USBs 
and pens, bypassing some of the stigma that remains 
associated with traditional cigarettes. Second, exposure 
to the contents of vape liquid may be harmful in and of 
itself. Aerosolized components of vape liquid have been 

shown to adhere to the structures of the upper GI and 
respiratory tracts, including the oral cavity, nasal cav-
ity and lungs, all sites known to have complex microbi-
omes [10–12].

How the exposure influences the microbial environ-
ments is of both scientific and clinical concern. Of par-
ticular interest in this paper are the effects of ECs on 
the oral microbiome composition in both the saliva and 
subgingival sites, and the mediating roles of the oral 
microbiome to gingival inflammation. The oral cav-
ity is a main entryway through which many microbial 
species colonize the respiratory and gastrointestinal 
tracts [13]. Consisting of over 700 known species of 
bacteria, the oral cavity has the second largest micro-
bial population after the gut microbiome, sharing char-
acteristics with the microbiomes of the respiratory, 
gastrointestinal (GI), and genitourinary (GU) systems 
as well as characteristics unique to itself [14, 15]. The 
mouth with its various niches is an exceptionally com-
plex habitat where microbes colonize the hard surfaces 
of the teeth and the soft tissues of the oral mucosa [15]. 
This complex system of viral, bacterial, and fungal spe-
cies interacts to maintain a state of health as well as 
promote pathology. The microbial profile of the oral 
cavity is dynamic throughout the lifespan with shifts 
in populations consequent to diet, medication expo-
sure, host immune function, oral hygiene practices, and 
exposure to cigarettes and other nicotine products [16]. 
Especially, the exposure to cigarettes and other nicotine 
products is thought to disrupt oral microbial commu-
nities in favor of the proliferation of pathogenic organ-
isms leading to inflammation and disease [17].

Smoking tobacco use is known to favor the growth 
of pathogenic bacteria within the oral cavity through 
a shift from commensal aerobic bacteria to anaerobic 
species [18]. Such species have been associated not 
only with the development of oral diseases such as den-
tal caries and periodontitis, but also systemic illnesses 
such as infective endocarditis, atherosclerosis, poor 
diabetes control, and rheumatoid arthritis [19]. Kim et. 
al recently published results of an in vitro study exam-
ining the effect of EC exposure on Streptococcus mutans 
(the organisms primarily responsible for dental caries), 
suggesting that EC use promotes biofilm deposition 
favorable to pathogenic bacterial growth [10]. Murine 
modeling of the effects of EC exposure on lung tissue 
suggests a decreased immune response to microbial 
stressors, including an impaired bactericidal capacity of 
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neutrophils and a reduction in the cytokines involved 
in T cell-mediated immunity (IFN-gamma, TNF-alpha, 
IL17a) [20]. It appears reasonable to consider that a 
similar process may occur within the mucosal surfaces 
of the oral cavity. A recent study by Pushalkar et  al. 
showed that the abundance of Porphyromonas and Veil-
lonella genera was increased in the oral saliva samples 
of EC users, and epithelial cells exposed to EC aerosols 
appear to be more susceptible to microbial infection, 
providing a potential underlying immune compromis-
ing mechanism for higher inflammatory risk [21]. They 
also reported that salivary cytokines such as interleukin 
(IL)-6 and IL-1 β were elevated in EC users compared 
to non-users [21]. Another study published by Ganesan 
et  al. also describes microbial dynamics, immunoin-
flammatory response, and expression change in sub-
gingival plaque samples after EC exposure [22]. Prior 
research published by Thomas et. al. also indicates an 
association between EC use and poor oral health, sug-
gesting a possible microbial shift (e.g. Treponema, 
Saccharibacteria, and Porphyromonas) favoring peri-
odontal disease [23].

This study aims to further elucidate any changes to the 
oral microbiome (both the salivary and subgingival envi-
ronments) and, if present, whether these changes may 
lead to any clinical indications of poor oral health [Fig. 1]. 
For this, we first report that EC use significantly increases 
the odds of gingival inflammation (see Study subjects and 
the effects of ECs on gingival inflammation). Then, we 
performed mediation analyses to assess if EC use changes 
the oral microbiome (see α-diversity analysis, β-diversity 
analysis, Taxonomic differential abundance analysis) 

which in turn affects gingival inflammation (see Media-
tion analysis) when controlling for common risk factors. 
For our taxonomic analyses, we especially highlight our 
discoveries at the genus (not species) level, while our dis-
coveries at the species level still tend to be notable refer-
ences, because taxonomic annotations are precise from 
phylum to genus in the bacterial kingdom for the 16S 
rRNA amplicon sequencing [24].

Additionally, we performed differential abundance 
analyses for functional annotations using Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways (see 
Functional differential abundance analysis) [25]. We 
finally discuss the implications of these findings and con-
clude that continued EC use by the young generation can 
further increase microbial dysbiosis, which may conse-
quently cause periodontal disease and other pro-inflam-
matory conditions later in life.

Results
Study subjects and the effect of ECs on gingival 
inflammation
To assess the in vivo influence of ECs on the oral micro-
biome, we collected saliva and subgingival samples from 
75 EC users and 75 non-users and profiled their micro-
bial compositions via 16S rRNA amplicon sequencing. 
Table 1 shows the characteristics of the study subjects in 
terms of age, gender, the frequency of brushing teeth, and 
the clinical evidence of gingival inflammation. The EC 
users were slightly younger than the non-users in mean, 
first quartile, median and third quartile ages [Table  1]. 
The EC users were also more likely to be males: 81.33% 
(61 subjects) of the EC users are males, while 73.33% 

Fig. 1  The illustration of saliva and subgingival sites, gingival inflammation, and EC vaping
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(55 subjects) of the non-users are males [Table  1]. The 
EC users brush teeth less frequently than the non-users 
[Table  1]. Thus, to control for potential confound-
ing effects, we included age, gender, and the frequency 
of brushing teeth as covariates in the following data 
analyses.

We found that the EC users are more likely to have 
clinical evidence of gingival inflammation: 56% (42 sub-
jects) versus 36% (27 subjects) of the non-users [Table 1]. 
We assessed the effect of EC smoking on gingival inflam-
mation while adjusting for age, gender, and the frequency 
of brushing teeth [Fig.  2]. Our results indicate that EC 
smoking significantly increases the odds of gingival 
inflammation while adjusting for age, gender, and the fre-
quency of brushing teeth (Odds ratio: 2.473 > 1, P-value: 
0.003 < 0.05) [Fig. 2].

In the following sections, we describe the process 
underlying the association of EC smoking on gingival 
inflammation via the oral microbiome in saliva and sub-
gingival sites, respectively. First, we assessed the disparity 
in microbial composition between EC users and non-
users with respect to α-diversity, β-diversity, and taxo-
nomic relative abundance while adjusting for age, gender, 

and the frequency of brushing teeth (see the sections, 
α-diversity analysis, β-diversity analysis, and Taxonomic 
differential abundance analysis). We then performed 
mediation analyses [26] to find microbial taxa that trans-
mit the effect of EC smoking on gingival inflammation 
(see the section, Mediation analysis).

α‑diversity analysis
We compared EC users and non-users in each α-diversity 
index (i.e., Observed, Shannon [27], Simpson [28], 
Inverse Simpson [28], Fisher, Chao1 [29], abundance-
based coverage estimator (ACE) [30], incidence-based 
coverage estimator (ICE) [31], phylogenetic diversity 
(PD) [32]) while adjusting for age, gender, and the fre-
quency of brushing teeth in the saliva [Fig. 3A] and sub-
gingival [Fig. 3B] sites, respectively. In the saliva site, we 
found significant increases in the Observed, Fisher and 
PD indices [32] for EC users compared to non-users 
[Fig.  3A]. In contrast, in the subgingival site, we found 
significant increases in all α-diversity indices but the 
Simpson index [Fig. 3B]. This may indicate that the sub-
gingival microbiome is affected more strongly by ECs 
than the saliva microbiome.

Table 1  Descriptive table for the characteristics of study subjects

*  Freq. of brushing teeth: How often do you brush your teeth? < 1: less than once per day, 1: once per day, > 1: Twice or more per day

EC users Non-users

Mean Median Min, Max IQR Mean Median Min, Max IQR

Age 
(unit: years)

23.84 23 18, 34 20, 27 24.40 25 18, 34 21, 28

# subjects % subjects # subjects % subjects

Gingival Inflammation Absent 30 40.00 47 62.67

Present 42 56.00 27 36.00

Gender Male 61 81.33 55 73.33

Female 14 18.66 20 26.67

Freq. of brushing teeth  < 1 8 10.67 1 1.33

1 29 38.67 16 21.33

 > 1 38 50.67 58 77.33

Fig. 2  The effects of EC smoking and other covariates (age, gender, and the frequency of brushing teeth) on gingival inflammation. *EC Smoking 
represents our major finding on the effect of EC smoking on gingival inflammation while adjusting for age, gender, and the frequency of brushing 
teeth. Age, Gender, and Freq. Brushing Teeth represent the effects of age, gender, and the frequency of brushing teeth, respectively
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We also include in the Supplementary Information 
[Additional file  1: Figure S1] the results of univariate 
analysis with no covariate adjustments. In the saliva site, 
we found fewer significantly different α-diversity indi-
ces in the covariate-adjusted analysis [Fig.  3A] than the 
analysis with no covariate adjustments [Additional file 1: 
Figure S1A]. In contrast, in the subgingival site, we found 
the same significant α-diversity indices [Fig.  3B, Addi-
tional file 1: Figure S1B]. This may indicate that age, gen-
der, and the frequency of brushing teeth have stronger 
confounding effects on the disparity in microbial com-
position between EC users and non-users in the saliva 
microbiome than in the subgingival microbiome.

In addition, we assessed the disparity in α-diversity 
between saliva and subgingival sites from EC users 
[Additional file 2: Figure S2A] and non-users [Additional 
file 2: Figure S2B], respectively. We can see that subgin-
gival samples have significantly higher α-diversity than 
saliva samples [Additional file  2: Figure S2] in both EC 
users and non-users. This indicates that the subgingival 
population tends to be more diverse than the salivary 
population regardless of exposure.

β‑diversity analysis
Figure  4 visualizes any differentiation detected in the 
microbial composition between EC users and non-
users with respect to each β-diversity index (i.e., Jac-
card dissimilarity [33], Bray–Curtis dissimilarity [34], 
Unweighted UniFrac distance [35], Generalized Uni-
Frac distance [36], and Weighted UniFrac distance 
[37]). The P-values in Fig.  4 are the ones estimated by 

GLMM-MiRKAT [38, 39] adjusting for age, gender, and 
the frequency of brushing teeth.

In the saliva site, we could not find any significant 
disparities between EC users and non-users in any 
β-diversity indices [Fig. 4A]. In contrast, in the subgingi-
val site, we found significant disparities in all β-diversity 
indices but the Unweighted UniFrac distance [Fig.  4B]. 
Again, as in the α-diversity analysis, this may indicate 
that the subgingival microbiome is affected more strongly 
by EC use than the saliva microbiome.

We also performed and included in the Supplementary 
Information [Additional file  3: Figure S3] the results of 
univariate analysis with no covariate adjustments. As in 
the α-diversity analysis, the saliva site exhibited five fewer 
significant different β-diversity indices in the covariate-
adjusted analysis [Fig.  4A] than the analysis with no 
covariate adjustments [Additional file  3: Figure S3A], 
while the subgingival site exhibited one fewer signifi-
cant β-diversity index in the covariate-adjusted analysis 
[Fig. 4B] than the analysis with no covariate adjustments 
[Additional file  3: Figure S3B]. Again, this may indicate 
that age, gender and the frequency of brushing teeth have 
stronger confounding effects on the disparity in micro-
bial composition between EC users and non-users in the 
saliva microbiome than in the subgingival microbiome.

Taxonomic differential abundance analysis
Here, we assess the disparity in each microbial taxon at 
each taxonomic rank (i.e., phylum, class, order, family, 
genus, species) between EC users and non-users while 
adjusting for age, gender, and the frequency of brush-
ing teeth [Fig. 5, Fig. 6]. We found significant disparities 

Fig. 3  The results from α-diversity analysis. The fitted random effects model to assess the disparity in each α-diversity index between EC users 
and non-users while adjusting for age, gender and the frequency of brushing teeth in the saliva (A) and subgingival (B) sites, respectively. *Est. 
represents the estimated coefficient on the effect of each α-diversity index in the fitted random effects model
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in relative abundance between EC users and non-users 
for: 36 microbial taxa (i.e., 2 phyla, 3 classes, 6 orders, 7 
families, 8 genera, 10 species) in the saliva site [Fig.  5]; 
71 microbial taxa (i.e., 4 phyla, 7 classes, 11 orders, 15 
families, 21 genera and 13 species) in the subgingival site 
[Fig. 6]. Of these, we identified 21 microbial taxa in com-
mon (i.e., from both the saliva and subgingival sites) (i.e., 
2 phyla, 2 classes, 4 orders, 5 families, 4 genera, 4 spe-
cies), 15 microbial taxa (i.e., 1 class, 2 orders, 2 families, 4 
genera, 6 species) only in the saliva site, and 50 microbial 
taxa (i.e., 2 phyla, 5 classes, 7 orders, 10 families, 17 gen-
era, 9 species) only in the subgingival site.

Shared by saliva and subgingival sites [Fig. 5, Fig. 6]: 
A total of 21 microbial taxa were discovered in both the 
saliva and subgingival sites to be differentially abundant. 
Of these, 4 taxa showed an increase in relative abundance 
for EC users, while 17 microbial taxa showed a decrease 
in relative abundance for EC users. Interestingly, both the 
saliva and subgingival sites had the same effect direction 
(increase or decrease) for all these shared taxa in relative 

abundance between EC users and non-users. At the 
genus level, Bergeyella, Neisseria, Enterococcus and Hae-
mophilus showed a decrease in relative abundance for EC 
users.

Unique to the saliva site [Fig. 5]: A total of 15 micro-
bial taxa were discovered only in the saliva site to be 
differentially abundant. Of these, 10 taxa showed an 
increase in relative abundance for EC users, while 5 taxa 
showed a decrease in relative abundance for EC users. At 
the genus level, Catonella showed a decrease in relative 
abundance for EC users while Alloscardovia, Cryptobac-
terium and Dialister showed an increase in relative abun-
dance for EC users.

Unique to the subgingival site [Fig. 6]: A total of 50 
microbial taxa were discovered only in the subgingi-
val site to be differentially abundant. Of these, 16 taxa 
showed an increase in relative abundance for EC users, 
while 34 taxa showed a decrease in relative abun-
dance for EC users. At the genus level, Bacteroidetes_
[G-3], Olsenella, Lachnospiraceae_[G-7], Filifactor, 

Fig. 4  The results from β-diversity analysis. The two-dimensional PCoA plots visualize if the microbial composition is differential by the status of 
EC smoking with respect to each distance metric in the saliva (A) and subgingival (B) sites, respectively. *p represents the P-value estimated by 
GLMM-MiRKAT to test the disparity in each distance metric between EC users and non-users while adjusting for age, gender and the frequency of 
brushing teeth
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Fig. 5  The results from taxonomic differential abundance analysis using saliva samples. The fitted random effects model to assess the disparity in 
each microbial taxon at each taxonomic rank (i.e., phylum, class, order, family, genus, species) between EC users and non-users while adjusting for 
age, gender and the frequency of brushing teeth. *Est. represents the estimated coefficient on the effect of each taxon in the fitted random effects 
model. *Q-value represents the P-value after the FDR control. *Only the statistically significant taxa after the FDR control (i.e., Q-value < 0.05) are 
included. For the species, the one before semi-colon (;) is the genus name and the one after semi-colon (;) is the species name

Fig. 6  The results from taxonomic differential abundance analysis using subgingival samples. The fitted random effects model to assess the 
disparity in each microbial taxon at each taxonomic rank (i.e., phylum, class, order, family, genus, species) between EC users and non-users while 
adjusting for age, gender and the frequency of brushing teeth. *Est. represents the estimated coefficient on the effect of each taxon in the fitted 
random effects model. *Q-value represents the P-value after the FDR control. *Only the statistically significant taxa after the FDR control (i.e., 
Q-value < 0.05) are included. For the species, the one before semi-colon (;) is the genus name and the one after semi-colon (;) is the species name

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Peptostreptococcaceae_[XI][G-1] and Treponema 
showed an increase in relative abundance for EC users, 
while Porphyromonas, Capnocytophaga, Leptotrichia, 
Actinomyces, Corynebacterium, Rothia, Peptidiphaga, 
Kingella, Cardiobacterium, Streptococcus and Abiotro-
phia showed a decrease in relative abundance for EC 
users.

Overall, the greater abundance and variety of taxa 
cataloged at the subgingival site [Fig.  6] than at the 
saliva site [Fig.  5] may indicate that the oral microbi-
ome at the subgingival site is affected more strongly 
or preserves microbiome changes longer than the oral 
microbiome at the saliva site. The difference in the 
taxonomic discoveries may also indicate that the oral 
microbiomes in the saliva and subgingival sites are 
affected by EC smoking in different ways.

We also include the results of univariate analysis 
with no covariate adjustments in the Supplementary 
Information [Additional file  4: Figure S4, Additional 
file  5: Figure S5]. We found fewer taxonomic discov-
eries in the analysis with covariate adjustments (i.e., a 
total of 36 microbial taxa) [Fig. 5] than in the analysis 
with no covariate adjustments (i.e., a total of 61 micro-
bial taxa) for the saliva site [Additional file  4: Figure 
S4]; as such, the proportion of taxonomic discover-
ies in the analysis with covariate adjustments com-
pared with the one with no covariate adjustments in 
the saliva site was 36/61 (i.e., about 59%). In contrast, 
for the subgingival site, we found relatively less fewer 
taxonomic discoveries in the analysis with covariate 
adjustments (i.e., a total of 71 taxa) [Fig. 6] than in the 
analysis with no covariate adjustments (i.e., a total of 
82 taxa) [Additional file 5: Figure S5]; as such, the pro-
portion of taxonomic discoveries in the analysis with 
covariate adjustments compared with the one with no 
covariate adjustments in the subgingival site was 71/82 
(i.e., about 87%). As in the α-diversity and β-diversity 
analyses, this may indicate that age, gender, and the 
frequency of brushing teeth have stronger confound-
ing effects on the disparity in microbiome composition 
between EC users and non-users in the saliva site.

Mediation analysis
To assess whether the microbial taxa that are significantly 
affected by ECs [Fig.  5, Fig.  6] in turn cause gingival 
inflammation, we fitted mediation models [26] adjust-
ing for EC use as well as the covariates age, gender, and 
the frequency of brushing teeth. We identified 1 micro-
bial taxon (i.e., 1 species) in the saliva site [Fig. 7] and 18 
microbial taxa (i.e., 1 phylum, 2 classes, 4 orders, 5 fami-
lies, 4 genera and 2 species) in the subgingival site [Fig. 8] 
as microbial taxa that mediate the effects of ECs on gingi-
val inflammation.

In the saliva site, EC smoking significantly decreased 
the relative abundance of Absconditabacteria_(SR1)_
[G-1];bacterium_HMT_875 (species) [Fig.  5], and this 
decrease consequently resulted in gingival inflammation 
[Fig. 7].

In the subgingival site, EC smoking significantly 
decreased the relative abundance of Actinobacteria (phy-
lum), Gammaproteobacteria and Betaproteobacteria 
(classes), Actinomycetales, Pasteurellales, Burkholderiales 
and Neisseriales (orders), Corynebacteriaceae, Micrococ-
caceae, Burkholderiaceae, Neisseriaceae and Steptococ-
caceae (families), Actinomyces, Rothia, Neisseria and 
Enterococcus (genera), and Bergeyella;sp._HMT_322 
(species) [Fig.  6], and these decreases consequently 
resulted in gingival inflammation [Fig. 8]. In contrast, in 
the subgingival site, EC smoking significantly increases 
the relative abundance of Olsenella;uli, (species) [Fig. 6], 
and this increase consequently resulted in gingival 
inflammation [Fig.  8]. Interestingly, Olsenella;uli, (spe-
cies) is a gram-positive bacterium that is known to cause 
endodontic infections [40].

Functional differential abundance analysis
We additionally assessed the disparity in each functional 
annotation (i.e., KEGG pathway [25]) between EC users 
and non-users while adjusting for age, gender, and the 
frequency of brushing teeth [Fig. 9]. We found significant 
regulations in relative abundance between EC users and 
non-users for 71 KEGG pathways in the subgingival site 
[Fig.  9], while no metabolic pathways were significantly 
regulated in the saliva site.

Fig. 7  The results from mediation analysis using saliva samples. The fitted generalized linear mixed model to assess the mediating roles of the saliva 
microbiome between EC smoking and gingival inflammation. *Est. represents the estimated coefficient on the effect of each taxon in the fitted 
generalized linear mixed model. *Q-value represents the P-value after the FDR control. *Only the statistically significant taxa after the FDR control 
(i.e., Q-value < 0.05) are included. For the species, the one before semi-colon (;) is the genus name and the one after semi-colon (;) is the species 
name
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Here, we can exhibit an upregulation in metabolic path-
ways for obtaining energy observed in anoxic niches (e.g., 
fermentation) which has been confirmed in other studies 
of periodontal diseases [41, 42]. For example, we found 
an upregulation in the reductive acetyl coenzyme A path-
way (CODH-PWY) [Fig.  9], which is used in anaerobic 
environments to fix carbon dioxide by forming acetyl-
CoA that is then fermented into acetate [43]. We also 
detected other upregulated anaerobic metabolisms in EC 
users, specifically the breakdown of amino acids found in 
anoxic environments. The fermentation of lysine and glu-
tamate is especially relevant to oral disease. These path-
ways that were observed to be upregulated in EC users 
are, for example, Fermentation of L-Lysine Produces 
Acetate and Butanoate (P163-PWY) and L-Glutamate 
Degradation V via hydroxylate (P162-PWY) [Fig. 9] that 
produce butanoate, which is an active signaling molecule 
in the oral cavity of the host that has been associated with 
inflammation, an important determinant of periodontitis 
[44–46]. Interestingly, our results also showed that EC 
users have upregulated functions observed exclusively 
in Archaeans. For example, there is increased formation 
of methane and carbon dioxide from acetate (acetyclas-
tic) by upregulated anaerobic processes only observed in 
Archaeans (see methanogenesis from acetate (METH-
ACETATE_PWY) [Fig. 9]) [47]. There are also synthetic 
pathways that are associated with increased population 
of these methanogens (e.g., see pyrimidine deoxyribonu-
cleotides de novo biosynthesis IV (PWY-7198) [Fig.  9]). 

These results suggest that for EC users Archaeans are 
seen in combination with anaerobic fermentative bacte-
ria in a type of symbiosis known as syntrophic associa-
tion, which is represented in the functional pathways by 
an upregulation in both Archaeans-specific functions and 
fermentative metabolism [48–50]. In addition, we iden-
tified upregulated functional pathways that lead to the 
production of A-LPS, which is a specific O-antigen in 
the LPS from  Porphyromonas gingivalis  (e.g., see UDP-
2,3-diacetamido-2,3-dideoxy-&alpha;-D-mannuronate 
biosynthesis (PWY-7090) [Fig. 9]), signaling the presence 
of this periodontal pathogen in EC users [51, 52]. Most 
downregulated functions were evidence of shutdown of 
biosynthesis in EC users (e.g., downregulated biosynthe-
sis of amino acids, carbohydrates and aerobic processes), 
as there is evidence of a shift towards reductive chem-
istry to produce energy as described above. This is also 
corroborated by downregulated functions related to oxi-
dative pathways, for example reduced TCA, glycolysis, 
fatty acid beta-oxidation, and aerobic respiration [Fig. 9].

Discussion
Electronic cigarettes are a popular method of nicotine 
delivery, yet the long-term effects of exposure remain 
largely unknown. While exposure to nicotine and tobacco 
combustion by-products are known to alter micro-
bial profiles of varying body sites, the capacity of elec-
tronic cigarette vapor to induce a similar change in the 
oral cavity is still being studied. To this aim, we sought 

Fig. 8  The results from mediation analysis using subgingival samples. The fitted generalized linear mixed model to assess the mediating roles of 
the subgingival microbiome between EC smoking and gingival inflammation. *Est. represents the estimated coefficient on the effect of each taxon 
in the fitted generalized linear mixed model. *Q-value represents the P-value after the FDR control. *Only the statistically significant taxa after the 
FDR control (i.e., Q-value < 0.05) are included. For the species, the one before semi-colon (;) is the genus name and the one after semi-colon (;) is the 
species name
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Fig. 9  The results from functional differential abundance analysis using subgingival samples. The fitted random effects model to assess the 
disparity in each functional annotation (i.e., KEGG pathway) between EC users and non-users while adjusting for age, gender and the frequency of 
brushing teeth. *Est. represents the estimated coefficient on the effect of each pathway in the fitted effects model. *Q-value represents the P-value 
after the FDR control. *Only the statistically significant pathways after the FDR control (i.e., Q-value < 0.05) are included
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to characterize and compare the oral microbiomes of 
younger adult EC users versus non-users, relating any 
differences to clinical evidence of disease. As outlined 
above, the findings from this study suggest that expo-
sure to ECs components may cause changes to the oral 
microbiome at both the saliva and subgingival sites. We 
also observed that the use of ECs significantly increases 
the odds of gingival inflammation. Mediation analysis 
provides evidence that these changes may in turn lead to 
clinical evidence of gingival inflammation.

We observed a significant increase in α-diversity in 
the saliva and subgingival sites for EC users compared 
to non-users, suggesting that exposure to EC vapor 
increases microbial diversity. In addition, we observed a 
greater significant increase in α-diversity in the subgin-
gival site compared to the saliva site, suggesting that the 
subgingival niche is richer in microbial diversity com-
pared to the saliva. While we discovered more micro-
bial taxa in the subgingival site than in the saliva site, all 
the discovered microbial taxa shared between the saliva 
and subgingival sites showed the same effect direction 
between EC users and non-users, suggesting that the sali-
vary and subgingival environments are linked.

We then explored the potential underlying mecha-
nism connecting EC smoking and gingival inflamma-
tion via the oral microbiome. To do so, we performed 
mediation analyses to assess whether EC smoking 
affects the oral microbiome, which in turn affects gin-
gival inflammation based on the mediator and outcome 
models of Baron and Kenny [26]. We found evidence of 
microbial dysbiosis in EC users that can mediate gin-
gival inflammation [Fig. 7 and Fig. 8]. Our results sug-
gest that 1 microbial taxon in the saliva site [Fig. 7] and 
18 microbial taxa in the subgingival site [Fig.  8] have 
causal mediation effects linking EC exposure to gingi-
val inflammation. More specifically, Absconditabacte-
ria_(SR1)_[G-1];bacterium_HMT_875 (species) in the 
saliva site [Fig. 7], and Actinobacteria (phylum), Gam-
maproteobacteria and Betaproteobacteria (classes), 
Actinomycetales, Pasteurellales, Burkholderiales and 
Neisseriales (orders), Corynebacteriaceae, Micrococ-
caceae, Burkholderiaceae, Neisseriaceae and Steptococ-
caceae (families), Actinomyces, Rothia, Neisseria, and 
Enterococcus (genera), and Bergeyella;sp._HMT_322 
and Olsenella;uli (species) in the subgingival site 
[Fig.  8] appear to have the causal mediation effects. 
When looking at directionality, a decrease in Abscondi-
tabacteria_(SR1)_[G-1];bacterium_HMT_875 (species) 
in the saliva site and a decrease in Actinobacteria (phy-
lum), Gammaproteobacteria and Betaproteobacteria 
(classes), Actinomycetales, Pasteurellales, Burkholde-
riales and Neisseriales (orders), Corynebacteriaceae, 
Micrococcaceae, Burkholderiaceae, Neisseriaceae and 

Steptococcaceae (families), Actinomyces, Rothia, Neis-
seria and Enterococcus (genera) and Bergeyella;sp._
HMT_322 (species) in the subgingival site led to a 
greater likelihood of clinically evident gingival inflam-
mation, while an increased in Olsenella;uli (species) in 
the subgingival site led to a greater likelihood of clini-
cally evident gingival inflammation.

Moreover, 71 functional annotations (i.e., KEGG path-
ways) we discovered in the subgingival site [Fig.  9]. For 
example, we found upregulated pathways such as reduc-
tive acetyl coenzyme A pathway (CODH-PWY), Fer-
mentation of L-Lysine Produces Acetate and Butanoate 
(P163-PWY), L-Glutamate Degradation V via hydroxy-
late (P162-PWY), methanogenesis from acetate (METH-
ACETATE_PWY), pyrimidine deoxyribonucleotides de 
novo biosynthesis IV (PWY-7198), UDP-2,3-diaceta-
mido-2,3-dideoxy-&alpha;-D-mannuronate biosynthe-
sis (PWY-7090) [Fig.  9]). We also found downregulated 
functions related to oxidative pathways (see reduced 
TCA, glycolysis, fatty acid beta-oxidation, and aerobic 
respiration [Fig.  9]). These findings can provide further 
insights into the metabolic capacity of the oral microbi-
ome to better understand the underlying etiology.

While previous studies have focused on salivary film, 
subgingival film has its own ecosystem largely due to 
decreased oxygen availability [53]. Various microbes 
that comprise this film are not easily accessible to tooth-
brushes, therefore subgingival samples can capture a 
larger unique microbial community. Interplay between 
microbial species within subgingival biofilms increases 
and fluctuates during gingival inflammation via cytokine 
levels [54]. When the microbial balance is disrupted in 
the subgingival area, it causes inflammatory exudate, 
specifically in the gingival crevicular fluid, leading to 
an increased risk of bacterial infection [55–57]. If the 
inflammation continues unchecked, organisms can cause 
localized destruction of bone and surrounding soft tis-
sues. Conversely, inflammation from elsewhere can cre-
ate an environment in which destructive pathogens 
are allowed to proliferate. Either pathway draws more 
inflammatory cells to the area, intensifying the inflam-
matory response. The periodontal microbial environment 
is critical to the health of oral ecosystems. For example, 
Porphyromonas gingivalis and Fusobacterium nucleatum 
are associated with periodontal disease progression [58]. 
Prevalence of Enterococcus faecalis in subgingival biofilm 
is also known to be associated with chronic periodontal 
infection [59]. It is possible that exposure to ECs vapor, 
coupled with other environmental and personal factors 
(e.g., diet, genetic predisposition, baseline oral micro-
bial profile), can create conditions favorable for patho-
genesis. If allowed to persist over time, these changes 
could lead to not only periodontal disease but also other 
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inflammation-mediated maladies (e.g., cardiovascu-
lar disease and rheumatoid arthritis).

The discoveries described in this study have not been 
found in prior studies because they have primarily exam-
ined the salivary film of EC users and non-users, while 
not including the subgingival film. Previous studies have 
also focused on the differences in the taxonomic relative 
abundance of the oral microbial samples, while our study 
is the first to analyze the mediating roles of the saliva 
and subgingival microbial taxa in gingival inflamma-
tion. Another limitation of the current study is that study 
participants were not exactly matched and not all EC 
users were using the same EC products. Further, we only 
accounted for hygiene practice and gingival inflammation 
and did not incorporate more specific clinical markers of 
periodontal disease in our analysis.

Conclusions
The results from our study provide evidence that the use 
of ECs is significantly associated with increases in the 
odds of gingival inflammation and alters the microbi-
ome in both saliva and subgingival sites in both shared 
and distinct ways. To be precise, our α-diversity analy-
sis showed that the use of ECs significantly increased 
Observed, Fisher and PD indices in the saliva site, while 
it significantly increased all α-diversity indices but the 
Simpson index in the subgingival site. In addition, we 
observed a significantly higher α-diversity in the sub-
gingival site compared to the saliva site for both EC 
users and non-users. Our β-diversity analysis showed 
that the use of ECs did not change any β-diversity index 
in the saliva site, while it changed all β-diversity indices 
but the Unweighted UniFrac distance in the subgingival 
site. Thus, both of our α-diversity and β-diversity analy-
ses indicated that the subgingival microbiome is affected 
more strongly by EC use than the saliva microbiome.

Our taxonomic differential abundance analysis found 
significant disparities in relative abundance between 
EC users and non-users for 36 microbial taxa in the 
saliva site and 71 microbial taxa in the subgingival site. 
This also indicates that the subgingival microbiome is 
affected more strongly by ECs than the saliva microbi-
ome. We identified 21 microbial taxa in both the saliva 
and subgingival sites, and they showed the same effect 
direction (increase or decrease) from non-users to EC 
users. These findings are consistent with other stud-
ies reporting an association between increased micro-
bial richness and periodontitis [60]. Furthermore, our 
mediation analyses revealed that 1 microbial taxon 
in the saliva site and 18 microbial taxa in the subgin-
gival site [Fig.  8] have causal mediation effects linking 
EC exposure to gingival inflammation. In addition, we 

discovered 71 significantly differential functional anno-
tations (i.e., KEGG pathways) in the subgingival site, 
but no ones in the saliva site. Our functional differential 
abundance analysis revealed that subgingival samples 
from EC users exhibited an increase in metabolic path-
ways for obtaining energy observed in anoxic niches 
(e.g., fermentation) and increased anaerobic metabo-
lism in EC users. Interestingly, our results also showed 
that EC users have increased functions observed exclu-
sively in Archaeans that are in combination with anaer-
obic fermentative bacteria in a type of symbiosis known 
as syntrophic association, which is represented in the 
functional pathways by an increase of both Archae-
ans-specific functions and fermentative metabolism 
[48–50]. In addition, we identified increased functional 
pathways that lead to the production of A-LPS, which 
is a specific O-antigen in the LPS from Porphyromonas 
gingivalis, signaling the presence of this periodontal 
pathogen in EC users [51, 52]. Most downregulated 
functions were evidence of shutdown of biosynthesis in 
EC users (e.g., decreased biosynthesis of amino acids, 
carbohydrates and decreased aerobic processes).

Overall, although our study did not include teenag-
ers, who compose the most at-risk group for EC related 
issues largely in part to their tobacco naivety, it did 
assess the effects of ECs on younger adults, most of 
whom are daily users of these products. Findings from 
this study suggest that exposure to ECs may cause 
changes to both the saliva and subgingival microbial 
environments that may in turn have a clinical conse-
quence (i.e., gingival inflammation). If allowed to per-
sist, these early changes may be a harbinger of other 
later maladies such as periodontitis, edentulism and 
cancer. Although it is unclear whether discontinua-
tion of EC use could result in a regulation of the oral 
microbiome, the potential health effects of continued 
exposure through continued use is of concern. It is 
also important to note that exposure to tobacco smoke, 
alcohol, and having ‘poor oral health’ are all associated 
with an increased risk of HPV-related oropharyngeal 
squamous cell carcinoma. While studies to elucidate 
this relationship are ongoing, one proposed mechanism 
is that persistent inflammation in the setting of oral 
HPV infection may prevent viral clearance, leading to 
more chances of replication errors that evade the host 
immune response. Theoretically, a similar mechanism 
could be at play with electronic cigarette exposure. 
Additional research is required on this topic.

Our findings also suggest that continued surveillance 
of the health effects of electronic cigarette exposure is 
required. At minimum, our study highlights the need 
for additional research regarding the microbial and 
clinical effects of e-cigarette exposure on the body.
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Methods
Participants and recruitment
We recruited participants from Baltimore, MD and its 
surrounding areas, advertising through social media 
(e.g., Facebook and Instagram), daily newspapers (e.g. 
Baltimore Sun), and flyers posted at local vape shops 
and colleges. Eligibility screening was conducted via 
phone calls prior to the participant’s first visit. All par-
ticipants were between 18 and 34 years in age and did 
not use any tobacco products in the last three months 
prior to enrollment (and throughout the study) and 
had less than 5 pack-years of exposure to tobacco prod-
ucts. Participants were excluded from the study if they 
received any dental cleaning within the last 3  months 
from the baseline visit. In addition, participants did not 
have any antibiotics or oral/inhaled corticosteroids use 
for at least 3  months prior to their baseline visit. EC 
users were defined as individuals who have been smok-
ing ECs that contain nicotine daily for at least 6 months 
and having a positive urine cotinine test result at their 
baseline visit. Non-users were defined as individuals 
who have not used EC products for at least 90 days and 
had a negative urine cotinine test result at their base-
line visit. The VAPORS study was designed as a longi-
tudinal observational study, consisting of 3 visits over a 
2-year span. However, we couldn’t collect the microbi-
ome samples from the last visit due to the outbreak of 
the COVID-19 pandemic, but we were able to process 
the first cross-sectional datasets and partial second visit 
samples. The first study visits were completed between 
June 2017 and October 2018. A total of 150 participants 
were enrolled, consisting of 75 EC users and 75 non-
users. All participants provided informed consent and 
received financial compensation.

Sample collection and processing
Prior to arrival for the visit, participants were instructed 
to refrain from the following activities for a mini-
mum of 8  h: eating, tooth brushing, flossing, rinsing, 
and gum chewing. Saliva samples were collected with 
the supervision of the study coordinator via the pas-
sive drool method using a disposable Saliva Collection 
Aid (Salimetrics #5016.02) placing it into a cryovial. 
Saliva samples were then aliquoted for analysis of the 
microbiome and quantification of analytes. The study 
dentist, Leah Leinbach, and other qualified dental resi-
dents completed the oral exams and subgingival plaque 
collections. The oral exam evaluated the participant’s 
extra- and intraoral structures. Subgingival plaques 
were collected by inserting endodontic paper points 
(Spident # 104–0245) into the interproximal gingival 

sulci of 10 randomly selected teeth until tissue resist-
ance, using a sterile dental tweezer. Each paper point 
was left in place for 10 s to allow absorption of crevicu-
lar fluid containing bacteria, then removed, pooled, and 
placed in a buffer and frozen at -80 °C until microbiome 
profiling was conducted.

Gingival inflammation
Gingival inflammation was determined by the study den-
tist, Leah Leinbach, using a scale of 0 – 3 (0 = normal 
gingiva; 1 = mild inflammation; 2 = moderate inflamma-
tion; 3 = severe inflammation). This scale was reviewed 
with dental clinicians. To account for potential interob-
server bias, gingival inflammation was further dichoto-
mized into either no inflammation (0 = absence; normal 
gingiva) (i.e., clinical health) and inflammation (1 = pres-
ence; mild, moderate or severe inflammation) (i.e., evi-
dence of erythema, edema, etc.).

Extraction of nucleic acids
DNA was isolated using a Zymo Research Quick-DNA 
Fecal/Soil Microbe Miniprep Kit (catalog D6010) from 
paired saliva and subgingival plaque samples. Saliva sam-
ples were stored as a 1:1 ratio of saliva to RNALater. The 
tips of 20 subgingival plaque sample paper points were 
cut and placed in a bead tube containing 800  µl Gene-
JET Genomic DNA Purification Kit (R1511) lysis buffer. 
Following the manufacturer’s protocol, 750 µl saliva and 
800 µl subgingival lysates were disrupted using an Omni 
Bead Ruptor 12 for 3 cycles of 30 s at 6 m/s with 5 min 
of dwelling on ice between cycles, with the exception 
that the subgingival plaque samples were disrupted in 
the provided bead tubes. Concentration was measured 
on a Qubit 4 Fluorometer using a dsDNA BR Kit (Ther-
moFisher) and DNA was diluted to 5  ng/µl for library 
preparation. Libraries were made following Illumina 
protocol 16S V3-V4-metagenomic-library-prep-guide-
15044223-b using the gene-specific amplicon primer 
sequence provided and Nextera XT Index kits (cata-
log 15,052,163–6). The V3-V4 amplicon primers were 
synthesized using Integrated DNA Technologies. The 
V3-V4 PCR primer sequences were 16SAmpliconPCR-
ForwardPrimer = 5’TCG​TCG​GCA​GCG​TCA​GAT​GTG​
TAT​AAG​AGA​CAG​CCT​ACGGGNGGC​WGC​AG and 
16SAmpliconPCRReversePrimer = 5’GTC​TCG​TGG​
GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACA​GGA​CTACH-
VGGG​TAT​CTA​ATC​C. Library concentrations were 
measured on a Qubit 4 Fluorometer using a dsDNA BR 
Kit (ThermoFisher). Library quality and size was vali-
dated on an Agilent Fragment Analyzer using a DNF-
467-Genomic-DNA-50  Kb-Analysis-Kit. Libraries were 
pooled at 5 nM using Qubit concentrations.
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Metagenomic sequencing and quality control
We conducted raw sequence data processing, denoising 
and taxonomic annotations using the pipeline, QIIME2 
[61] and the expanded human oral microbiome database 
(eHOMD) (16S rRNA RefSeq version 15.22) [62]. We 
also used DADA2 and USEARCH to remove sequenc-
ing errors and chimeras. We used PICRUSt2 to generate 
functional annotations (i.e., KEGG pathways) [63]. The 
microbiome data initially had 19,607 amplicon sequence 
variants (ASVs) for 426 samples (225 saliva and 201 sub-
gingival samples). We applied quality control criteria to 
keep the samples that have library sizes larger than 5,000 
and ASVs that have mean proportions larger than 2x 105 . 
As a result, 2,323 ASVs for 426 samples (225 saliva and 
201 subgingival samples) were finally retained in our 
analysis.

α‑diversity analysis
We calculated nine α-diversity indices (i.e., Observed, 
Shannon [27], Simpson [28], Inverse Simpson [28], 
Fisher, Chao1 [29], ACE [30], ICE [31], PD [32]) using 
the R packages aMiAD [64], fossil [65], picante [66] and 
entropart [67]. We fitted the random effects model [68] 
to assess the disparity in each α-diversity index between 
EC users and non-users while adjusting for age, gender 
and the frequency of brushing teeth. For paired micro-
biome analysis, we created box-plots to visualize sub-
gingival and saliva samples for EC users and non-users, 
respectively, in each α-diversity index. We used the Wil-
coxon signed-rank test [69] to estimate the disparity in 
each α-diversity index between subgingival and saliva 
sites.

β‑diversity analysis
We calculated five ecological distance metrics (i.e., Jac-
card dissimilarity [33], Bray–Curtis dissimilarity [34], 
Unweighted UniFrac distance [34], Generalized UniFrac 
distance (θ = 0.5) [34], and Weighted UniFrac distance 
[34]) using the R packages, GUniFrac [36] and MiRKAT 
[38, 39]. We created two-dimensional PCoA plots to visu-
alize each of the five ecological distance metrics stratified 
by EC smoking status. We used GLMM-MiRKAT [70] to 
estimate the disparity in each distance metric between 
EC users and non-users while adjusting for age, gender, 
and the frequency of brushing teeth.

Taxonomic differential abundance analysis
We applied the centered log-ratio (CLR) transforma-
tion [71] using the R package, compositions, to relax the 
compositional constraint. We fitted the random effects 
model [68] to assess the disparity in each microbial taxon 
at each taxonomic rank (i.e., phylum, class, order, family, 

genus, species) by EC smoking status while adjusting 
for age, gender and the frequency of brushing teeth. We 
applied the Benjamini-Hochberg (BH) procedure [72] per 
taxonomic rank to set a false discovery rate (FDR) thresh-
old of under 5%.

Functional differential abundance analysis
We applied the CLR transformation [71] using the R 
package, compositions, to relax the compositional con-
straint. We fitted the random effects model [68] to assess 
the disparity in each pathway by EC smoking status while 
adjusting for age, gender and the frequency of brushing 
teeth. We applied the BH procedure [72] per taxonomic 
rank to set a control FDR threshold of under 5%.

Mediation analysis
To assess the mediating roles of the oral microbiome 
between EC smoking and gingival inflammation, we fol-
lowed the Baron and Kenny’s procedures [26]. That is, 
we first fitted the mediator models to assess the disparity 
in microbial taxa by gingival inflammation status adjust-
ing for age, gender and the frequency of brushing teeth, 
which was done in Taxonomic differential abundance 
analysis. Then, we fitted the outcome models using the 
generalized linear mixed model [73] to assess the effects 
of the significantly differential taxa in the mediator mod-
els on the gingival inflammation while adjusting for EC 
smoking status as well as the other covariates, age, gen-
der, and the frequency of brushing teeth. Here, the 
adjustment of EC smoking in the outcome models was 
necessary to exclude possible direct effect of EC smok-
ing on gingival inflammation, which is not transmitted 
by the oral microbiome [26]. As in Taxonomic differen-
tial abundance analysis, we applied the CLR transforma-
tion [71] to relax the compositional constraint using the 
R package, compositions. We applied the BH procedure 
per taxonomic rank to set an FDR threshold of under 5%.
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