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Abstract 

Background  Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identi‑
fied that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-
infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set 
of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identi‑
fied. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statisti‑
cal approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were 
collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. 
We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and 
statistical differences.

Results  Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and 
predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were 
Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and 
Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 
biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associ‑
ated with liver fibrosis F1-F2 vs F0.

Conclusions  Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in 
the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signa‑
tures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses.

Trial registration  TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 
4065/2014. Registered 01 01 2014.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is a com-
mon consequence of obesity and type 2 diabetes [1, 2]. 
In NAFLD, the origin of inflammation and hepatocyte 
injury is related to dietary lipids, bile acids, adipokines 
and cytokines, to cite a few. Furthermore, gut microbiota 
seems to be one of the key players of NAFLD develop-
ment [3, 4]. Markers and receptors of microbiota-related 
injury features have been described in this disorder such 
as TLRs, NLRs, and NLRP3 [5–8] as well as the activation 
of the innate and adaptive immune systems [9]. In early 
sets of experiments, we initially showed that hepatic stea-
tosis in the obese diabetic mouse was due to an increased 
circulating concentration of lipopolysaccharides (LPS) 
i.e. metabolic endotoxemia [10]. Lipoproteins transport 
LPS [11] to tissues, triggering the CD14/TRL4 pathway 
that increases liver inflammation and fat deposition [10]. 
Gut bacteria were also reported to translocate through 
the intestinal tract to tissues [12], such as the adipose 
depots and the liver, establishing a tissue microbiota 
as observed in rodents [13–15] and humans [16–18]. 
This tissue microbiota could trigger liver inflammation 
and the onset of fibrosis [13]. This mechanism activates 
immune cells, including Kupffer cells, to release various 
pro-inflammatory cytokines and chemokines [19] dam-
aging the surrounding tissues initiating hence, fibrosis. 
This hypothesis is now largely supported by recent major 
advances in NAFLD research, which show gut and blood 
microbiota dysbiosis of patients with advanced stages 
of NAFLD [20–22]. Hence, the identification of specific 
groups of translocated bacteria from the dysbiotic gut 
microbiota could aid in the design of novel therapeutic 
strategies. It is noteworthy that in other instances, such 
as in cancer authors did identify, isolate, and showed that 
intracellular bacteria control the efficacy of anti-cancer 
drugs [23–28]. Hence, this key observation reinforces 
our long term goal which is to show that tissue microbi-
ota either through the bacterial DNA or the live bacteria 
could initiate metabolic diseases.

To bring more light to this goal, we have sequenced and 
identified the bacterial 16S rRNA gene from liver biop-
sies of a cohort of 36 Romanian, 17 Spanish, 19 Italians 
and 10 Austrian patients with early stages liver fibrosis. 
It is noteworthy that the discrimination between patients 
with F0 and F1 scores could depend upon the biopsy 
sample or the practitioner. We here challenge this point 
by using an agnostic approach where only the liver bac-
terial DNA sequences would be classifiers of the F0 and 
F1 scores. We then, highlighted that such approach was 

indeed a good classifier of the patients. Eventually, we 
could design hypotheses regarding the putative causal 
role of liver microbiota at the onset of liver fibrosis. We 
used this database to evaluate the efficacy of Principal 
Coordinate Analysis (PCoA) to visualize the different 
liver fibrosis group scores using Wilcoxon-Mann–Whit-
ney statistical tests [29]. Eventually, since the overall 
database of patients is issued from different cohorts we 
anticipated some degree of heterogeneity within the 
overall cohort. Therefore, we adapted and developed 
a specific statistical approach i.e. L1 spectral cluster-
ing with fairness. Without demonstrating causality, 
this approach establishes inter-relations between liver 
16SrRNA bacterial DNA and low scores of liver fibrosis. 
Although, we did not demonstrate, in the present study, 
the existence of live bacteria our data are hence, strongly 
suggestive that some translocated bacteria could puta-
tively be causal to the early onset of the disease. Thanks 
to our original mathematical approach, we could demon-
strate that our results are adapted to the group size, the 
patient origins and sequencing batches. Overall, we drew 
a first partial “European microbial profile” of patients at 
early stages of liver fibrosis.

Materials and methods
Subjects
A multicentric observational study was conducted in 
the Second Department of Surgery, Emergency Mureş 
County Hospital of Romania, the Department of Systems 
Medicine of the Tor Vergata University of Rome, the 
Institut d’Investigacio Biomedica de Girona IdibGi, the 
Endocrinology and Nutrition Department of Dr. Josep 
Trueta University Hospital, and the University Hospital 
of Innsbruck. Exclusion criteria were serious liver dis-
eases (eg hemochromatosis, alcoholic fatty liver disease, 
Hepatitis B and Hepatitis C infection, chronic diseases, 
inflammatory systemic diseases, acute or chronic infec-
tions in the previous month, use of antibiotic, antifun-
gal, antiviral drugs, proton-pump inhibitors, anti-obesity 
drugs, laxatives, excessive use of vitamin D supplementa-
tion, fiber supplements or probiotics or participation in a 
weight loss program or weight change of 3 kg during the 
previous 6 weeks, pregnancy or breastfeeding, or major 
psychiatric antecedents; neurological diseases, history of 
trauma or injured brain, language disorders, and exces-
sive alcohol intake (≥ 40 g/day in women or 80 g OH/day 
in men) or intravenous drug abuse, and previous bariatric 
surgery.
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The cohort consists of 82 Caucasian patients where 34 
were diagnosed with fibrosis stage 0 (F0); 37 stage 1 (F1) 
and 11 stage 2 (F2), as diagnosed from histological analy-
ses of liver biopsies (Table 1). The patients suffered from 
morbid obesity with a mean BMI 42.6 (± 7.3). The mean 
waist circumference was 121.49 (± 18.73) in male and 
123.23 (± 18.26) in female participants.

Liver biopsies and liver fibrosis diagnosis
Liver biopsies were performed during laparoscopic sur-
gical bariatric procedures or via ultrasound guided liver 
biopsy, as previously described [4]. No energy devices 
were used for collecting the samples since hemostasis 
was done afterwards when the samples were extracted 
from the abdomen. Ultrasound (US) guided percutane-
ous liver biopsy (UPLB) was performed in 10 patients. 
In all patients, antiplatelet drugs and oral anticoagula-
tion therapy was paused 1  week before UPLB was per-
formed. One experienced physician (> 3000 US-exams 
and > 100 UPLB) performed the US-examinations with 
the Philips EPIQ 5® (Philips Corporation, Amsterdam, 

The Netherlands). UPLB was performed using an 18 G 
Temno II semi-automatic tru-cut biopsy needle (Cardi-
nal Health, Dublin, Ohio, USA). After UPLB, all patients 
were monitored for any signs of pain or clinically sus-
pected bleeding by nursing staff over a 6-h period. If no 
serious complications were evident, all patients would be 
discharged after the mandatory 6-h observation, a stable 
blood count and a normal ultrasound examination. All 
patients were follow-up in 2 weeks to review the results 
of the histology. All the samples were stored in a sterile 
container and kept at -80 °C until assayed. Furthermore, 
NAFLD was confirmed histologically by one independent 
pathologist.

Clinical assessments
Anthropometric measurement of each subject was per-
formed by trained nurses in the morning after fasting 
for at least 8  h. Body height was recorded to the near-
est 0.5  cm and body weight to the nearest 0.1  kg. BMI 
was defined as body weight (kilograms) divided by the 
square of body height (meters). Waist circumference was 

Table 1  Baseline characteristics of patients with biopsy-proven fibrosis

Statistical significance (ANOVA) is noted with * when p < 0.05

Characteristics All patients 
N = 82

Stage F0 N = 34 Stage F1 N = 37 Stage F2 N = 11 p Value F0vsF1 p Value F2vsF0 p Value F2vsF1

Age (years) 41.50 ± 11.52 39.5 ± 12.77 39 ± 9.53 50 ± 9.15 0.99 0.16 0.03*

Female (n) 47 (57%) 15 (18%) 26 (32%) 6 (7.3%) 0.65 0.99 0.97

Height (m) 1.67 ± 0.08 1.67 ± 0.08 1.7 ± 0.08 1.62 ± 0.07 0.99 0.61 0.14

Smoker (n) 22 (27%) 10 (12%) 10 (12%) 2 (3%) 0.99 0.99 0.97

Weight (kg) 118.5 ± 23.99 120 ± 22.55 118 ± 21.59 115.8 ± 35.77 0.99 0.99 0.97

BMI (kg/m2) 42.65 ± 7.73 43.25 ± 6.9 41.6 ± 7.2 41.52 ± 11.41 0.99 0.99 0.97

Waist (cm) 121 ± 18.37 124.5 ± 19.4 120 ± 15.61 120 ± 24.12 0.99 0.99 0.99

Blood Glucose 
(mg/dl)

95.7 ± 25.76 95 ± 27.46 99 ± 21.22 95 ± 34.63 0.99 0.99 0.97

Treated Diabetes 
(n)

7 (8.5%) 1 (1.2%) 2 (2%) 4 (4.7%) 0.99 0.02 * 0.027 *

Systolic (mm Hg) 130 ± 19.47 130.5 ± 20.76 124 ± 17.43 134 ± 18.45 0.65 0.99 0.73

Diastolic (mm Hg) 80.0 ± 11.59 80.5 ± 11.4 75 ± 10.31 90 ± 15.3 0.88 0.99 0.97

Treated Hyperten‑
sion (n)

20 (24%) 8 (9.7%) 5 (6%) 7 (8.2%) 0.99 0.15 0.027 *

Treated Dyslipi‑
demia (n)

6 (7.3%) 2 (2%) 3 (3.6%) 1 (1.2%) 0.99 0.99 0.99

Total Cholesterol 
(mg/dL)

189.1 ± 39.78 190.0 ± 36.93 200.0 ± 43.11 167.0 ± 38.71 0.99 0.99 0.97

HDL Cholesterol 
(mg/dL)

43.91 ± 13.38 47 ± 11.73 43 ± 13.48 42 ± 16.62 0.99 0.61 0.97

GOT (U/l) 20.85 ± 17.56 18.50 ± 18.14 22 ± 18.97 22 ± 7.54 0.99 0.99 0.97

GPT (U/l) 27.50 ± 25.23 23.50 ± 17.50 29 ± 31.91 30 ± 14.16 0.65 0.99 0.97

GGT (U/l) 29 ± 23.04 27.50 ± 18.04 30 ± 25.84 32 ± 23.3 0.65 0.61 0.99

HCT (%) 41 ± 4.03 40 ± 4.09 41.1 ± 3.05 40.5 ± 6.13 0.99 0.99 0.94

Leukocytes (G/L) 7.84 ± 2.63 7.48 ± 2.4 8.1 ± 2.39 7.8 ± 3.7 0.99 0.61 0.97

Neutrophils (G/L) 5 ± 2.44 4.8 ± 2.36 5.15 ± 2.28 5.3 ± 3.2 0.99 0.99 0.99
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measured in the horizontal plane midway between lowest 
rib and the iliac crest to the nearest 0.1 cm at the end of 
a normal expiration repeatedly in men and women by 3 
trained nurses on 3 consecutive days. Blood pressure was 
recorded to the nearest 2  mmHg by a mercury sphyg-
momanometer with the arm supported at heart level 
after sitting quietly for 10  min. Fasting plasma glucose 
was measured after fasting for at least 8  h. A standard 
oral 75-g glucose tolerance test was performed to meas-
ure 2-h postprandial plasma glucose. Hypertension was 
defined in accordance to the Guidelines of the European 
Heart Association or if the subject was taking medication 
for hypertension. Diabetes was diagnosed when fasting 
plasma glucose was ≥ 126  mg/dL (7  mmol/L), 2-h post-
prandial plasma glucose ≥ 200 mg/dL (11.1 mmol/L), and 
HbA1c ≥ 6.5% or if the subject was taking medication for 
diabetes.

Biochemical and molecular analyses
Plasma parameters
Biochemical analyses including total fasted plasma 
glucose, cholesterol, high-density lipoprotein (HDL) 
cholesterol, plasma liver enzymes i.e. aspartate ami-
notransferase (AST/GOT), alanine aminotransferase 
(ALT/GPT), gamma-glutamyl transferase (GGT), 
hematocrit and leukocytes were determined by Cobas 
8000, (Roche, Basel, Switzerland) according to the 
manufacturer´s specification. Elevated liver enzymes 
were defined as aspartate aminotransferase and alanine 
aminotransferase. HbA1c was measured by high-perfor-
mance liquid chromatography (Bio-Rad, Muenchen, Ger-
many) and a Jokoh HS-10 autoanalyzer.

16S rRNA gene sequencing and bioinformatic analysis
Genomic DNA was isolated and amplified in a strictly 
controlled environment at VAIOMER SAS (www.​
vaiom​er.​fr; Labège, France) using a stringent contami-
nation-aware approach in the two batches. Total DNA 
was extracted using a specific protocol designed by 
VAIOMER SAS to carefully minimize all risks of con-
taminations between samples, from the experiment-
ers, or environment, as described previously [40–44]. 
The V3-V4 hypervariable regions of the 16S rRNA 
gene were amplified by two steps PCR using v1 prim-
ers (VAIOMER SAS) and sequenced using MiSeq Rea-
gent Kit v3 (2 × 300  bp Paired-End Reads, Illumina, 
San Diego, CA, USA), as previously described [41]. The 
MiSeq sequences, and average of 55,000 raw read pairs 
per sample and 30,300 read pairs classified in OTUs per 
sample, were then analyzed using the bioinformatics 
pipeline established by VAIOMER SAS using FROGS 
v1.4.0 [44]. Briefly, after demultiplexing the bar-coded 
Illumina paired reads, single read sequences are cleaned 

and paired for each sample independently into longer 
fragments. Operational taxonomic units (OTU) are pro-
duced with via single-linkage clustering. The taxonomic 
assignment is performed to determine community pro-
files (generated by Blast + v2.2.30 + against the Silva v128 
Parc databank restricted to the bacterial kingdom). The 
clustering algorithm used by FROGS is Swarm. It does 
not require a fixed clustering threshold for sequence 
clustering and is set at 97% identity. It is noteworthy that 
in this study 98.6% of sequences were assigned a taxon-
omy with either an identity of 100% and > 99% coverage 
or a coverage of 100% and > 99% identity.

To ensure a low background signal from potential exog-
enous bacterial contaminations from reagents, experi-
menters, or consumables, different negative controls 
were performed. They consist in adding molecular grade 
water to an empty tube, separately at the DNA extrac-
tion and PCR steps. Then, the amplification product is 
sequenced and performed simultaneously to the analy-
sis of the blood samples. We further run two different 
batches of sequencing to identify potential experimental 
contaminants. Both the beta diversity analysis and the 
qPCR analyses show a clear separation between nega-
tive controls and both blood samples and liver samples 
(Supplementary Fig. 1A-G). The controls performed here 
confirm that the exogenous bacterial contamination was 
ten times lower than the tissue signal and could be con-
sidered as negligible, having thereby a minimum impact 
on the taxonomic profiles of the samples, as previously 
reported in large details [40–44].

Availability of data and materials
The datasets generated and analyzed during the current 
study are available in (https://​www.​biorx​iv.​org/​conte​
nt/​10.​1101/​2020.​12.​10.​41905​1v1.​full)  repository. They 
were deposited under the primary accession number 
PRJEB41831 and a secondary number ERP125667 on 
January 2nd 2023; https://​www.​ebi.​ac.​uk/​ena/​brows​er/​
view/​PRJEB​41831 in the European Nucleotide Archive 
repository.

Linear Discriminant Analysis (LDA) Effective Size (LEfSe)
The bacterial profiles were further compared between the 
three groups using LEfSe pairwise analysis with an alpha 
cut-off of 0.05 and an effect size cut-off of 2.0. The bacte-
rial diversity analyses (alpha and beta diversity, PCoA and 
taxonomic composition barplots) were generated using 
the Phyloseq (v1.14.0), vegan (v2.4.0) and ape (v3.5) pack-
ages [45–47] under R environment v3.3.1. LEfSe analysis 
was performed on the OTU table using the online Galaxy 
interface to identify bacterial taxa that were differentially 
abundant in the three liver fibrosis groups [30]. Respec-
tive cladograms were generated at the genus taxonomic 

http://www.vaiomer.fr
http://www.vaiomer.fr
https://www.biorxiv.org/content/10.1101/2020.12.10.419051v1.full
https://www.biorxiv.org/content/10.1101/2020.12.10.419051v1.full
https://www.ebi.ac.uk/ena/browser/view/PRJEB41831
https://www.ebi.ac.uk/ena/browser/view/PRJEB41831
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level. Quantitative plots at the genus taxonomic level 
were generated in percent of their relative abundance. 
The graphs show mean data with standard deviation and 
were generated using GraphPad Prism 6 software [49]. 
Using the LEfSe algorithm, bacterial taxa that were differ-
entially abundant in analysis of liver fibrosis groups were 
first identified and tested using the Kruskal Wallis test.

Beta diversity analysis
The bacterial diversity (alpha and beta diversity) was 
analyzed and represented using the phyloseq (v1.14.0), 
vegan (v2.4.0), ape (v3.5), and ggplot2 (3.3.5) packages 
[45–48] under R environment v3.5.1 with Chao, Inverse 
Simpson, Simpson and Shannon as indexes. The alpha 
diversity statistical significance was determined by Wil-
coxon rank-test. The beta diversity was calculated for 
every pair of variables to generate a matrix of distance 
using Bray–Curtis indexes. From distance matrices, Prin-
cipal Coordinate Analysis and hierarchical clustering 
were conducted for graphical representation of the beta 
diversity. PERMDISP2 procedure was used for the analy-
sis of multivariate homogeneity of group dispersions. The 
Kruskall-Wallis test was performed to compare abun-
dances across the three groups.

Multivariate analyses
To visualize the distribution of patients according to their 
clinical parameters, we performed a Principal Compo-
nent Analysis (PCA) using FactoMineR (v2.3) and fac-
toextra (v1.0.5) R packages [50, 51]. For the study of 16S 
rRNA diversity, we first filtered the less abundant OTUs 
to reduce the noise within the matrix before running the 
PCA. We eliminated those with abundance < 0.01. We 
then normalized the OTU table by using the Cumulative 
Sum Scaling normalization followed by a log transforma-
tion, using mixOmics package (v6.6.0) [52]. To explore 
the metagenomic data and identify the largest sources 
of variation, another Principal Component Analysis was 
conducted. Also based on the projection of the dataset 
into a space of lower dimension and originally designed 
for regression, we performed a Partial Least Square Dis-
criminant Analysis (PLS-DA) and its sparse version 
(sPLS-DA) on the normalized OTU table count to pre-
dict and select the most discriminative features in the 
data that help to classify the samples according to the 
fibrosis variable (package mixOmics).

Since we observed the influence of the metagenomic 
data on the outcome, we used alternative method of clas-
sification such as random forest (package randomForest 
v4.6–14 [53]). The random forest is built from a multi-
tude of different decision trees and classifiers at training 
time thereby predicting and storing the predicted target 
outcome.

Cluster graphical analyses
The abundance matrix of OTUs can be modeled by a 
graph using PLNmodels package (v0.9.2 [54]) under R 
where nodes represent OTUs and edges interactions 
between each pair of nodes. We developed an analysis in 
clusters i.e. the L1-spectral clustering, implemented in 
R, a robust variant of the well-known spectral clustering 
that aims to detect the natural structures of a graph by 
taking advantage of its spectral properties. The adjacency 
matrix modeling the variable associations of the graph is 
used as an input of the l1-spectralclustering algorithm. 
Due to the influence of the origin of the cohort on the 
graphical classification through clusters we applied “fair” 
technics with k-median clustering objectives (k = 3). We 
identified k centers and assign each input point to one of 
the centers so that the average distance of points to their 
cluster center is minimized. In the fair-variant, the points 
are colored while the goal is to minimize the same aver-
age distance objective ensuring all clusters to have an 
approximately equal number of points of each color. This 
technique called “fairtree” and developed in python takes 
as input the desired number of clusters, the desired clus-
ter balance and the normalized table count [55].

Functional metagenomic prediction
Shot gun sequencing cannot be performed, in the exper-
imental conditions that we used since. the depth of the 
sequencing on the host tissue is too small to identify spe-
cifically in tissues the metagenome and hence the poten-
tial molecular pathways involved. More than 99.9% of the 
sequences represent the host eukaryotic DNA. Therefore, 
we intent to infer, from the taxonomic identification i.e. 
the OTU clustered from the 16S rRNA gene sequence 
count table data, metagenomic genes and the corre-
sponding biochemical pathways specific for each group 
using the PICRUSt2 tool [31] version 2.3.0b for each 
sample. This process included four main steps: 1) The 
OTU representative sequences were aligned against the 
PICRUSt2 reference alignment, 2) these metagenomic 
alignments were imported into the PICRUSt2 reference 
phylogenetic tree, 3) The biochemical functions were 
inferred by the hidden state prediction method using 
this phylogenetic tree. During this inference process, 
the abundance values of each OTU were normalized to 
their respective predicted 16S rRNA gene copy numbers 
and then multiplied by the respective gene counts of the 
target bacteria, 4) The predicted functions were mapped 
to the MetaCyc database to determine the minimum set 
of pathways present in the samples. The resulting core 
output was a list of enzyme functions (Enzyme Commis-
sion numbers) with predicted count data for each sam-
ple from step 3 as well as a list of MetaCyc pathways with 
predicted count data for each sample from step 4.
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Results
Graphical classification of the clinical variables by principal 
component analyses
We aggregated together a library of liver biopsies from 
patients issued from four cohorts of different European 
countries. We first visualized the distribution of the 
patients according to the cohorts by performing a Princi-
pal Component Analysis using the anthropomorphic and 
clinical data where the projection of the different clini-
cal variables is represented (Fig. 1A,B). The ellipses cal-
culated for each cohort show some degree of differential 
distribution suggesting that specific environmental fac-
tors have influenced the clinical outcomes. In addition, 
we could observe some outlier patients from each cohort 
since they have a highly specific clinical profile.

It is noteworthy that we voluntarily included all anthro-
pomorphic and biochemical data, even if some were 
redundant and confounding, to remain within the frame 
of a non-a priory statistical approach. The age, diabetes 
and hypertension variables were the main drivers of the 
F2 classification while HDL cholesterol and liver enzymes 
were drivers for the F1 histological phenotype. These 
observations are characterized by statistical significance 
when performing ANOVA tests (Table 1).

Analyses of the liver bacterial 16S rRNA gene ecology
To identify whether the graphical differences between 
the three liver fibrosis scores are associated with a discri-
minant liver bacterial DNA signature, we sequenced the 
16SrRNA gene from the liver biopsies. It is noteworthy 

that only a 16SrRNA targeted metagenomics approach 
could be performed from tissue biopsies. A shot gun 
sequencing approach is not doable at a regular depth 
since almost 99.9% of all sequences are from the host 
DNA. In addition, we took extreme care in discriminat-
ing the potential contaminant bacterial DNA from the 
environment, including the supplies used, from the tissue 
specific bacterial DNA sequences. Numerous negative 
controls were performed (Supplementary Figs.  1 A-D) 
as well as repeated analyses, as shown (Supplementary 
Fig.  1 E). The background and individual sequencing 
data are shown (Supplementary Figs.  1 F,G). We clearly 
identified that the potential contaminants were 10–100 
times lower in amount than the tissue specific bacte-
rial DNA. Therefore, from the tissue specific 16SrRNA 
sequences we then performed PCA using OTUs as vari-
ables in the database. The analysis using countries as 
groups shows that the Romanian cohort and the Spanish, 
Austrian, Italian cohorts poorly overlapped suggesting 
the existence of confounding factors such as the cohort 
itself (Fig.  2A). Using the liver fibrosis scores as groups 
and the OTUs as variables we could not clearly graphi-
cally discriminate the fibrosis scores (Fig.  2B). The dis-
tribution of the patients according to their OTU profiles 
were too scattered and seemed to be depending upon the 
largest Romanian cohort. To analyze differently the puta-
tive signatures according to the liver fibrosis scores and 
not the cohort origin, we studied the frequencies of the 
phylum and family taxonomic levels. The barplot analy-
sis shows first a large degree of heterogeneity between all 

Fig. 1  Visualization of clinical variables by principal component analysis according to countries and fibrosis scores. The clinical variables were used 
as entries for a principal component analysis (PCA). PCA-biplot from package Factoextra and FactomineR of individuals for the first two principal 
components are shown. They sum up 30.4% of the total variance of the dataset. Patients were grouped by A, countries and fibrosis scores (shape 
and colours) and by B, fibrosis scores (green dots = F0, purple triangle = F1, blue square = F2). The vectors corresponding to the clinical variables are 
shown as arrows
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individuals at the phylum level (Fig. 2C) but still, we iden-
tified that the liver microbiota of the overall cohort was 
composed mostly of Proteobacteria, (> 75%) (Fig.  2D). 
Group comparisons showed that statistical differences 
were observed between the F0 and F1 groups for the Pro-
teobacteria, Bacteroidetes phyla (Supplementary Fig.  2 
A,B). At the family taxonomic level, the most prominent 
taxa were the Enterobacteriaceae and the Pseudomona-
daceae which accounted for more than 50% of the over-
all taxa (Fig.  2E). Group comparisons showed that the 
Flavobacteriaceae and Xanthobacteriaceae families were 
statistically different when comparing F0 and F1, using a 
corrected t-test (Supplementary Fig. 2 C,D).

To further identify whether liver fibrosis scores could 
be characterized by specific signatures we explored 
indexes of alpha and beta diversity of the 16S rRNA 
gene sequences in liver tissue. The data show that the 
differences in abundances at the phylum, and family 
taxonomic levels observed were also associated with dif-
ferences of the alpha diversity (Supplementary Fig. 3A,B). 
Notably, the most standard alpha diversity indexes 
(Observed, Shannon and Simpson) were significantly 
different between the F0 and F1 groups at the phylum 
and family levels, as assessed by the Wilcoxon rank-tests 
(Table 2). In addition to the alpha diversity, we analyzed 
the beta diversity and performed a Principal Coordinate 
Analysis (PCoA) considering distances between variables 
i.e. sequence similarities (using Bray–curtis distance). 
The PCoA analyses showed that the F0 group was distant 
from the two others which suggests a specific 16S rRNA 
gene signature (Supplementary Fig. 3C,D). It is notewor-
thy that outlier patients were also detected. Although, 
when analyzed together the three groups could not be 
clearly separately classified. We however, ruled out a 
potential batch effect. To determine if the ellipse cent-
ers of the F0 group differs from the ellipse center of the 
other groups, a Permutational Multivariate Analysis of 
variance (PERMANOVA) followed by a Kruskall-Wallis 
test were performed. As the geographical origin of the 
samples has a prominent influence on the clustering and 
the microbial profiles, we included this parameter in the 
PERMANOVA model and found a difference between F0 
and F1 groups (p < 0.03). Table 1 lists multiple character-
istics for the fibrotic patients. We tested their effect on 
the microbiome using alpha and beta diversity analyses. 

Along the same line of investigation, we performed dif-
ferent graphical representations such as heatmaps and 
Venn diagrams.

Identification of specific bacterial signatures
To identify the variables that are specific to Fibrosis 
scores we performed a first Venn diagram on the over-
all set of variables (Fig.  3A). Eighty-nine variables were 
common to all groups and considered as the core of the 
cohort while 21, 77, and 108 OTUs were specific to the 
F2, F1, F0 groups, respectively. To isolate extremely rare 
variables and take into account the unbalanced distri-
bution between groups we next considered only OTUs 
with more than 25% of non-zero counts and an average 
number of counts per group higher than 150. We then 
similarly drew a second Venn diagram. We identified 9, 
6, and 9 OTUs specific to F2, F1, and F0 scores, respec-
tively (Fig. 3B) and (Table 3). To identify if these specific 
OTUs could be identified using another approach we 
generated a heatmap where each OTUs was positioned 
while the fibrosis scores was fixed (Fig. 3C). We noticed 
that the frequencies of the majority of OTUs equal 0 or 
are extremely low (< 0.01%) thereby, most of these varia-
bles do not bring information. Similarly, a minority of the 
variables of high frequencies were common to all liver 
fibrosis groups and did not provide discriminant infor-
mation neither. Such OTUs could be considered as the 
core variable of liver microbiota. Conversely, a subset of 
OTUs could be considered discriminant since identified 
from a different heatmap following the removal of the 
non-informative OTUs (Fig. 3D).

To refine the identifications of the discriminant bacte-
ria we performed a Linear Discriminant Analysis (LDA) 
coupled with effect size measurements (Fig. 3E, Supple-
mentary Fig. 4A,B). The data show that most of the dis-
criminant information was extracted when comparing F0 
and F1. The Firmicutes, Flavobacteriaceae, Caulobacte-
raceae and Actinobacteria were specific to the F0 group 
and the Proteobacteria was specific to the F1 group. On 
the barplot the taxa enriched in patients with no fibro-
sis are indicated with a negative score and mild fibrosis 
enriched taxa are indicated with a positive score. We per-
formed LEFSe between each score and identified much 
less differences between F1 & F2 suggesting that they 
could have similar 16SrRNA liver profiles, as suggested in 

Fig. 2  Visualization of liver 16S rRNA gene sequences by principal component analyses according to countries and fibrosis scores. The 16S rRNA 
gene OTUs sequences were used as entries for a principal component analysis (PCA). PCA-biplot from package Factoextra and FactomineR of 
individuals for the first two principal components are shown. They sum up 10.0% of the total variance of the dataset. Patients were grouped by 
A, countries and fibrosis scores (shape and colour) and by B, fibrosis scores (green dots = F0, purple triangle = F1, blue square = F2). The vectors 
corresponding to the clinical variables are shown as arrows. C Barplot depicting the frequencies of liver microbial composition of each patient at 
the phylum level depending on their fibrosis stage or D as means of the phyla frequencies or E the family frequencies for the overall cohort (total) 
or according to the fibrosis scores (F0, F1, F2)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 2B despite the discriminant clinical variables identi-
fied in Fig. 1B.

From these first sets of analyses, the number of patients 
per liver fibrosis score was too heterogeneous to perform 
a discriminant analysis (overfitting). As shown on supple-
mentary Fig. 3C there was almost no difference between 
F1 and F2, therefore, we merged F1 and F2 scores and 
defined the F1/2 group, increasing hence the number of 
patients of that group.

To validate the pertinence of such strategy we per-
formed a Partial Least Square Discriminant Analysis 
i.e. PLS-DA. To select the most discriminant features 
in the model we used its sparse version sPLS-DA based 
on a Lasso penalization. The number of variables to be 
selected per component involved in the visualization 
is optimized using the leave-one-out cross-validation 
approach. On the sample plot (Fig.  3F), we observed a 
slight separation of the two fibrosis scores ellipses com-
pared to the unsupervised PCA. From the most discri-
minant OTUs selected on each sPLS-DA component, a 
dissociation between the two groups is visualized using a 
Clustering Image Map (CIM) technique (Fig. 3 G,H). The 
graphs show a clear classification of the patients based on 
the identified discriminant variables. Eventually, we cal-
culated the ROC curve with all discriminant variables. It 
shows a specificity and sensitivity (0.76) above baseline 
(0.50, Fig. 3I).

Altogether, some degree of graphical classification of 
the liver fibrosis score could be observed using the clini-
cal database and the 16SrRNA gene database. However, 
in both instances the individuals appear to be still distrib-
uted across countries. Therefore, to overcome this issue 
we developed an ad hoc fairness statistical strategy allow-
ing the classification of variables i.e. OTUs independently 
from the cohort.

Identification of clusters of cohort‑independent 16S rRNA 
gene associated with different mild scores of fibrosis
In front of these numerous signatures and the influ-
ence of confounding factors such as the impact of 

the cohort itself there is a need to identify clusters of 
variables specific to each liver fibrosis score but inde-
pendent from the origin of the cohort. To this aim we 
considered three different fair approaches on the over-
all cohorts and then defined clusters of OTU variables 
independent from the cohort. The first fair approach 
consists in identifying principal components from the 
metagenomic dataset as signatures of the cohorts and 
removing them to generate a new dataset where no 
components would be cohort sensitive. To this aim we 
compared the largest cohort i.e. from Romania to the 
others. As an example, we here represent the five first 
principal components conditional distributions accord-
ing to the cohorts (Fig.  4A). The last two are charac-
terized by similar distributions, indicating that some 
principal components are decorrelated from the geo-
graphical origin. Hence, we removed the principal com-
ponent, which contain less than 20% of the information 
i.e. the most correlated with the cohorts when the abso-
lute value of Pearson correlation was above the thresh-
old of 0.1. The remaining non-overlapping components 
are cohort-insensitive and used to identify the variables 
associated with the specific fibrosis score. Remarkably, 
more than 78% of the variation from the original data 
was still included into the selected principal compo-
nents suggesting that the discriminant information was 
only marginally affecting our previous results. On this 
“fair” dataset we applied the standard random forest 
classification to predict fibrosis scores. From the vari-
able importance plot, indicating the contribution of the 
variables to classify the data, we selected the 10 most 
predictive principal components and identified from 
them 3 significantly associated with the fibrosis scores 
(Fig. 4B-D).

The second fair clustering approach directly integrates 
in the model the variables affecting the metagenomic 
dataset. It selects OTUs which are the most influenced by 
this variable and removes it from the analysis. The matrix 
formed by the remaining OTUs is then modeled by a 
graph and subjected to a spectral clustering algorithm 
to which we applied an L1 penalty. The nodes represent 
OTUs and the edges show interactions between each pair 
of variables (Fig. 4E). Using this novel l1-spectral cluster-
ing algorithm we identified 5 clusters of OTUs among 
which 3 were significantly associated with the liver fibro-
sis scores (Fig. 4F).

Eventually, we performed the fair clustering approach 
called “fair-tree” [55]. We used the 16S rRNA gene nor-
malized table count to identify clusters with approxi-
mately equal numbers of patients from each cohort. Two 
of the three clusters found containing respectively 36 and 
97 OTUs, were statistically significant when comparing 
F0 versus F1 scores (Fig. 4G,H).

Table 2  means ± SD of different alpha diversity indexes at 
the family taxonomic level for the three liver fibrosis groups of 
patients

F0 F1 F2

Chao1 49.7 ± 16.3 48.6 ± 11.5 42.49 ± 10.36
InvSimpson 8.58 ± 3.9 7 ± 3.97 7.5 ± 4.25
Observed 40.4 ± 11.31 40.89 ± 9.23 35.36 ± 6.8
Shannon 2.46 ± 0.40 2.25 ± 0.48 2.2 ± 0.61
Simpson 0.85 ± 0.1 0.80 ± 0.12 0.82 ± 0.13
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We summarized all the identified OTUs significantly 
(t-test) associated with the low scores of fibrosis in 
(Table  4) and identified their respective taxa. From the 
fair principal components identified, we considered only 
the five OTUs contributing the most to each of these 
components. Then, from the Venn diagram we identi-
fied common OTUs signatures of low fibrosis scores 
from standard (sPLS-DA) and fair approaches (fair-tree, 
random forest, l1-spectral clustering) (Fig.  4I). Interest-
ingly, from all selected OTUs eight common OTUs were 
from the same phylum i.e. Proteobacteria (Table 5) sug-
gesting that most of the discriminant information could 
be due to this phylum. However, there is still most likely 
some information that this predominant family could be 
hiding. We therefore set a new mathematical strategy to 
exemplify the low frequency and meaningful bacteria 
i.e. the TF-IDF (Term frequency-inverse document fre-
quency) approach.

Low frequency bacterial 16S rRNA gene contains 
classifying information
From the table counts of all significant OTUs detected 
we generated a “word-cloud” (Fig.  5A, B) to visualize 
the most abundant TF-IDF transformed OTU counts, 
regardless of the fibrosis scores when compared to the 
most abundant CSS transformed OTU counts. Clus-
ter 2 emerged as the most important discriminant OTU 
(taxonomic identifaction = B​act​eri​a|P​rot​eob​act​eri​a|G​
amm​apr​ote​oba​cte​ria​|En​ter​oba​cte​ria​les​|En​ter​oba​cte​ria​

Fig. 3  Discriminant analysis strategies of the liver microbiota 16S 
rRNA gene OTUs according to the fibrosis scores. Venn diagrams 
where A all the 16S rRNA gene taxa or B data after removing those 
extremely rare and with unbalanced distribution within the 3 
groups of patients with liver fibrosis, were used as entry variables 
characterizing the 3 liver fibrosis scores (green = F0, purple = F1, 
blue = F2). C Heatmap of normalized OTU counts according to the 
3 groups of patients with liver fibrosis scores and their geographical 
origin and D a corresponding subset of normalized OTU counts 
with groups of patients fixed. E LEfSe cladogram of taxonomic 
assignments from 16S rRNA gene sequence data of the two liver 
biopsy fibrosis groups (F0 and F1). The cladogram shows the 
taxonomic levels represented by rings with phyla at the innermost 
ring and genera at the outermost ring, and each circle is a member 
within that level. Taxa at each level are shaded according to the liver 
fibrosis group in which it is more abundant (P < 0.05; LDA score ≥ 2.0). 
LDA scores are shown on the right panel for each taxon. F sPLSDA 
classification performance on a CSS normalized microbial table 
count of the F0 versus F1/2 groups of patients. OTUs were labeled 
as “Cluster_i” with i from 1 to 411 (total number of variables in the 
normalized abundance matrix). Sample plot, each point corresponds 
to an individual and is colored according to its fibrosis score 
(green = F0, purple = F1/2). G Clustering Image Map (CIM) of the 
OTUs selected on each sPLS-DA component with groups of patients 
fixed. H ROC calculated on the predicted scores obtained from the 
sPLSDA model
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ceae|Escherichia-Shigella) further confirming the impor-
tant amount of information contained in the Proteobac-
teria phylum (Table 5).

Based on the identified specific signatures the next 
step was to generate hypotheses regarding their poten-
tial mode of action to the induction at early only of liver 

fibrosis. We therefore performed predicted functional 
metagenomics analyses using PICRUST2 software.

Predicted functional metagenomics pathways
To identify the pathways and enzymes involved at the 
onset of liver fibrosis, we run predicted functional 
metagenomics algorithms based on the fairness-selected 
bacterial taxa. The heatmap shows clusters of enzymes 
that are associated with the F0 vs F1-2 fibrosis scores 
(Fig.  6A). Eventually, sPLS-DA showed also a clear dis-
crimination between the F0 vs F1-2 fibrosis scores. To 
evaluate the accuracy and sensitivity of our analyses as 
potential diagnostic tool, we drew a ROC and quanti-
fied the urea under curve with a score of 81.4% of accu-
racy (Fig.  6B,C). We performed a similar analysis on 
pathways and showed that specific clusters were also 
discriminately associated with the fibrosis scores. The 
score of accuracy was of 81.2% (ROC curve) (Fig. 6D-F). 
We then represented and listed all selected enzymes and 
pathways highly expressed in the two major discriminant 
components (Fig.  6G-J) and (Table  6). Three pathways 
were highly and negatively associated with the F1-2 liver 
fibrosis score when compared to the F0. We identified 
from the MetaCyc database [55] that the preQ0 biosyn-
thesis (PWY-6703), specific to Enterobacteriaceae such 
as E. coli, is involved notably in the synthesis of tetrahy-
drofolate and a class of nucleoside analogues that often 
possesses antibiotic, antineoplastic, or antiviral activities 
[32, 33] (Fig. 6K). In addition, two other pathways related 
to glucoryranose (PWY 6737) and glycogen (GLYCO-
CAT-PWY) degradation were identified probably pro-
viding energy to the main preQ0 biosynthesis pathway. 
On the other hand, six major metabolic pathways were 
positively associated with the F0 score from both com-
ponents. One involves the glycolysis and pentose phos-
phate pathway (PWY-6629), while the 5 others are all 
involved in the menaquinones and demethylmenaqui-
nones pathways (Fig.  6L). The low-molecular weight 
lipophilic components of the cytoplasmic membrane 

Table 3  Identification of specific bacterial signatures (unfair 
analyses) using corrected t-test

Clusters were identified from the overall database prior to applying the fair 
strategies. The impact of countries is observed as shown in Fig. 2

Family Genus CSS mean (F0,F1,F2)

F0
  Streptococcaceae Streptococcus 2.25/0.95/1.13

  Flavobacteriaceae Flavobacterium 1.81/1.54/0.03

  Moraxellaceae Acinetobacter 1.14/0.58/0

  Ruminuococcaceae Faecalibacterium 1.50/0.3/0

  Microbacteriaceae Rhodoluna 2.78/1.51/0.51

  Sphingomonadaceae Sphingomonas 0.28/0.6/0.41

  Microccoccaeae Kocuria 2.61/1.32/0.95

  Caulobacteriaceae Caulobacter 2.24/1.34/0.34

  Spirosomaceae Pseudarcicella 1.19/1.24/1.32

F1
  Lachnospiraeae Multi-affiliation 0/0/0.76

  Corynebacteriaceae Corynebacterium 0/0/1.58

  Weeksellaceae Cloacibacterium 1.04/1.27/1.91

  Peptostreptococcaceae Romboutsia 0.57/0.2/0.86

  Enterobacteriaceae Morganella 0.66/1.97/1.68

  Burkhoderiaceae Delftia 0/0.75/3.19

  Microbacteriaceae Clavibacter 0/0/2.07

F2
  Pseudomonadaceae Pseudomonas 0.05/0.33/0

  Burkholderiaceae Janthinobacterium 0.46/1.54/0.88

  Intrasporangiaceae Multi-affiliation 0.26/1.75/0.38

  Burkhoderiaceae Comamonas 0.81/2.71/1.45

  Rhodobacteaceae Paracoccus 1.35/0.87/0

  Ferruginibacter Metagenome 0/0.32/0

(See figure on next page.)
Fig.4  Discriminant analyses of the 16S rRNA gene OTUs variables using fairness strategies. A Distribution curves (or densities) of the coordinate 
of individuals, split into two cohort types (black = Romania, red = the other countries: Italy, Austria, and Spain), when projected on the five first 
principal components built from the 16S rRNA gene OTUs normalized table count. The non-overlapping plots (for example components 1,2,3) 
correspond to cohort discriminant components and will be removed from the final analysis to identify the liver fibrosis discriminant variables. 
Boxplot representing the frequencies of the most significant OTUs contributing to B the 6th, C the 24th, D the 52.nd principal components for the 
different groups of liver fibrosis scores (green = F0, purple = F1, blue = F2). t Tests were performed for B-D, F–H. E Graphical representation of 
the normalized OTU table counts whose nodes are colored according to the 5 clusters identified by the l1-spectral clustering algorithm (red = 1, 
green = 2, blue, 3, pink = 4 and yellow = 5). F Boxplot representing the mean frequencies of the OTUs in cluster 3, 4 and 5, identified by the 
l1-spectral clustering algorithm, for the different groups of liver fibrosis scores (green = F0, purple = F1, blue = F2). G, H Boxplot representing the 
frequencies of OTUs in cluster 1, and 2, identified by fair-tree algorithm, for the different groups of liver fibrosis scores (green = F0, purple = F1, 
blue = F2). I Venn diagram depicting the liver microbial taxonomies of common OTUs identified by standard (sPLS-DA) and fair approaches (fairtree, 
random forest, l1-spectral clustering) as signatures of low fibrosis scores (blue = sPLSDA, pink = fair algorithms)
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Fig.4  (See legend on previous page.)



Page 13 of 20Champion et al. BMC Microbiology           (2023) 23:34 	

are considered vitamin K2 components that are found in 
most aerobic Gram-positive bacteria. They are the main 
quinones which behave as a reversible redox component 
of the electron transfer chain, mediating electron transfer 

between hydrogenases and cytochromes. Altogether the 
functional metagenomics prediction suggests that gram 
negative bacteria from the Proteobacteria family com-
posed of preQ0 biosynthesis and glycolytic pathways are 

Table 4  Identification of clusters of cohort-independent 16S rRNA gene associated with the different low scores of fibrosis using 
corrected t-test

Family Genus Significance P-value CSS mean (F0,F1)

sPLSDA
  Burkholderiaceae Ralstonia F0 VS F1 0.001 1.32/4.19

  Xanthobacteraceae Bradyrhizobium F0 VS F1 0.001 1.13/5.09

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.001 1.01/4.66

  Pseudomonadaceae Pseudomonas F0 VS F1 0.001 0.44/4.2

  Enterobacteriaceae Kluyvera F0 VS F1 0.005 1.34/4.79

  Xanthomonadaceae Stenotrophomonas F0 VS F1 0.0005 3.92/7.54

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.01 1.08/5.54

  Pseudomonadaceae Pseudomonas F0 VS F1 0.02 1.47/5.53

  Corynebacteriaceae Corynebacterium 1 F0 VS F1 0.05 1.07/0.20

  Flavobacteriaceae Flavobacterium F0 VS F1 0.001 8.84/3.68

Fair-tree
  Pseudomonadaceae Pseudomonas F0 VS F1 0.004 1.13/5.09

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.004 0.44/4.2

  Xanthobacteraceae Bradyrhizobium F0 VS F1 0.003 3.92/7.54

  Xanthomonadaceae Stenotrophomonas F0 VS F1 0.05 1.08/5.54

Fair Random Forest
  Xanthomonadaceae Stenotrophomonas F0 VS F1 0.007 1.01/4.66

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.004 1.34/4.79

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.004 1.08/5.54

  Enterobacteriaceae Kosakonia F0 VS F1 0.01 0.44/2.07

  Enterobacteriaceae Kluyvera F0 VS F1 0.0007 0.88/2.67

Fair l1_spectral clustering
  Pseudomonadaceae Pseudomonas F0 VS F1 0.01 0.44/4.2

  Xanthobacteraceae Bradyrhizobium F0 VS F1 0.005 1.13/5.09

  Enterobacteriaceae Enterobacter F0 VS F1 0.04 2.59/1.37

  Burkholderiaceae Ralstonia F0 VS F1 0.03 1.32/4.19

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.01 1.01/4.66

  Enterobacteriaceae Kluyvera F0 VS F1 0.04 0.88/2.67

  Enterobacteriaceae Multi-affiliation F0 VS F1 0.003 1.08/5.54

Table 5  Microbial signatures common to all strategies using corrected t-test

Family Genus Significance p value CSS mean (F0,F1)

Pseudomonadaceae Pseudomonas F0 VS F1 0.0009 0.44/4.2

Xanthobacteraceae Bradyrhizobium F0 VS F1 0.0005 1.13/5.09

Xanthomonadaceae Stenotrophomonas F0 VS F1 0.003 1.01/4.66

Enterobacteriaceae Multi-affiliation F0 VS F1 0.001 1.01/4.66

Enterobacteriaceae Kluyvera F0 VS F1 0.002 0.88/2.67

Burkholderiaceae Ralstonia F0 VS F1 0.002 1.32/4.19

Enterobacteriaceae Multi-affiliation F0 VS F1 0.0005 1.34/4.79
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Fig. 5  Identification of clusters by wordclouds representation with or without TFIDF normalization. Wordclouds representing taxa of all significant 
bacteria according to A, their frequencies at Family and Genus level or B, after TFIDF normalization at Family and Genus level. The size of the name 
of bacteria is proportional to the frequency of the cluster in the cohorts

(See figure on next page.)
Fig. 6  Predicted functional metagenomics analyses of discriminant enzymes and according to the fibrosis score. A,D Heatmap (Clustering Image 
Map (CIM)), B,E Sample plot, each point corresponds to an individual and is colored according to its liver fibrosis score (green = F0, purple = F1/2), 
C,F ROC classification performances of A-C enzymes, and D-F pathways, on a CSS normalized enzyme table count of the F0 versus F1/2 groups 
of patients. G-I Loading plot representing the contribution of each enzyme (G,H), and pathways (I,J) selected to build the first and second 
components (green = F0, purple = F1/2). K,L main metabolic pathways from the MetaCyc database identified from the Loading plots for the K F1-2 
and K F0 liver fibrosis scores
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Fig. 6  (See legend on previous page.)
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signature of F1-2 fibrosis scores while the vitamin K2 bio-
synthesis pathway from gram negative bacteria, such as 
Actinobateriaceae [34, 35], would be a specific signature 
of the F0 liver fibrosis score.

Discussion
We here report a mathematical approach to identify a 
bacterial 16S rRNA gene signature in liver tissue and cor-
responding putative biochemical pathways in patients 
with low scores of fibrosis therefore, at the onset of the 
disease. Our main finding is that even low scores of fibro-
sis (F0 vs F1-2) can be classified by biomarkers from the 
Proteobacteriaceae family within the liver. The second 
observation is related to the importance of cohort heter-
ogeneity in term of size and data variability which could 
be major confounding factors that must be taken into 
account in multi-centric clinical trials or database. We 
here present a mathematic approach that could help solv-
ing this major and common issues.

A gut metagenomics signature of liver fibrosis in 
humans has been recently described, suggestive of its 
causal role in the disease [21]. However, such patients 
where mostly characterized by a high score of liver 
fibrosis questioning the putative causal role of the liver 
microbiota at the onset of the disease. We here focused 
our attention on low scores of liver fibrosis to putatively 
identify causal factors. We identified mostly sequences 

from the 16SrRNA gene from gram negative bacteria and 
notably from the Proteobacteria phylum as signatures 
of the F1-2 liver fibrosis scores. Among the families, the 
Proteobacteriaceae, Flavobacteriaceae, and Propionibac-
teriaceae were discriminating the low fibrosis scores from 
each other’s. It is noticeable that they all synthesize LPS, a 
dramatically inflammatory molecule suggesting a patho-
physiological role in development of liver fibrosis, prob-
ably via the maintenance of a certain degree of immune 
vigilance. We further refined our analyses and mostly 
selected the Enterobacteriaceae family from the Proteo-
bacteria phylum suggesting that the liver proinflamma-
tion observed during fibrosis would be due or associated 
with genera from the Enterobacteriaceae family [10]. 
Moreover, the Micrococcaceae and the Moraxellaceae 
encompass numerous genera, notably the Arthrobac-
ter and Acinetobacter, that could be as well involved. It 
is noticeable that we also identified bacterial DNA that 
could be considered as contaminants since usually from 
the environment. However, we are living and in closed 
contact with a complex environment to which we are 
continuously exposed i.e., the exposome. It is hence phys-
iologically and ecologically understandable that bacteria 
from the environment could be identified in the host as 
commensals or saprophytes. Therefore, to ensure that the 
identified bacterial DNA is not from potential contami-
nants, as currently found in reagents and materials, we 

Table 6  Identification of principal enzymes and pathways contributing to the first sPLSDA’s first component and signatures of low 
score of fibrosis

Name Function

Enzymes EC:4.1.2.52 4-hydroxy-2-oxoheptanedioate aldolase

EC:3.5.4.1 Cytosine deaminase

EC:3.2.2.4 AMP nucleosidase

EC:4.1.3.3 N-acetylneuraminate lyase

EC:3.1.21.4 Type II site-specific deoxyribonuclease

EC:3.2.1.89 Arabinogalactan endo-beta-1,4-galactanase

EC:3.5.99.6 Glucosamine-6-phosphate deaminase

FAO-PWY fatty acid &beta,-oxidation I

PROTOCATECHUATE-ORTHO-CLEAV‑
AGE-PWY

protocatechuate degradation II (ortho-cleavage pathway)

Pathways GLYCOCAT-PWY glycogen degradation I (bacterial)

PWY-6737 starch degradation V

PWY-7323 superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis

COLANSYN-PWY colanic acid building blocks biosynthesis

LACTOSECAT-PWY lactose and galactose degradation I

PWY-6629 superpathway of L-tryptophan biosynthesis

GLCMANNANAUT-PWY superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetyl‑
neuraminate degradation

P441-PWY superpathway of N-acetylneuraminate degradation

PWY0-1533 methylphosphonate degradation I
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ran numerous technical control samples, as outlined in 
the method section. We selected signals largely above the 
background to rule out potential environmental contami-
nants. From the selected sequences some still remain 
unusual and would require more investigations to under-
stand their meaningfulness.

The mechanisms through which the gram negative 
bacteria identified could induce inflammation might 
be linked to the unique structures of their LPS or pep-
tidoglycans [36]. Furthermore, since such bacteria are 
motile with flagella, one could also contemplate that the 
flagella proteins are involved in the liver fibrosis process. 
However, data report that the TLR5 receptor of flagellin 
is rather associated with protection against metabolic 
syndrome, putatively ruling out this hypothesis [37]. To 
raise potential working mode of action hypotheses we ran 
a predicted functional metagenomics algorithm (PIC-
RUSt2). It is important to draw the attention of the reader 
that the following discussion is purely hypothetical, 
based on genomic assignments which do not correspond 
to molecular identifications from biochemical quantifica-
tions. By inferring from the bacterial genome potential 
biochemical pathways we identified the preQ0 biosyn-
thesis pathway as a signature of F1-2 fibrosis scores. Such 
pathway is notably identified from gram negative bacteria 
families such as Proteobacteriaceae [32, 33]. Conversely, 
the menaquinones and demethylmenaquinones pathways 
involved in K12 vitamin synthesis were the signature of 
the F0 score. They are notably produced by the gram 
positive Actinobacteriaceae such as Bacillus subtilis [35], 
therefore coherence with our metagenomics findings.

A major hurdle that one can come across when aggre-
gating different cohorts altogether is related to the het-
erogeneity of the size of the groups and of the diversity 
of the variables considered. Regarding invasive analyses 
such as liver biopsies the group size at completion of the 
inclusions could be different from what predicted dur-
ing the calculation of power of the trial. Eventually, the 
distribution of the variables to be studied could be highly 
heterogeneous for a given disease. Altogether, we here 
faced several statistical challenges which are linked to 
liver fibrosis as a disease linked to microbiota. The first 
major step preceding the microbial analysis is a prefil-
tering step. We removed OTUs with counts frequencies 
across all samples below 0.01%, as recommended in [57]. 
We then used an adapted script to normalize the data 
to deal with their sparse nature. The package Mixomics 
[38] used for this study recommends CSS normaliza-
tion on sparse OTU table counts that could prevent the 
bias included in the TSS normalization. In addition, it 
includes multivariate methods for microbiome studies 
and addresses its limits. In addition, we observed a strong 
impact of the cohort of origin since the largest cohort 

from Romania could discriminate the patients from the 
others based on the 16S rRNA gene OTU variables. The 
patients could even be classified by cohort when we used 
the clinical data as entries showing that this issue also has 
to be taken into account when analyzing the data. Math-
ematical approaches to overcome this issue are currently 
being developed however, little has been done regarding 
the handling of the 16S rRNA gene data now widely used 
by the scientific community that addresses the role of 
microbiota on diseases and notably liver diseases. There-
fore, we here developed several approaches of fairness to 
overcome the classical impact of the origin of the cohort.

Off notes, we noticed that two patients from the F1 
groups were distributed within the F2 group. This ectopic 
distribution could be due to the extreme BMI (> 55) fea-
turing a specific clinical phenotype. Conversely, a patient 
from the F2 group was associated with the F0/F1 distri-
bution. This patient was characterized by his young age 
(< 40 years old) while the mean age of the F2 group was of 
54 years old.

To precisely identify biomarkers of liver fibrosis we 
performed sets of discriminant analyses. As a prelimi-
nary analysis we performed PCoA since better adapted 
than PCA to dissimilar and sparse data. We then fol-
lowed our approach by performing a sPLS-DA to iden-
tify subsets of 16S rRNA gene that are discriminatory for 
the liver fibrosis scores. PLS-DA aims to classify a data 
set according to the values of a qualitative variable by 
maximizing the covariance between linear combinations 
of the observed variables and the qualitative outcome. 
The sparse version, on the other hand, delivers variables 
per each component, only selected in the OTU dataset, 
that are the most discriminatory for the liver fibrosis 
scores. We focused our attention on the identification 
of the OTU frequencies within and across each group of 
patients and on the understanding of the importance that 
OTUs carry within and across the cohorts. We found 
that the data set is mostly populated by a few high fre-
quency OTUs. However, beside the level of information 
gained form this approach with overrepresented OTUs 
we cannot rule out that some more information could be 
obtained from OTUs rarely represented. Therefore, some 
information could be hidden in the low frequency OTUs. 
To test this hypothesis, we introduced a new normaliza-
tion approach called TF-IDF [39] originally developed for 
text mining, to attenuate the effects of the high frequency 
OTUs in the data set. Consequently, we identified a few 
more OTUs.

Conclusion
The first evidence of the existence of a liver microbiota 
opens alternate routes for novel therapeutic strategies 
since specific bacteria could be involved in the process 
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of liver fibrosis. However, to generate information which 
could serve as a substratum to reach this aim, we here 
adapted predicted metagenomics and mathematical 
approaches to the original and novel nature of the tissue 
metagenomics data set. We here found that these data 
are constituted of high heterogeneity variables which 
are dominated by a few high frequency taxa such as Pro-
teobacteria, signature of F1-2 liver fibrosis scores, and 
Actinobacteria/Firmucutes, signature of F0 liver fibro-
sis scores. These major taxa are masking information 
residing in the lower frequency taxa. Predicting meta-
bolic pathways from selected 16S rRNA gene-based taxa 
revealed a potential role of folate metabolism in F1-2 
liver fibrosis scores while a role of vitamin k12 biosynthe-
sis was characterizing F0 liver fibrosis score. Altogether, 
the combined use of metagenomics, sPLS-DA, TF-IDF 
and fairness strategies appeared useful since we identified 
signatures specific to the lower scores of liver fibrosis i.e. 
at the onset of the disease.
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