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Abstract 

Background  Characteristics of airway microbiota might influence asthma status or asthma phenotype. Identifying 
the airway microbiome can help to investigate its role in the development of asthma phenotypes or small airway 
function.

Methods  Bacterial microbiota profiles were analyzed in induced sputum from 31 asthma patients and 12 healthy 
individuals from Beijing, China. Associations between small airway function and airway microbiomes were examined.

Results  Composition of sputum microbiota significantly changed with small airway function in asthma patients. 
Two microbiome-driven clusters were identified and characterized by small airway function and taxa that had linear 
relationship with small airway functions were identified.

Conclusions  Our findings confirm that airway microbiota was associated with small airway function in asthma 
patients.
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Background
Asthma is a heterogeneous disease characterized by 
inflammation and hyperresponsive in airways, which has 
several phenotypes and endotypes that may response 
differently to therapies. Despite important advances in 

asthma, including greater awareness, timely diagnosis, 
and pharmacological interventions targeted at airway 
inflammation, control of asthma in patients remains 
unsatisfactory.

A possible reason for poor asthma control might be 
that other than “Eosinophils asthma phenotype” or 
“Neutrophil asthma phenotype”, some patients express 
a “small airways phenotype”, which has small airways 
inflammation and dysfunction that is not being targeted 
or controlled by current therapies. The small airways are 
defined by an internal airway diameter of < 2 mm. They 
have a generation number that is generally higher than 
8, and they account for 98.8% (approximately 4500 ml) of 
the total lung volume, compared to that the large airways 
account for only 1.2% (approximately 50 ml). Though 
inflammation and remodeling in asthma involve the large 
airways, the small airways are the major site of airflow 
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limitation, and where the intensity of the inflammation 
may be even higher than that in large airways. Trans-
bronchial biopsy findings show that small airways are 
the major site of inflammation and contain immunocytes 
that putatively account for the tissue remodeling noted 
[1, 2]. Thus, small airways might affect the pathobiology 
of asthma and small airway dysfunction may contribute 
to poor asthma control [1–4], and the small airways of 
individuals with asthma are increasingly recognized as a 
potential therapeutic target [2, 4, 5].

The microbiota in human airways changes with disease. 
With the bacterial 16S ribosomal RNA gene sequencing 
technique, different microbiota were identified between 
asthma phenotypes, suggesting that microbial patterns in 
the airways may influence distinct phenotypes of asthma 
[6–8] and allergic inflammation [9]. Airway microbiota 
composition is also associated with the degree of airway 
hyperresponsiveness among patients with less controlled 
asthma. Indeed, several bacterial taxa, including Strep-
tococcus pneumonia, Staphylococcus aureus, Moraxella 
catarrhalis, Pseudomonas aeruginosa, and Haemophilus 
influenza, were reported to be associated with asthma 
exacerbation or development [10, 11]. Moreover, stud-
ies suggest that airway microbiome in asthma patients 
is probably a result of complex interactions between the 
inflammatory milieu and the drug effects, and micro-
bial-derived mechanisms might be the reason of poor 
response to the treatment. For example, treatment with 
a combination of inhaled corticosteroids (ICSs) and oral 
glucocorticoids correlates positively with an increased 
abundance of Proteobacteria and Pseudomonas, and with 
a decreased abundance of Bacteroidetes, Fusobacteria, 
and Prevotella [12]. Meanwhile, a unique enrichment of 
Haemophilus, Neisseria, Fusobacterium, Porphyromonas 
species and the Sphingomonodaceae family along with 
depletion in Mogibacteriaceae and Lactobacillales was 
observed in mild asthma patients without being treated 
with ICSs [13].

In this study, the association between airway micro-
biota pattern and small airway function was explored. 
Results from lung function tests were related to the bac-
terial flora in study subject sputum.

Methods
Pulmonary function measurements
The measurements of spirometry function were con-
ducted by Jaeger Masterscreen PFT (Viasys Healthcare, 
Höchberg, Germany) according to the recommendations 
of the Chinese National Guidelines of Pulmonary Func-
tion Test [14]. Following indices were used to characterize 
small airway function: forced expiratory volume in first 
second (FEV1), forced expiratory vital capacity (FVC), 
peak expiratory flow (PEF), maximal expiratory flow at 

25% vital capacity (MEF25), maximal expiratory flow at 
50% vital capacity (MEF50), percentage of tested MEF25 
to predicted MEF25 (MEF25pred%), percentage of tested 
MEF50 to predicted MEF50 (MEF50 pred%) and forced 
expiratory flow between 25 and 75% (MEF (75/25)).

Study population
All individuals with asthma were patients from the Res-
piratory Department in Chaoyang Hospital, Beijing, 
while 12 healthy individuals were recruited from routine 
physical examination department in the same institution. 
The age distribution of these healthy people were from 28 
to 58 and they were ruled out of asthma and other respir-
atory diseases by scan examination and pulmonary func-
tion tests according to the Global Strategy for Asthma 
Management and Prevention [15, 16].

Among the 31 individuals with asthma, we took a 
cut-off value of 65% for MEF25pred% and MEF50 pred% 
to define study groups according to the Chinese Tho-
racic Society [17–19]. We defined patients who had a 
MEF25pred% lower than 65% as the MEF25pred%-low group 
(26 people), and others with a MEF25pred% value higher 
than 65% as the MEF25pred%-high group (5 people). The 
MEF50pred%-low group and MEF50pred%-high group were 
similarly defined, and 14 patients were grouped in the 
MEF50pred%-high group versus 17 in the MEF50pred%-low 
group.

As MEF50 and MEF25 are similar indices of small 
airway function, and because the sample size of the 
MEF50pred%-high group and MEF50pred%-low group is 
closer than those of MEF25pred% groups, we compared 
the sputum microbiome only between the MEF50 groups 
and the healthy individuals.

Subject characteristics are presented in Table 1.

Sampling of induced sputum
Induced sputum from asthma patients and health indi-
viduals was collected according to standardized protocols 
[20, 21]. Study subjects were pre-treated with inhaled 
salbutamol to relax airway smooth muscle and to pre-
vent acute asthma attack. Then they inhaled a nebulized 
solution of 3% saline over a 2-minute period, spat out the 
saliva, took 2 deep inspirations of saline, and coughed 
sputum into a separate cup. This procedure was repeated 
for six times. Subjects were instructed to rinse orally 
with water and to blow their nose after each inhalation 
to avoid contamination with saliva and post-nasal drip. 
Sputum samples were collected into sterilized pots and 
stored at − 80 °C for bacterial DNA extraction. Peak flow 
is monitored throughout the procedure, if patients feel 
uncomfortable or symptoms occurred, the induction was 
stopped.
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DNA extraction, PCR amplification and Illumina 
sequencing
Microbial DNA was extracted from induced sputum. The 
final DNA concentration and purification were deter-
mined by NanoDrop 2000 UV-vis spectrophotometer 
(Thermo Scientific, Wilmington, USA), and DNA qual-
ity was checked by 1% agarose gel electrophoresis. The 
V3-V4 hypervariable regions of the bacteria 16S rRNA 
gene were amplified with primers 338F (5′- ACT​CCT​
ACG​GGA​GGC​AGC​AG-3′) and 806R (5′-GGA​CTA​
CHVGGG​TWT​CTAAT-3′) by thermocycler PCR sys-
tem (GeneAmp 9700, ABI, USA). The PCR reactions 
were conducted using the following program: 3 min of 
denaturation at 95 °C, 27 cycles of 30 s at 95 °C, 30s for 
annealing at 55 °C, and 45 s for elongation at 72 °C, and 
a final extension at 72 °C for 10 min. PCR reactions were 
performed in triplicate 20 μL mixture containing 4 μL 
of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of 
each primer (5 μM), 0.4 μL of FastPfu Polymerase and 
10 ng of template DNA. The resulted PCR products 
were extracted from a 2% agarose gel and further puri-
fied using the AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, USA) and quantified using 

QuantiFluor™-ST (Promega, USA) according to the man-
ufacturer’s protocol.

Purified amplicons were pooled in equimolar and 
paired-end sequenced (2 × 300) on an Illumina MiSeq 
platform (Illumina, San Diego, USA) according to the 
standard protocols [22, 23].

Bioinformatics analysis
The analysis was conducted by following the “Atacama 
soil microbiome tutorial” of Qiime2docs along with 
customized program scripts (https://​docs.​qiime2.​org/​
2019.1/). Briefly, raw data FASTQ files were imported 
into the format which could be operated by QIIME2 
system using qiime tools import program. Demulti-
plexed sequences from each sample were quality fil-
tered and trimmed, de-noised, merged, and then the 
chimeric sequences were identified and removed using 
the QIIME2 dada2 plugin to obtain the feature table of 
amplicon sequence variant (ASV). The QIIME2 feature-
classifier plugin was then used to align ASV sequences 
to a pre-trained GREENGENES 13_8 99% database 
(trimmed to the V3V4 region bound by the 338F/806R 
primer pair) to generate the taxonomy table. Any 

Table 1  Clinical characteristics of study subjectsa

a Data are expressed as mean values and standard errors
b counts in blood

*: indicating a statistical significant difference between MEF25pred%-high and MEF25pred%-low groups, or between MEF50pred%-high and MEF50pred%-low groups. 
Significant level: *, p < 0.05; **: p < 0.01

MEF25pred% MEF50pred%

high low high low

Subject(n) 5 26 14 17

Age 34.40 ± 16.20 46.34 ± 12.83 41.35 ± 14.72 46.94 ± 13.00

Male (%) 60 54 57 47

Atopy (%) 100 85 90 84

BMI# 24.61 ± 5.66 26.74 ± 4.54 25.43 ± 4.12 27.19 ± 5.11

MEF25 (1.9 ± 0.81)* (0.69 ± 0.36)* (1.34 ± 0.65)** (0.51 ± 0.29)**
MEF50 (4.33 ± 1.32)* (2.19 ± 1.16)* (3.73 ± 1.05)** (1.55 ± 0.74)**
MEF75 (8.02 ± 2.45)* (4.49 ± 2.25)* (7.22 ± 1.86)** (3.28 ± 1.54)**
MEF(75/25) (3.85 ± 1.28)* (1.7 ± 0.89)* (3.06 ± 1.02)** (1.22 ± 0.62)**
FeNO (ppb) (24.8 ± 12.38)* (41.32 ± 24.66)* 30.86 ± 14.44 45.31 ± 28.38

IgE/(ng·mL− 1)b 148.9 ± 71.55 326.48 ± 393.57 277.93 ± 430.54 319.11 ± 340.12

Neutrophilb (× 109/L) (3.27 ± 0.32)** (5.06 ± 1.40)** 4.29 ± 1.71 5.16 ± 1.21

Eosinophilsb (× 109/L) 0.34 ± 0.33 0.51 ± 0.65 0.31 ± 0.28 0.59 ± 0.74

ACT score 23 ± 2.65 21.43 ± 3.81 23 ± 1.89 20.75 ± 4.3

AQLQ score 82.67 ± 17.5 88.27 ± 15.1 90.2 ± 12.4 85.87 ± 16.88

VC 4.18 ± 0.75 3.66 ± 0.97 (4.13 ± 0.75)* (3.43 ± 0.99)*
FVC 4.15 ± 0.75 3.64 ± 0.98 (4.11 ± 0.76)* (3.42 ± 1.01)*
FEV1 (3.58 ± 0.75)* (2.51 ± 0.85)* (3.32 ± 0.66)** (2.15 ± 0.75)**
FEV1/FVC (102.88 ± 7.78)** (81.12 ± 13.07)** (97.01 ± 6.52)** (74.45 ± 11.3)**
PEF 8.98 ± 2.07 7.01 ± 2.21 (8.71 ± 1.96)** (6.17 ± 1.87)**

https://docs.qiime2.org/2019.1/
https://docs.qiime2.org/2019.1/
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contaminating mitochondrial and chloroplast sequences 
were filtered using the QIIME2 feature-table plugin.

Experimental materials and reagents are included in 
supplementary material (suppl. Table 1).

Statistics and identification of bacterial 
communities
We used a rank test method, the Kruskal–Wallis test to 
examine the differences between groups. The linear Dis-
criminant Analysis Effect Size (LEfSe) method [24] was 
employed to compare the bacterial composition between 
groups, with the cutoff p-value set as 0.05 (after Benja-
mini-Hochberg false discovery rate correction). Addi-
tionally, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) functional profiles of microbial communities 
were predicted with Phylogenetic Reconstruction of 
Unobserved States (PICRUSt) [25].

Microbiome Multivariable Associations with Linear 
Models (MaAsLins) were run to test for associations 
between microbiomes and clinical variables using the 
MaAsLin 2 R/Bioconductor software package [26, 27]. 
The linear mixed-effect model could be expressed as 
follows:

All analyses were performed using R studio (version 
1.1.453) [28] with R software (version 3.5.1) [29] sup-
ported with the following software packages: vegan, 
metacoder [30], MaAsLin2 [27], ggplot2, Tax4Fun2 [31], 
and mixOmics [32].

Results
Clinical characteristics of the study subjects
Clinical features of the subjects are shown in Table  1, 
all significantly (p < 0.05) different indices between 
MEF25pred%-high group and MEF25 pred%-low group or 
between MEF50pred%-high group and MEF50 pred%-low 
group were marked with a “*”. As expected, FEV1, FEV1/
FEC, MEF25, MEF50, MEF75 and MEF (75/25) values 
were significantly (p < 0.05) lower in MEF25pred%-low group 
than those in MEF25 pred%-high group, meanwhile neu-
trophil and Fractional exhaled nitric oxide (FeNO) were 
significantly (p < 0.05) higher in in MEF25pred%-low group 
than those in MEF25 pred%- high group. VC, PEF, FEV1, 
FEV1/FEC, MEF25, MEF50, MEF75 and MEF (75/25) val-
ues were significantly (p < 0.05) lower in MEF50pred%-low 
group than those in MEF50 pred%-high group. Associations 
between these significantly different indices and microbi-
ome were investigated by MaSlin2 (in later sections).

Bacterial taxon ∼ (intercept) + small airway index + (1 ∕subject).

No significant difference of blood eosinophils or 
serum IgE was observed between these two pairs of 
groups.

Sputum microbiome compositions
A total of 2,305,983 valid reads were generated for the 
43 samples. After filtering for low-quality reads, 51,245 
sequence reads were used for subsequent analyses and 
resulted in 12,265 OTUs. The average percentage of 
input passed filter was approximately 85%, and average 
percentage of input non-chimeric was approximately 
77%.

We first examined the sputum microbiome composi-
tion. Taxa barplots and pie chart of bacterial genera in 
healthy control subjects and MEF50pred%-low group are 
presented in Fig. 1A, B and C . At the genus level, the 
top five genera of the healthy control sputum microbi-
ome were Prevotella (19.57%), Veillonella (9.74%), Neis-
seria (6.80%), Streptococcus (5.63%), Porphyromonas 
(3.30%). The top five genera of MEF50pred%-low group 
was Prevotella (12.86%), Streptococcus (10.24%), Veil-
lonella (9.27%), Fusobacterium (4.18%) and Neisseria 
(3.43%) .

We then and compared the difference in the median 
relative abundance of taxa between the healthy individ-
uals and MEF50pred%-low group, as the metagenomics 
phylogenetic map shows in Fig. 1D.

It could be seen from Fig. 1D that the largest signifi-
cant (p < 0.05) difference in the median relative abun-
dance of taxa was observed in the genus Prevotella, 
which was in accordance with the difference in micro-
biome composition. At the species level in this genus, 
significant (p < 0.05) difference was observed in spe-
cies Prevotella nanceiensis (P. nanceiensis), Prevotella 
nigrescens (P. nigrescens), Prevotella copri (P. copri) and 
Prevotella pallens (P. pallens), and all these species had 
a relative abundance higher than 0.01% (Supplementary 
Fig. 1).

The second largest significant (p < 0.05) difference in 
the median relative abundance of taxa was observed in 
genus Streptococcus. At the species level in this genus, 
the relative abundance of Streptococcus infantis (S. infan-
tis) was significantly different between MEF50pred%-low 
group and healthy control group (Supplementary Fig. 1).

Other species that had significant (p < 0.05) difference 
in relative abundance between MEF50pred%-low group 
and the healthy controls include Campylobacter rectus 
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(C. rectus) and Collinsella aerofaciens (C. aerofaciens) 
(Supplementary Fig. 1).

Partial least squares discriminant analysis (PLS‑DA) 
of microbial difference
The PLS-DA model was established to identify the 
contribution of taxa to the difference in the commu-
nity structure between the groups. Figure 2 shows the 
results of supervised PLS-DA plots concerning the 
microbial difference between MEF25 pred% and MEF50 
pred% functional groups. It could be seen that the two 
clusters were characterized by composition differ-
ence according to MEF25 pred% (Fig.  2A), MEF50 pred% 
(Fig. 2B) function and asthma severity.

Moreover, a heat map of the Euclidian distance of taxa 
between clusters characterized by MEF50 pred% function 
groups was shown in Fig. 3, indicating the distribution of 
taxa to component 1 in each sample.

It could be seen that in the MEF50pred%-low group, at 
the species level, Johnsonella ignava, Rothia dentocariosa 

(R. dentocariosa), C. rectus, Treponema socranskii (T. 
socranskii), P. nigrescens, Treponema amylovorum, 
Aggregatibacter segnis (A. segnis), and Corynebacterium 
durum had the largest Euclidian distance between the 
two clusters. Meanwhile, in the MEF50pred%-high group, 
Veillonella dispar, P. pallens, P. nanceiensis, and P. mel-
aninogenica had the largest Euclidian distance between 
the two clusters.

Linear associations between sputum microbiome 
and small airway indices
Mixed multiple linear regression analysis (MaAslin) was 
performed to explore whether there was a linear rela-
tionship between sputum microbiomes with MEF25, 
MEF50, MEF75, PEF, MEF (75/25), and FEV1/FVC. Fig-
ure  4 shows the heat map of these significant (p < 0.05) 
estimates, indicating the magnitude of coefficients in the 
linear associations.

It could be seen that MEF (75/25) and FEV1/FVC 
had most associations with the microbiome. Only 

Fig. 1  The sputum microbiome at the genus level. A Bar plot of all the samples, each bar shows the relative abundance of one individual B) 
Pie chart of the microbiome composition at genus level in MEF50pred%-low group. C Pie chart of the microbiome composition at genus level in 
healthy individuals. D Phylogenetic map of the median relative abundance differences in bacterial taxa between the healthy control group and the 
MEF50pred%-low group, the ending circle of each branch represented for species (n = 29). The depth of color of the nodes corresponds to the degree 
of difference in median relative abundance of the bacterial taxa. The darker the color of the phylogenetic branches, the higher median differences, 
whereas gray nodes and branches indicate no significant differences
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Fig. 2  Supervised PLS-DA plots with confidence ellipse, arrows point to the outcome category of each subject, including mild asthma and severe 
asthma as a subgroup. A MEF25 pred% group with a subgroup of asthma status. B MEF50 pred% group with a subgroup of asthma status

Fig. 3  Clustered image maps by different MEF50 pred% groups, including asthma status as a subgroup. Samples are represented in columns and 
taxa in rows. The colored side at the top of the heatmap indicates different groups. (Note: this plot was created with package mixOmics [32] of R 
software (version 3.5.1) [29])
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two species, P. nanceiensis and P. pallens, had posi-
tive associations with MEF25, MEF50, MEF (75/25), 
and FEV1/FVC levels, whereas the species J. ignava, 
R. dentocariosa, W. succinogenes, and C. rectus had 

negative associations with the three MEF indices. 
The species P. piscolens had a negative association 
with MEF25, MEF50, MEF (75/25), and FEV1/FVC 
levels. The species Selenomonas noxia had a negative 

Fig. 4  MaAslin analysis of the heat map between small airway indices and microbiome. Only significant (p < 0.05) associations are shown. The 
numbers in the figure indicate the magnitude of coefficients in the linear associations
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association with MEF75 and FEV1/FVC, while the 
species T. socranskii had a negative association with 
MEF50, MEF75/25, and FEV1/FVC. Lastly, the species 
Streptococcus. anginosus and Prevotella tannerae had 
negative associations with MEF25, MEF75/25, and 
FEV1/FVC.

KEGG pathway analysis
16S rDNA amplicon data were supplemented with 
genomicdata using  PICRUSt. Genes from differ-
ent bacteria likely to perform the same function have 
been grouped into KEGG orthologues (KO) by the 
Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Differentially abundant KOs were screened by using 
the Bonferroni-corrected Wilcoxon rank sum test 
for differences between healthy individuals and 
MEF50pred%-low group. Significant (p < 0.05) differ-
ences are shown in Fig. 5. In the MEF25pred%-low and 
MEF25 pred%-high groups, changes in the microbial 
flora of function genes in six categories were related 
to pathways associated with metabolism of cofactors 
and vitamins, transport and catabolism, biosynthesis 
and secondary metabolism, immune disease, and the 
endocrine system (Fig.  5A). For the MEF50pred%-low 
and MEF50-high groups, changes in the function 
genes were in genes associated with energy and car-
bohydrate metabolism, replication and repair, protein 
folding, sorting and degradation, amino acid metabo-
lism, drug resistance, xenobiotics, and infectious dis-
ease (Fig. 5B).

Discussion
In this study, we found significant differences in the com-
position, relative abundance, biomarkers and signaling 
pathways of airway microbiome between small airway 
functional groups and healthy controls. Two microbi-
ome-driven clusters were identified and characterized 
by small airway function, and change in the microbiome 
composition between small airway functional group was 
observed. Our study gave evidence to the connection 
between respiratory tract microbiota and small airway 
function in asthma patients.

Although the precise role of bacterium in airway 
inflammation remains to be established, some genera 
or bacteria were reported to be associated with asthma 
severity and phenotype. Specifically, genera Haemophi-
lus, Moraxella, and Neisseria of the phylum Proteobac-
teria, or species Haemophilus influenzae and Moraxella 
catarrha, were associated with worse asthma control [6, 
8, 33, 34]. In this study, we also found some associations 
between specific bacteria and small airway functions. 
First, we observed two species, P. pallens and P. nanceien-
sis, were correlated with better small airway function and 
better asthma status.

These two species had positive linear estimates 
with MEF50, MEF25, MEF (75/25) and FEV1/FVC. 
More than that, P. nanceiensis was a biomarker in the 
healthy control group (Supplementary Fig.  2), and its 
relative abundance significantly (p < 0.05) decreased 
in small airway dysfunction groups (MEF25pred%-low 
and MEF50pred%-low groups); and it had the largest 
decreased fold-difference in MEF50pred%-low group 

Fig. 5  KEGG pathway analysis between the study groups. A MEF25pred%-low and MEF25 pred%-high groups. B MEF50pred%-low and MEF50 pred%-high 
groups. (Note: all the KEGG identifiers were from https://​www.​kegg.​jp/​kegg/)

https://www.kegg.jp/kegg/
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(Supplementary Fig. 3). This is in accordance with those 
studies that reported P. nanceiensis as a “beneficial” com-
mensal bacterium in respiratory system. In one of those 
studies, compared with healthy airways, abundance of 
P. nanceiensis decreased in the airways of patients with 
chronic obstructive pulmonary disease (COPD), asthma, 
diabetes, celiac disease, and chronic periodontitis [35, 
36]. In another study about children with Henoch-
Schönlein Purpura [37], P. nanceiensis was observed to 
be positively correlated with IgA increase. IgA is impor-
tant at mucosal surfaces for maintaining homeostasis 
[38, 39], and it complexes activate eosinophils and neu-
trophils in inflammation. In this situation, P. nanceiensis 
might have participated in the immune responses. This 
is in accordance with earlier findings that increased P. 
nanceiensis was associated with diminished neutrophilic 
airway inflammation, suggesting that P. nanceiensis is 
related to Th2-high type asthma [40]. So it is possible 
that some commensal bacteria of the airways may par-
ticipate in the regulation of local and distant immune 
responses [41].

We also observed that some taxa that had negative 
associations with small airway functions or enriched sig-
nificantly (p < 0.05) in MEF25pred%-low or MEF50pred%-
low group. Many of these taxa play a role in human lung, 
oral and cardiovascular diseases [42]. Among these taxa, 
C. rectus, which had the largest negative estimate with 
all small airway functional indices, was enriched signifi-
cantly (p < 0.05) in MEF25pred%-low and MEF50pred%-low 
groups. C. rectus was reported to be associated with 
periodontal disease [43], and was linked to coronary 
artery disease, lung abscess, empyema, brain abscess, 
and osteomyelitis [43, 44]. The precise reasons for these 
associations are unclear. However, evidence showed that 
C. rectus increased production of the proinflammatory 
cytokines IL-6 and IL-8 in human gingival fibroblasts 
[45], suggesting it may induce an inflammatory milieu in 
other tissues.

In this study, P. nigrescens was also observed to have 
a negative estimate with MEF (75/25) and FEV1/FVC. 
More recently, P. nigrescens was reported to be associated 
with signs of carotid atherosclerosis in patients without 
periodontitis and endodontic infections [46, 47]. The 
later finding of dental colonization suggests possible dis-
tal spread of either the bacteria or inflammatory media-
tors such as cytokines. Still, patients with asthma show 
increased risk of bacterial infection. Certain bacterial 
species may transition from benign to pathogenic activi-
ties under some conditions but whether this is true in 
asthma requires additional research.

R. dentocariosa was the only taxa that had negative esti-
mates with all small airway and lung functions observed 
in this study. R. dentocariosa is a normal commensal 

bacterium of the oral cavity and is associated with den-
tal caries and periodontal disease. The bacterium is also 
reported to be associated with septic arthritis, pneumo-
nia, arteriovenous infection, and acute bronchitis [48]. 
Of note, R. dentocariosa can upregulation production of 
TNF-a by T cells [49].

S. anginosus was another taxa observed in our study to 
have a negative relationship with small airway function and 
it has been reported to be associated with pharyngitis and 
infections of internal organs and certain body fluids [50].

Functional analysis using PICRUSt showed clear dif-
ferences between the bacterial predicted metabolic 
functions in different study group in our work. Pathway 
analysis of changes in the microbial flora genes indicated 
that they were related to carbohydrate and amino acid 
metabolism, cellular processes, and human diseases, and 
that the changes were distributed in different propor-
tions. These findings are in accordance with other reports 
and suggest increased metabolic activity of the airway 
microbiome in asthmatic individuals [51, 52]. However, 
due to the limitation of PICRUSt, this prediction did not 
correspond to specific genera. Combining these analytic 
approaches may yield new insights.

The present study has a number of limitations. First, 
the cohort sample size is moderate and may not accu-
rately reflect the true population. Second, some impor-
tant indexes, such as IgA, were not tested for all patients 
with asthma. Further, the role of seasonal irritants, pol-
lutants and smoke ingestion, such as from tobacco, was 
not tested in this study.

To sum up, our work gave evidence that small airway 
function was associated with respiratory tract microbi-
ome, and commensal microorganisms may participate 
in the regulation of local and distant immune responses. 
Our findings could provide some information to therapy 
for patients with “small airway phenotype” asthma.
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