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Abstract 

Background  Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health 
and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole 
sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional 
potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consum‑
ing a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation 
under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to 
measure community composition and functional potential. Specific statistical analyses were implemented to detect 
changes in relative abundance from taxa, genes and pathways.

Results  Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia 
muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus 
bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermenta‑
tion were observed as a function of the diet intervention and correlated to specific taxa of interest.

Conclusions  These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota 
structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings 
demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut com‑
mensals during stress-induced states.
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Background
The human gut microenvironment is influenced by com-
plex interactions between the host and gut microbiome. 
The network of these interactions is crucial to metabolic 
processes which maintain gut physiology and host health. 
Gut microbiota community structure can be modulated 
by host exposure to different stressors including psycho-
logical stress, sleep deprivation, environmental factors, 
and physical activity, which can, in turn, influence host 
health [1]. Changes in diet are of interest as both a poten-
tial source of stress on the gut ecosystem (e.g., a sudden 
or extreme diet change), but also as an intervention strat-
egy to combat unfavorable stressor-induced shifts in that 
ecosystem.

Griffin et  al. has demonstrated that microbiota 
responses to a dietary intervention vary among individ-
uals and that metacommunity dynamics (e.g. when an 
individual’s microbiota is connected to other individuals’ 
communities by microbial exchange) can have implica-
tions in health. These microbiota responses could help on 
the understanding of how individuals practicing certain 
type of diets respond to the ingestion of particular foods 
in a determined period of time. Interestingly, correlations 
of differences in taxa, composition and richness, can be 
made with the abundance of diet-specific metabolic and 
functional biomarkers [2]. Griffin et  al. stated that the 
process of designing probiotic and nutritional interven-
tions includes identifying the microbes associated with 
specific diets, predicting the responses of the individu-
als to the diets, and determining if those microbes are 
related to that dietary practice. It has been shown that 
modulating the gut microbiota via dietary intervention 
can reduce symptoms of some metabolic disorders, such 
as obesity, and associated complications (e.g. systemic 
inflammation) [3]. Chen et  al. presented a literature 
review focused on gut microbiota therapeutic interven-
tions using diet as the mechanism to understand the 
cardioprotective effects on heart failure [4]. Haak et  al. 
reviewed the potential benefits of employing the micro-
biota to treat sepsis [5]. In a recent longitudinal study 
by Johnson et  al., the authors found that the responses 
to specific diets are highly personalized and although 
there were detectable changes in the microbiome relative 
abundances, some of these changes were not highly con-
served across subjects [6]. These results could be taken 
into account at the time of developing dietary interven-
tion practices.

Our group recently reported that fecal microbiota 
composition was changed after a sudden diet shift, 
namely a shift from consuming a habitual diet to the US 
military Meal, Ready-to-Eat (MRE) combat ration over 
21  days, resulting in lower relative abundance of mul-
tiple genera of lactic acid bacteria (e.g. Lactobacillus, 

Lactococcus, Leuconostoc) and increased relative abun-
dance of several saccharolytic genera (Streptococcus and 
Clostridium) [7]. An in  vitro fermentation experiment 
was also used to assess the potential use of resistant 
starch (RS2) for restoring Lactobacillus following MRE 
consumption. The approach promoted an ideal environ-
ment that allowed inter-species competition for nutrients 
to occur in samples collected before and after the MRE 
intervention corresponding to a control group studied 
over the same time scale of hours, which is not feasible 
in in vivo human studies which commonly rely on daily 
stool samples. Ruminococcus bromii, a keystone taxon 
and resistant starch degrader, increased in relative abun-
dance during the MRE diet in the presence of RS2 while 
the ability of Lactobacillus to compete in presence of RS2 
appeared to be reduced [8]. However, those results were 
limited in that only a few selected taxa were measured, 
the identity of which Lactobacillus species affected could 
not be elucidated, and differences in functional capacity 
of the community could not be examined nor the whole 
community metabolic response to RS both composi-
tionally and functionally. The results did provide initial 
insight into how in vitro studies can complement human 
study results and reveal microbial community functional 
understanding in response to stress.

Herein we report a comprehensive genomic analysis 
employing both 16S rRNA gene amplicon and Whole-
metagenome sequencing (WMS) of samples collected 
during the in  vitro fermentation experiment described 
in Pantoja-Feliciano et al. 2019 [8] to reveal influence of 
a sudden change in diet on whole bacterial community 
composition and functional potential. To explore stress-
induced microbial community responses, carbohydrate 
content, specifically RS, in medium was increased five-
fold to allow the study of nutrient:microbiome interac-
tions that cannot easily be explored in vivo [8].

Results
Stressor‑induced changes to microbial composition
Temporally sampled fecal aliquots were extracted to iso-
late DNA for 16S rRNA gene amplicon (16S) sequenc-
ing. A total of 65 samples were analyzed and 36 564 861 
demultiplexed sequence counts obtained. After alpha-
diversity analysis, differences in Faith’s Phylogenetic 
Diversity (PD) by Diet (Fig. S1A) and Study Day (Fig. 
S1B) were not evident; however, there were decreases in 
alpha diversity as the fermentation progressed (Fig. S1C), 
as shown by the PD plots. There were no observed dif-
ferences in the interaction Diet*Study Day (Fig. S1D). 
Same pattern was observed when choosing a sequencing 
depth of 212,889 to generate Boxplots for Diet (Fig. S2A 
Panel a), Study Day (Panel b), Fermentation Time points 
(Panel c), and Diet_Study day (Panel d) for Faith_PD 
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metric. Supplementary Figs. S3 and S4 show similar 
results for Observed OTUs (metric computed by default 
in QIIME2-2019.7 version) and Shannon Diversity Plots, 
respectively.

Beta-diversity analysis represented by Weighted-Uni-
frac PCoA (Fig. 1) illustrated clustering by fermentation 
time points but not by Diet_Study day (HAB0, HAB21, 
MRE0, MRE21). Microbial communities from sam-
ples at 24 and 48  h after exposure to RS-supplemented 
medium appear to be similar in composition and clus-
tered closer as observed in the PCoA (Fig. 1). As a result 
of the PCoA showing a close clustering of 24 h and 48 h 
samples, 48  h samples were excluded from further sta-
tistical analysis. The decision of excluding 48  h samples 
was made based on those results that showed 24  h and 
48 h samples clustering together with significant similar-
ity in terms of microbial communities. Also, within batch 
fermentations, 24 h represents stationary phase and any 
time points beyond 24 h tend to begin exhibiting degrees 
of proteolysis. The 48 h was only included to indicate a 
full gut transit cycle of 24-48 h and 24 h proved optimal 
for bioinformatic and biostatistical analysis. These fac-
tors provided the rationale for excluding 48 h as that time 
point does not add any additional information to the pri-
mary outcomes of the work.

Weighted-Unifrac Distances Metric Boxplots and 
Adonis PERMANOVA analysis by diet (PERMANOVA, 
R2 = 0.13, Pr(> F) = 0.001), study day (PERMANOVA, R2 

= 0.03, Pr(> F) = 0.18), fermentation residence time (i.e. 
how long the bacteria is in the medium) (PERMANOVA, 

R2 = 0.70, Pr(> F) = 0.001), and distances between diet 
and study day together (PERMANOVA, R2 = 0.02, 
Pr(> F) = 0.22), are represented in Fig. 2A, Panels a, b, c, 
and d respectively. Diet alone has a visible effect on the 
microbial community as presented by the PCoA and in 
the PERMANOVA Analysis, but from the PCoA we 
can see that there is not a clear separation of the groups 
corresponding to the interaction of diet with study day 
(which we call HAB0, HAB21, MRE0, MRE21 as groups; 
the number in this nomenclature refers to the day on 
each diet: 0 before starting, 21 to 21  days after starting 
the diet), and the R2 in Fig.  2 panel d is 0.019, with no 
statistically significant difference (Pr > F) = 0.223. Unsta-
ble microbiome could be linked to harmful responses to 
stress [9]. Volatility analysis was computed for alpha and 
beta diversity (Faith_PD and Weighted-Unifrac metrics, 
respectively) to see if there were differences in volatility 
based on our stressor, the diet. For alpha diversity, differ-
ences were not apparent for Diet, Study Day and Diet_
Study Day (Fig. S2 B Panel a, b, c respectively). For beta 
diversity, differences were visible in Diet and Diet_Study 
Day at 24  h of fermentation (Fig.  2 B Panels a and c, 
respectively).

In total, 201 taxa were identified by 16S but a visible 
pattern of differences in community structure due to diet, 
date or fermentation residence time is not evident in the 
taxonomy bar plot (Fig. S5).

Features that were present in less than half of the 
samples in all diet-day combinations at 0 h (start of fer-
mentation) were removed. The remaining 127 taxa 

Fig. 1  16S rRNA Weighted-Unifrac PCoA  shows a divergence and clustering by Fermentation Time Points (0, 5, 10, 24, and 48 h) but not by Diet 
(MRE vs HAB) and Study Day (0d vs 21d)
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were arcsine transformed. A linear mixed model analy-
sis using a multivariate ANOVA with repeated meas-
ures was employed to the 127 taxa to detect abundance 
variations as a function of the MRE-diet intervention 
(Diet*StudyDay*Fermentation Time interaction). 52 
Taxa were identified as having a statistically significant 
interaction between diet, study day, and fermentation 
residence time as shown in Table S1. Dorea, Lachnospira, 
Bacteroides fragilis, Akkermansia muciniphila, Bifido-
bacterium adolescentis Betaproteobacteria, Enterobac-
teriaceae, Bacteroides eggerthii, Ruminococcus bromii, 
Prevotella, and Slackia, showed interesting patterns of 
MRE21 relative to the other groups (HAB0, HAB21, 
MRE0), mainly to MRE0 (Table S2). Patterns comparing 
other groups (not focusing on MRE21 as the main group) 
are not included for further analysis and discussion.

Dorea spp. notably increases in the MRE day 21 group 
after 10  h of exposure to starch-supplemented medium 
relative to the other groups (Fig.  3A). Lachnospira also 
showed a notable increased in relative abundance in the 
MRE21 group relative to the other groups at 5 and 10 h 
of fermentation (Fig.  3B). Bacteroides fragilis (Fig.  3C) 
was statistically higher in MRE21 compared to MRE0 at 
5  h of fermentation as represented by the Tukey analy-
sis (Table S2). Akkermansia muciniphila was diminished 
in relative abundance in MRE day 21 compared to HAB 
diet day 0 and 21 and MRE day 0 throughout the fermen-
tation; however, the rate of change over the course of 

fermentation differed in MRE day 21 compared to MRE 
day 0 (p < 0.050) as determined by an equality of slopes 
test (Fig. 3D, Fig. S6D). A similar case was observed for 
Prevotella where abundance at inoculation was higher 
but decreased as the fermentation proceeded (Fig.  3J); 
however, differences between MRE day 0 and MRE day 
21 were not detected at later time-points, and after 24 h 
residence time, this organism was completely dimin-
ished in both groups (Fig. S6J). In addition, Bacteroides 
adolescentis showed no differences at the inoculation 
time point in MRE21 compared to the other groups but 
showed a notable decrease at 5 and 10 h of fermenation 
in the MRE21 group relative to MRE0 (Fig. 3E). Betapro-
teobacteria showed a higher relative abundance pattern 
in MRE21 when compared to the other groups (Fig. 3F). 
It was higher at inoculation time compared to MRE0 but 
the equality of slopes test showed that the rate of change 
over the course of fermentation didn’t differ in MRE day 
21 compared to MRE day 0 (Fig. S6F). Enterobacteriacea 
family (Fig.  3G) presented a lower relative abundance 
in the MRE21 group as compared to MRE0 but higher 
than HAB21 (Table S2). Another species that showed an 
interesting pattern was Bacteroides eggerthii (Fig.  3H), 
which showed diminished abundances in MRE21 over 
the course of the fermenation compared to the other 
groups. In addition, the equality of slopes test showed 
that the rate of change over the course of fermentation 
differed in MRE21 relative to the other groups (Fig. S6H). 

Fig. 2  Weighted-Unifrac Distances Metric Boxplots with PERMANOVA Analysis (A) and Beta-Diversity Volatility Analysis (B). Panel A corresponds 
to the Weighted_Unifrac Distance Metric and Adonis PERMANOVA analysis by Diet (a), Study Day (b), Fermentation Time Points (c) and Diet_Study 
Day (d) groups, respectively. P-values are for comparisons to the Pool time point. Panel B corresponds to the Volatility Analysis for the Beta-Diversity 
Weighted_Unifrac Distance Metric for (a) Diet, (b) Study Day and (c) Diet_Study Day
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At inoculation, Ruminococcus bromii were not differ-
ent comparing MRE21 to MRE0 but at 24  h its relative 
abundance increased as confirmed by the Tukey analy-
sis (Fig. 3I, Table S2). The equality of slopes test showed 
that the rate of change over the course of fermentation 
differed in MRE21 relative to the other groups (Fig. S6I). 
Slackia, our last interesting group to mention (Fig.  3K), 
was significantly lower in MRE21 compared to MRE0 at 
10 h of fermenation (Table S2).

Stressor‑induced changes to Microbial Functional Potential
Whole-metagenome sequencing (WMS) was employed 
to complement 16S analyses and explore the influence 
of MRE-diet intervention at a functional level. Though 
the diet*study day interaction only resulted in subtle 
alterations in community composition as assessed by 16S 
sequencing, genomes for strains that have nearly identical 
ribosomal RNA sequences have been shown to possess 
different functional capabilities [10]. Using the assembly 
free program HUMAnN2 [11], we assessed community 

wide function and observed similar clustering patterns 
as those seen with 16S. PCoA of Bray–Curtis distances 
in gene family abundances (Fig. S7A) resulted in the first 
principal coordinate associating with fermentation time 
(PERMANOVA, R2 = 0.23, p = 0.001). The second princi-
pal coordinate was associated with diet (PERMANOVA, 
R2 = 0.17, p = 0.001) and there was a small effect of 
Diet*Date (PERMANOVA, R2 = 0.03, p = 0.001). At the 
pathway functional level (Fig. S7B), PCoA of Bray–Curtis 
distances in pathway abundances primarily clustered by 
fermentation time (PERMANOVA, R2 = 0.31, p = 0.001) 
with effects of Diet (PERMANOVA, R2 = 0.15, p = 0.001) 
and Diet*Date (PERMANOVA, R2 = 0.02, p = 0.001).

To parse whether there were finer scale differences for 
specific strains or functions, sequences from all samples 
were co-assembled, binned into metagenome assem-
bled genomes (MAGs), and functionally annotated. 
After binning, we assembled 120 MAGs at > 50% com-
pletion and < 10% contamination including 57 MAGs 
at > 90% completion and < 5% contamination and 63 

Fig. 3  16S rRNA Linear Mixed Model Analysis for 11 organisms. Linear mixed model analysis (multivariate ANOVA with repeated measures) 
for Diet*StudyDay*Fermentation Time Points interaction. Linear graphs representing the 11 organisms out of 127 that have significant 3-way 
interaction for the different fermentation time points and Diet/Date groups in function of their relative abundance: Dorea (A), Lachnospira (B), 
Bacteroides fragilis (C), Akkermansia muciniphila (D), Bifidobacterium adolescentis (E), Betaproteobacteria (F), Enterobacteriaceae (G), Bacteroides 
egerthii (H), Ruminococcus bromii (I), Prevotella (J), and Slackia (K). Exact p-values from the test are also reported in Table S1. Pairwise multiple 
comparison (Tukeys HSD Analysis) for the 11 organisms obtained after the Linear mixed model analysis within each time-point, is represented 
by symbols: a (*) symbol indicates a difference between study days 0 and 21 for the same diet, and a (^) symbol indicates a difference between 
MRE and habitual (HAB) diets for the same study day. One symbol indicates p ≤ 0.05, two symbols indicates p ≤ 0.01, and three symbols indicates 
p ≤ 0.001. Exact p-values from the test are also reported in Table S2
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MAGs at > 50% completion, < 10% contamination. PCoA 
of Bray–Curtis distances for MAG abundances showed 
similar clustering by diet and fermentation residence 
time to the 16S PCoA (Fig. S8A). The first principal 
coordinate was associated with fermentation time (PER-
MANOVA, R2 = 0.27, p = 0.001) and the second with diet 
(PERMANOVA, R2 = 0.23, p = 0.001). There was a small, 
significant effect of Diet*Date (PERMANOVA, R2 = 0.03, 
p = 0.001). Thus, at the MAG level, there was not as large 
of an effect of MRE diet when comparing Day 0 to Day 
21 (Diet*Date interaction) as compared to the effects of 
fermentation time and diet alone.

Due to the inclusion of starch supplementation during 
fermentation, we assessed whether specific functions for 
complex carbohydrate breakdown (Carbohydrate-active 
enzymes, CAZymes) were affected by Diet*Date. Hid-
den Markov models were used to identify and classify 
CAZymes in the metagenome assembly. PCoA of Bray–
Curtis distances for CAZyme abundances showed similar 
clustering patterns to the pathway PCoA (Fig. S8B). The 
first principal component was primarily associated with 

fermentation time (PERMANOVA, R2 = 0.57, p = 0.001) 
with small effects of Diet (PERMANOVA, R2 = 0.06, 
p = 0.001) and Diet*Date (PERMANOVA, R2 = 0.03, 
p = 0.001). To uncover CAZymes which have abundance 
variations as a function of the MRE-diet intervention 
(Diet*StudyDay*Fermentation Time interaction), we 
employed a linear mixed model to 300 CAZymes after 
arcsine transformed (Fig.  4). 20 CAZymes passed the 
significance test (Table S3) and 9 showed interesting pat-
terns due to MRE21 group (Fig.  4). Table S4 shows the 
p-values corresponding to the pairwise multiple com-
parison analysis Tukey HSD for each fermentation time 
point in the different groups, supporting Fig.  4. In the 
case of GH13_14, MRE day 21 group was significantly 
different from the other groups at 10 and 24 h after fer-
mentation (Fig. 4A). GH13_14 was of particular interest 
because these enzymes catalyze the cleavage of branched 
RS2 breakdown products. MAG and taxonomic break-
down of GH13_14 by Diet*Date indicated that the 
increased abundance in MRE Day 21 samples was due to 
a Coproccocus comes MAG (Fig. 5A). Another interesting 

Fig. 4  Linear Mixed Model Analysis for 9 CAZymes. Linear graphs representing the 9 CAZymes out of 20 that have significant 3-way interaction for 
the different fermentation time points and Diet/Date groups in function of their relative abundance: GH13_14 (A), GT79 (B), CBM40 (C), PL22 (D), 
GH13_4 (E), PL1 (F), GT76 (G), GH36 (H), and GH13_18 (I). (*) symbol indicates a difference between study days 0 and 21 for the same diet, and a (^) 
symbol indicates a difference between MRE and habitual (HAB) diets for the same study day. One symbol indicates p ≤ 0.05, two symbols indicates 
p ≤ 0.01, and three symbols indicates p ≤ 0.001



Page 7 of 15Pantoja‑Feliciano et al. BMC Microbiology           (2023) 23:32 	

case was the CAZyme GT76 (Fig. 4G) and its prevalence 
in the MRE day 21 group associated with Lachnospira eli-
gens (Fig.  5B). Correlation with selected CAZymes (e.g. 
GH13_14 and GT76) to taxa were completed but addi-
tional correlations were outside the scope of this paper.

The other CAZymes that showed interesting patters 
in MRE21 group were GT79 (Fig.  4B) which showed 
significantly lower relative abundances in MRE21 differ-
ences compared to the other groups (Tukey Table S4); 
PL22 CAZyme showing decreases in MRE21 at 5 and 
10 h compared to MRE0; three CAZymes showed simi-
lar patterns of increased relative abundances in MRE21 
at 10  h of fermentation to the CAZyme previously dis-
cussed GH13_14, namely GH13_4, GH36 and GH13_18 
(Fig. 4E, H and I, respectively). Another type of CAZyme, 
PL1, showed MRE21 increases at 10  h as well (Fig.  4F). 
Although CBM40 (Fig.  4C) seems to be diminished at 
5 h of fermentation in the MRE21 group, Tukey analysis 
didn’t confirm statistically significant differences between 
groups (Table S4). Thus, the MRE diet did result in subtle 
functional differences at the fine-scale CAZyme level.

Similar analysis was employed to find pathways that were 
important for differentiating Diet*StudyDay*Fermentation 
Time categories. A Linear Mixed Model approach was 
employed to 280 pathways after arcsine transformation. 
As a result of the analysis, no significant features relative 
to MRE21 were evident. However, we included analysis in 
Supplementary (Table S5).

Discussion
This study used an in vitro fermentation system that sim-
ulated the conditions of the gut, to examine the effects 
of starch supplementation on gut microbial community 

composition and functional capacity in samples collected 
from volunteers that consumed two different diets, the 
Meal, Ready-to-Eat (MRE) U.S. military combat ration 
and a habitual diet (HAB) for 21  days. Subtle changes 
in gut microbiota structure and metabolic capacity in 
response to RS2 were observed as a result of MRE diet 
consumption, suggesting that the MRE diet does not sub-
stantially influence competitive dynamics within the gut 
microbiome for the model substrate. With the incorpo-
ration of the volatility concept, the degree of composi-
tional changes in the microbiome due to a specific stress 
could be measured over time [9]. Here, we applied vola-
tility to alpha and beta diversity data and in effect we 
observed differences in beta diversity in response to diet, 
in contrast to alpha diversity where no responses were 
apparent.

Several studies have identified changes in microbial 
communities due to RS consumption. Martinez et al. has 
previously shown fecal microbiota composition changes 
after a RS2 diet in a human study, specifically a significant 
increase in the Ruminococcus bromii and Eubacterium 
rectale proportions [12]. A more recent study reported 
gut microbiota changes in mice when introducing a RS 
diet. Researchers observed a significant increase in mem-
bers of the Proteobacteria and Verrucromicrobia phyla 
correlated to an observed increase in anxiety-like behav-
iors within the animals [13]. These are contrary to one 
part of our results in which Akkermansia muciniphila 
(Verrucromicrobia) decreased upon exposure to RS-sup-
plemented medium but in concordance with Betaproteo-
bacteria (Proteobacteria) which presented higher relative 
abundances. Enterobacteriaceae in our study showed an 
increase at 5 h of fermentation in MRE21 group but still 

Fig. 5  CAZyme’s Bar Plot by Species. Bar graphs linking CAZymes relative abundances with bacterial species bins. A corresponds to GH13_14, and 
B GT76. MAG and taxonomic breakdown of GH13_14 by Diet*Date indicated that the increased abundance in MRE Day 21 samples was due to a 
Coproccocus comes MAG (A) and CAZyme GT76 and its prevalence in the MRE day 21 group associated with Lachnospira eligens (B)
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was lower when compared to the group MRE0. The dis-
crepancy may be due to differences in study design, com-
paring results from human samples to an animal model 
results, fermentation conditions and interindividual vari-
ability of the volunteers.

Although ~ 200 taxa were identified by 16S rRNA 
sequencing, only 11 bacterial groups showed differential 
changes in relative abundance during the fermentations 
as a function of the diet intervention. These groups were 
Dorea, Lachnospira, Bacteroides fragilis, Akkermansia 
muciniphila, Bifidobacterium adolescentis Betaproteo-
bacteria, Enterobacteriaceae, Bacteroides eggerthii, Rumi-
nococcus bromii, Prevotella, and Slackia, from which 
Dorea, Lachnospira, Betaproteobacteria, Enterobacte-
riaceae and Slackia are different than those identified in 
the previously reported qPCR analysis from the equiva-
lent sample set. The other groups are consistent between 
studies [8]. Reasons for the inconsistency are unknown 
but likely due to the more comprehensive nature of the 
16S and metagenomic analysis in this study rather than 
using qPCR to targeted specific species as was done 
in the previous study. The taxa identified by 16S in the 
present analysis, however, represent gut commensals 
that have a range of clinical and physiological relevance. 
For some of them, Dorea, Lachnospira, Bacteroides fra-
gilis, Bifidobacterium adolescentis, and Enterobacteria-
cea, inter-species competition for RS were significantly 
altered following 21d on the MRE diet. Dorea spp are 
members of the Clostridium cluster XIVa and are a dom-
inant species in the human gut [14]. Dorea spp utilizes 
dietary carbohydrates such as simple sugars (eg, glucose, 
lactose, maltose), inulin and fructo-oligosaccharides 
to produce metabolic products including acetate, for-
mate, lactate and ethanol [15]. Although some species 
are unable to directly metabolize starch, it is associated 
with starch absorption in mice, perhaps through cross-
feeding on small hydrolysis products (e.g., maltose, glu-
cose) from initial starch degradation by starch-degrading 
taxa [16], including possibly Prevotella whose abundance 
was increased due to the MRE-diet relative to the HAB 
diet. Dorea is considered part of a healthy gut microbi-
ota, although it has also been shown to have increased 
abundance in Multiple Sclerosis and IBD patients [17]. 
Lachnospira has been identified as one of the core 
groups of the gut microbiota [18]. Together with other 
gut members, Lachnospira abundances could increase 
with a diet rich in fiber [19]. In a previous study, Bang 
et  al. 2018 investigated how the gut microbiota utilizes 
pectin, a fiber found in fruits and vegetables, through 
in  vitro fermentation and metagenomics analysis [20]. 
They focused on Faecalibacterium and Lachnospiraceae, 
which has been demonstrated to express carbohydrate-
active and pectin-degrading enzymes. As one of the main 

results, they observed that with an increased incubation 
time with pectin, Lachnospira, Sutterella, Dorea and 
Clostridium increased. Additionally, it’s been shown that 
Lachnospira and Prevotella can utilize complex carbohy-
drates, Microbiota Accessible Carbohydrates (MAC), to 
produce CO2, H2 and short chain fatty acids (SCFAs) to 
improve energy metabolism and ameliorate conditions 
like inflammatory bowel disease and asthma [21]. Bac-
teroides species are the most abundant microorganisms 
in the human gut [22]. They are saccharolytic bacteria 
that could be symbionts or mutualists with some species 
contributing to the development of the immune system, 
but under certain conditions they could be opportun-
istic pathogens [23]. Bacteroides fragilis is an example 
of enterotoxigenic strains that secrete a toxin causing a 
virulence factor that can induce intestinal inflammation, 
something that has been implicated in colorectal cancer 
[24]. Rios-Covian et al. 2015 showed that B. fragilis was 
able to grow in the presence of glucose and exopolysac-
charides (EPS), complex carbohydrate polymers that 
some bifidobacterial species produce [25]. Bifidobac-
terium adolescentis is an amylotic bacteria found in the 
human large intestine [26] and is one of the most abun-
dant species of bifidobacterial in the human colon [27]. 
The probiotic is able to utilize glucose, maltose, panose 
and isomaltose [26] and starch or d-fructo-oligosaccha-
rides (FOS) as growth substrates [28]. Enterobacteriacea 
is a family that belongs to the Proteobacteria phylum in 
which some pathogens could be identified (e.g. Escheri-
chia coli).

Taken together, it is not clear whether the effect of 
the MRE diet on Dorea, Lachnospira, Bacteroides fragi-
lis, Bifidobacterium adolescentis, and Enterobacteriacea 
responses to RS2 we observed in this study can be consid-
ered beneficial for the microbial community or the host. 
For the other taxa, Akkermansia muciniphila, Betapro-
teobacteria, Bacteroides eggerthii, Ruminococcus bromii, 
Prevotella and Slackia, their relative abundance differed 
in the MRE-day 21 samples at the 0  h time point, but 
changes over time during the fermentation did not differ 
as a function of diet. This suggests an effect of the MRE 
diet on those taxa, but not the response of those taxa to 
RS2. Though that result does not match the previous 16S 
compositional analysis from the human study [7], this is 
likely due to only a sub-population (n = 5 volunteers per 
group) being used in the in vitro experiment rather than 
all 30 study volunteers. The subtle distinctions within 
the findings are difficult to draw conclusions associated 
with these taxa. A. muciniphila has been previously asso-
ciated with beneficial health outcomes [29,  30] and has 
been shown to metabolically respond to high RS diet in 
rats [31] and humans [32]. Betaproteobacteria belongs to 
Proteobacteria, a phylum that contains some important 
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pathogens; Bacteroides eggerthii has been identified in 
human and fish feces and is associated with CAZymes 
expression, serving, in general, as a metabolic symbiotic 
for other gut commensals lacking sugar utilization sys-
tems [23, 33, 34]; Ruminococcus bromii is an amylolytic 
bacteria, starch-degrading keystone species in the human 
colon, which has a preference for α(1–4)-linked oligosac-
charides larger than maltose, as it was shown to grow 
faster in rumen fluid medium on maltotriose or malto-
tetraose, and unable to utilize glucose [26]. Prevotella 
spp. is thought to be beneficial due to its prevalence in a 
high fiber diet and has also been shown at the family level 
to increase following high RS diet [32] and during in vitro 
fermentation studies [35, 36]. Slackia is a gut bacteria 
that plays a role in host lipid and xenobiotic metabolism 
and some species are capable of the conversion of isofla-
vone  daidzein  to  equol  and/or  O-desmethylangolensin 
(O-DMA) [37]. Some of these taxa warrant further inves-
tigation as bacterial targets for RS supplementation.

WMS analysis identified several CAZymes, GH13_14, 
PL22, GH13_4, PL1, GT76, GH36 and GH13_18, that 
differentially changed in response to RS following MRE 
consumption relative to other samples. Enrichment 
of the extracellular glycan-active enzyme glycoside 
hydrolase (GH13_14) was associated to Coprococcus 
comes, a member of the Clostridium cluster XIVa [38]. 
GH13_14 is a pullulanase common in human gut lac-
tobacilli. As a butyrate producer, Coprococcus comes 
is generally thought to be beneficial. It has also been 
negatively correlated in type 1 diabetes patients [39]. 
Maier et  al. has shown CAZymes and transport sys-
tems related to C. comes have increased in abundance 
in response to an RS diet [32]. Lachnospira eligens was 
related to the CAZyme GT76. L. eligens utilizes pectin 
and polygalacturonic acid, with acetate, formate, etha-
nol, and CO2 as major end products [40]. It has been 
associated with the glycosyltransferase GT76, a α-1, 
6-mannosyltransferase that uses dolichol-P-mannose 
as a sugar donor. GT’s are enzymes that forms glyco-
sidic bonds and are involved with biosynthesis of di-, 
oligo-, and polysaccharides (www.​cazy.​com). Both C. 
comes and L eligens were not directly identified in the 
16S rRNA analysis at the species level but the genus 
Coprococcus, Lachnospiraceae family and Lachnospira 
were identified as part of the 30 most abundant taxa in 
the taxa bar plot. These microbes were not significant 
specifically after the LMM analysis, which may sug-
gest that not all species within each genus and family 
respond in the same way and also highlights the value 
of a higher level of resolution provided by WMS com-
positional and functional analysis. Otherwise, these 
taxa significantly contributed to CAZyme altera-
tions and community carbohydrate metabolism in the 

presence of RS2. CAZymes GH13_4 and GH13_18 are 
glycoside hydrolases belonging to the Family 13, sub-
family 4 and 18 respectively, and showed similar results 
in MRE21groups as the CAZyme GH13_14 that was 
previously discussed. GH36 is a glycoside hydrolase 
too but belongs to the Family 36. GH79 belongs to the 
same family but subfamily 79. It was the only CAZyme 
in our study that significantly started at the inoculation 
time with different relative abundances in MRE21 com-
pared to the other groups but continued steady over the 
course of the fermentation. PL22 is part of the Polysac-
charide lyases (PL) group of CAZymes that are involved 
in degradation of plant cell walls, with major activi-
ties as oligogalacturonate/oligogalacturonide lyase and 
isolated from Bacteroides species, including B. fragilis 
[41]. It was found to be enriched in Escherichia in a 
study that was seeking to understand the development 
of the gut microbiome and succession in infants [42]. 
It was involved in activities such as metabolizing small 
molecules (sugar bioproducts of mucin) and dietary 
polysaccharides degradation. PL1 is also part of the 
PL group with main role in pectate lyase [41].

The study was limited by use of only a subset of volun-
teers within the in vitro fermentation studies, pooling the 
samples that  limited individualized study outcomes and 
a lack of correlative SCFA, metabolomics and proteom-
ics analysis to corroborate bioinformatics findings. How-
ever, the data does demonstrate sudden changes in diet 
had a functional effect on community competition for RS 
and that certain potentially beneficial taxa respond to RS 
supplementation differentially as a function of diet and 
stress.

Conclusion
In this study, we used in vitro fermentation to explore the 
effects of an acute stressor, a sudden change in diet from 
habitual to sole sustenance on MREs, on inter-species 
competition dynamics of gut microbiome in response to 
starch supplementation. There were no evident clusters in 
the PCoA as a function of diet and the deeper multivari-
ate analysis indicated MRE consumption does not appear 
to substantially impact the effects of RS2 on the gut 
microbiome. Rather, only minimal alterations in commu-
nity composition and functional potential as measured 
by CAZyme relative abundance were observed, relative 
to the total taxa and CAZymes identified. These results 
did demonstrate that community metabolic capacity and 
competition for substrates can be altered even when taxa 
abundance are not significantly different in the absence 
of that substrate. The findings demonstrate the value 
of combining human microbiome studies, in  vitro fer-
mentation, and powerful next generation sequencing 

http://www.cazy.com
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techniques like 16S and WMS to effectively gain a more 
complete understanding of the effects of stress on com-
petitive nutrient:microbiome:interactions and to identify 
potential strategies toward modulating gut commensal 
metabolic competition during stress states.

Methods
Participants
Fecal samples were collected from ten individuals par-
ticipating in a randomized controlled trial designed to 
determine the effects of subsisting on a MRE-only diet 
on gut microbiota composition and intestinal permeabil-
ity [7]. For more information about the characteristics of 
the participants and their diets see Supplemental Table 1 
from Pantoja-Feliciano et al. 2019. Study details and pri-
mary findings have been previously reported (Karl 2019). 
Briefly, the full study population included 64 adults with-
out obesity, 18–62 yr who were randomly assigned to fol-
low their normal habitual diet for 21d (HAB) or consume 
a provided diet containing only the MRE rations for 21d. 
Study exclusion criteria included: use of antibiotics or 
colonoscopy within 3 mo of enrollment, vegetarian diet, 
history of gastrointestinal (GI) disease, infrequent bowel 
movements (< 4x/wk), and habitual use of medications 
affecting GI function (e.g. laxatives, anti-diarrheals). All 
participants were instructed to discontinue use of pro-
biotic, prebiotic, or other dietary supplements ≥ 2 wk 
before study participation. Study involvement was vol-
untary, and written informed consent was obtained prior 
to enrollment. The study was reviewed and approved by 
the US Army Research Institute of Environmental Medi-
cine Human Institutional Review Board (Natick, MA). 
Investigators adhered to the policies regarding the pro-
tection of human subjects as prescribed in Army Regula-
tion 70–25, and the research was conducted in adherence 
with the provisions of 32 CFR Part 219. The parent study 
from which samples used in these experiments was reg-
istered on www.​clini​caltr​ials.​gov as NCT02423551. All 
volunteers provided written informed consent for their 
samples to be used for the in vitro experiments described 
herein.

Fecal samples
Fecal samples were collected at baseline (day 0) and at 
the end of the 21d MRE intervention period (day 21). 
Samples were collected into provided 650  mL collec-
tion containers to which an anaerobic sachet (GasPak EZ 
Anaerobe Container System; Becton, Dickinson and Co., 
Franklin Lakes, NJ) was immediately added. The sealed 
container was then kept on ice or in a refrigerator until 
processing [43]. Fecal slurry (20%) was prepared within 
12 h of donation by addition of 0.1 M phosphate buffer 
pH 7.2 supplemented with 15% w/v glycerol and 0.08% 

L-cysteine (Sigma-Aldrich; St. Louis, MO), to fresh feces 
in a 4:1 ratio, followed by homogenizing for two minutes 
in a Seward Ltd. Model 400 stomacher (Davie, FL). The 
slurry was anaerobically divided into aliquots and stored 
at -80 °C until needed.

Fermentation System Protocol (Fig. 6)
All chemicals were obtained from Sigma-Aldrich unless 
otherwise indicated. The fermentation parameters are 
outlined in Pantoja-Feliciano et  al. [8]. Briefly, fermen-
tation medium was prepared based on Macfarlane et al.
[44] with the following modifications: addition of resa-
zurin (1 ug/L) and supplemented with a fivefold increase 
in potato resistant starch (15  g/L, RS). After mixing 
well, the nutrient-rich medium was added to fermenta-
tion vessels (125  mL/vessel) autoclaved, equilibrated 
overnight under constant headspace flush with oxygen-
free N2 (20psig, 5 mL/min) and adjusted to emulate the 
ascending colon (pH 5.5). Fecal samples collected from 
ten individuals participating in the parent study on day 
0 and day 21 (HAB, n = 5; MRE, n = 5) were pooled in 
equal proportions and vessels inoculated with 10% (v/v) 
fecal slurry for final 2% inocula (w/v). Pooling promotes 
a highly diverse community and allows incorporation of 
low abundant, keystone species that may be limited using 
individualized samples to generate more generalizable 
insight, which is standard practice supported by Aguirre 
et  al. [45]. Parallel control vessels were inoculated with 
cell-free phosphate buffer/glycerol. Aliquots were tem-
porally removed from each vessel at 0, 5, 10, 24 and 48 h 
after exposure to RS2-supplemented medium and stored 
at -80  °C for DNA extraction and sequencing analysis. 
Fermentations were run in triplicate, at the same time, as 
experimental replicates.

16S rRNA gene amplicon sequencing
DNA from fecal samples was extracted using the QIAMP 
Power Fecal DNA Extraction Kit, QIAGEN, Inc. (Ger-
mantown, MD). DNA concentration (ng/uL) was quanti-
fied using Nanodrop Onec (ThermoFisher Scientific, Inc., 
Waltham, MA). Primers 515F (GTG​YCA​GCMGCC​GCG​
GTAA) and 806R (GGA​CTA​CNVGGG​TWT​CTAAT) 
were used to amplify the V4 region of the 16S rRNA gene 
[46, 47]. No barcodes or adapters were included in the 
primers. Instead, the two-step, dual index PCR approach 
was used [48]. Nextera XT Index Kit v2 sets A and B (Cat. 
Nos. FC-131–2001 and FC-131–2002, Illumina, CA, 
USA) were used to index the 16S amplicons. The libraries 
were then normalized, pooled, and paired end sequenced 
(2 × 150 bp) on a NextSeq 500 (Illumina, CA, USA).

For downstream analyses, only the first forward 
sequencing reads were used. Primers were removed with 
the Python package cutadapt and only sequences 100 

http://www.clinicaltrials.gov
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nucleotides or more were retained [49]. QIIME2 [50] 
with the DADA2 plugin (qiime dada2 denoise-single) was 
used to assign amplicon sequence variants (ASVs) with 
the added parameter of truncating sequences at position 
124 [50, 51]. A phylogenetic tree was constructed with 
FastTree [52] by using the qiime alignment maft, qiime 
alignment mask, qiime phylogeny fasttree, and qiime phy-
logeny midpoint-root plugins, all with default parameters. 
Taxonomy was assigned using Greengenes (gg-13–8-
99–515-806-nb-classifier). 2 257 ASVs were determined 
representing 35 254 964 sequence counts. The mean read 
abundance per sample was 542 384.06 and the mean read 
abundance per feature was 15 620.276.

Whole‑metagenome sequencing (WMS)
Sequencing libraries were prepared using the Nextera 
XT DNA Library Prep Kit (Cat. No. FC-131–1096, Illu-
mina, CA, USA) and the Nextera XT Index Kit v2 set C 
(Cat. No. FC-131–2003, Illumina, CA, USA) according 
to the manufacturer’s protocol. Samples were normal-
ized, pooled, and paired-end sequenced (2 × 150 bp) on a 
NextSeq500 (Illumina, CA, USA).

Metagenomic assembly and binning was completed 
with metaWRAP pipeline modules [53]. Default param-
eters were used unless noted. The module metawrap 

read-qc was used to quality filter reads for each sample. 
Paired-end reads for all samples were combined and co-
assembled with the metawrap assembly module using 
MEGAHIT [54, 55]. Assembled contigs were binned 
with the metawrap binning module using MetaBAT2, 
MaxBin2, and CONCOCT programs [56–58]. Bins were 
consolidated and refined with the metawrap bin_refine-
ment module with a minimum completion of 50% and 
maximum contamination of 10%. Bin abundances across 
samples were quantified with the metawrap quant_bins 
module which uses Salmon [59]. To improve assemblies, 
the refined bins were reassembled with the metawrap 
reassemble_bins module with a minimum completion of 
50% and maximum contamination of 10%. Reassembled 
bins were functionally annotated with the metawrap 
annotate module which uses Prokka [60]. To search the 
metagenome assembly for CAZymes, the run_dbcan.py 
(https://​github.​com/​linna​brown/​run_​dbcan) script was 
used. This script uses hidden Markov models (HMM) to 
search for CAZyme boundaries according to the dbCAN 
CAZyme domain HMM database [61, 62]. Finally, bin 
taxonomy was assigned according to The Genome Tax-
onomy Database (GTDB) [63]. First, the reassembled 
bins were converted into contig databases with Anvi’o 
(anvi-script-reformat fasta, anvi-gen-contigs-database 

Fig. 6  Schematic representation of the in vitro fermentation protocol. Human fecal samples from volunteers belonging to the two different diets 
were obtained and processed to meet the requirements for the in vitro fermentation system protocol. The top section represents the specific 
conditions of the system mimicking the human gut. The lower section represents the post-fermentation high-throughput sequencing analysis 
employed to samples collected at different time points during fermentation. *HAB: Habitual Diet; MRE: Meal, Ready-to-Eat

https://github.com/linnabrown/run_dbcan
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programs) [64]. Single-copy core gene taxonomy search 
databases were setup with the anvi-scg-databases pro-
gram and taxonomy was estimated using the anvi-run-
scg-taxonomy and anvi-estimate-genome-taxonomy 
programs. For functional and taxonomic analyses inde-
pendent of metagenome assembly, HUMAnN2 [11] and 
MetaPhlan2 [65] were used to annotate gene families/
pathways and taxonomy, respectively.

We obtained a total number of raw reads of 245 357 
634, including both paired reads; a total number of QC 
reads of 245 000 244; a mean raw reads per sample of 3 
774 732; and a mean QC reads per sample of 3 769 234. 
The combination of both techniques (16S and WMS) 
can contribute to comprehending the differences within 
and between individuals/samples [66]. By employing 16S 
analysis, community composition changes were explored 
while with whole-metagenome sequencing, functional 
capacity of the community in terms of genes and path-
ways were examined. Both techniques can be used as a 
complement of each other as they provide powerful com-
bined information.

Data analysis
Custom R [67] scripts were used for analysis and visu-
alization of 16S and whole genome data. For the beta 
diversity analysis, the weighted unifrac distance PCoA 
was employed only for the 16S data, and the Bray Cur-
tis PCoA analysis was employed for the Whole Genome 
Sequencing and is presented in Supplementary informa-
tion. For principal coordinates analysis in whole genome 
data (PCoA), the vegan package (https://​github.​com/​
vegan​devs/​vegan/) was used to compute Bray–Curtis 
distances between samples and this distance matrix was 
input into PCoA with the labdsv package (http://​ecolo​
gy.​msu.​monta​na.​edu/​labdsv/R). Experimental factor 
significance and proportion of variance explained was 
determined by PERMANOVA with the adonis function 
using the Bray–Curtis distance matrix [50]. For 16S data, 
QIIME2 software was used. Features that were present 
in less than half of the samples were removed. The data 
was baselined by subtracting feature abundance for each 
bioreactor vessel at time zero from feature abundances 
at subsequent time points to compensate for differ-
ences in pooled inocula due to volunteers. To determine 
importance and significance of the MRE-diet interven-
tion (Diet*StudyDay*Fermentation Time interaction), 
a Linear Mixed Model (LMM) analysis was employed, 
which aimed to identify between-group/condition dif-
ferences in trajectories of changes in relative abundance 
of important features over time. Raw sequencing reads 
and metagenome assembled data were deposited in the 
public database NCBI SRA, BioProject ID: PRJNA675102 

(https://​www.​ncbi.​nlm.​nih.​gov/​search/​all/?​term=​PRJNA​
675102).

Relative abundance data, after filtering, for the 127 
organisms, 289 pathways, and 300 CAZymes were arc-
sine square root transformed, which is a commonly 
used approach for microbiome differential relative 
abundance testing, to normalize distributions [68–70] 
and analyzed using repeated measured ANOVA. Mod-
els included  “Diet” (MRE and HAB) and “Study day” (0 
and 21) as between-groups factors and “Fermentation 
time” (0, 5, 10, 24 and 48 h) as a within-subjects factor.

For features demonstrating a statistically significant 
diet*study day*fermentation time interaction (p < 0.05) 
relative to the MRE21 group, pairwise comparisons 
between groups were tested within each time point 
separately using ANOVA with Tukeys HSD. To assess 
whether significant differences were due to relative 
abundance at 0 h, features were subjected to analysis of 
covariance with fermentation time as the covariate and 
tested for equality of slopes between groups. To gener-
ate regression lines, arcsine transformed data were sub-
jected to one-way analysis of covariance (ANCOVA, 
p < 0.05) with HAB_0, HAB_21, MRE_0, and MRE_21 
as the groups, and using fermentation time as the 
covariate. To satisfy conditions for normality (via Sha-
piro–Wilk test), data for Dorea and Enterobacteriaceae 
were further log-transformed before performing the 
ANCOVA. Analysis was performed using SigmaS-
tat 4.0 (Inpixion, Palo Alto, California). We used Sig-
nif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1; and 
BH: Benjamini–Hochberg for the adjusted p-values 
(method selected to control the FDR). A BH adjusted 
P-value < 0.05 was considered statistically significant.
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