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Abstract 

Typhoid fever is transmitted by ingestion of polluted water, contaminated food, and stool of typhoid-infected individuals, 
mostly in developing countries with poor hygienic environments. To find novel therapeutic targets and inhibitors, We 
employed a subtractive genomics strategy towards Salmonella Typhi and the complete genomes of eight strains were 
primarily subjected to the EDGAR tool to predict the core genome (n = 3207). Human non-homology (n = 2450) was 
followed by essential genes identification (n = 37). The STRING database predicted maximum protein-protein interac-
tions, followed by cellular localization. The virulent/immunogenic ability of predicted genes were checked to differenti-
ate drug and vaccine targets. Furthermore, the 3D models of the identified putative proteins encoded by the respective 
genes were constructed and subjected to druggability analyses where only “highly druggable” proteins were selected for 
molecular docking and simulation analyses. The putative targets ATP-dependent CLP protease proteolytic subunit, Imi-
dazole glycerol phosphate synthase hisH, 7,8-dihydropteroate synthase folP and 2,3-bisphosphoglycerate-independent 
phosphoglycerate mutase gpmI were screened against a drug-like library (n = 12,000) and top hits were selected based 
on H-bonds, RMSD and energy scores. Finally, the ADMET properties for novel inhibitors ZINC19340748, ZINC09319798, 
ZINC00494142, ZINC32918650 were optimized followed by binding free energy (MM/PBSA) calculation for ligand-recep-
tor complexes. The findings of this work are expected to aid in expediting the identification of novel protein targets and 
inhibitors in combating typhoid Salmonellosis, in addition to the already existing therapies.
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Introduction
Salmonella Typhi is a Gram-negative bacterium and the 
etiological agent of typhoid fever in humans, whereas, 
Salmonella Paratyphi A, B, and C cause a paratyphoid 
fever indistinguishable in clinical symptoms. The term 
enteric fever is used for both, i.e., typhoid Salmonella is 
referred to as Salmonella Typhi and Salmonella Paraty-
phi [1]. Salmonella Typhi subsp. enterica comprises more 
than 2600 serovars, of which four are of major medical 
relevance to humans. Both typhoid serovars (Typhi and 
Paratyphi A) are restricted to humans causing enteric 
disease while non-typhoidal Salmonella serovars (Enter-
itidis and Typhimurium) have a broad host range and pre-
dominantly cause gastroenteritis [2, 3]. It is still the most 
widespread and hazardous infection globally, especially 
in developing countries, where approximately 200,000 
fatalities and 16 million further cases per anum have 
been reported [4, 5]. The main reservoir of both typhoid 
Salmonella serovars are humans, mostly observed in 
children. Food, contaminated water, waste, and infected 
individuals are the main source of transferring the organ-
isms. Enteric fever is recognized by an incubation phase 
with prodromal symptoms such as headache, abdominal 
pain, and diarrhea (constipation) for a period of 1 week 
or more, followed by fever [6], whereby immunocompro-
mised patients mostly develop constipation [7]. During 
infection, Salmonella Typhi enters epithelial cells of the 
small intestine and later goes through the bloodstream 
to infect several organs like liver, bone marrow, lymph 
nodes and spleen, later on re-enter the bloodstream and 
show fever symptoms [8].

During the early infection course, a specific fever is 
displayed (> 37.5 °C - 38.2 °C) followed by a gradual high 
fever (38.2 °C - 41.5 °C) [9]. Besides fever, bradycordia, 
splenomegaly, myalgia, and hepatomegaly are developed 
together with spots appearing on their chest and abdo-
men [10]. Persisting in the host cell is crucial for bacterial 
pathogenesis, and Salmonella strains possess this ability, 
whereas non-virulent strains fail to stay [11]. The host 
cell encases the bacteria in a membrane compartment 
and activates the immune response, thus degrading the 
intra-cellular bacteria via the digestive enzyme secretion 
and lysosomal fusion. Meanwhile, the Salmonella type-
III secretion system injects effector proteins into the vac-
uole to enter the reticuloendothelial system to stay alive 
and proliferate [12].

Recently, the development of antimicrobial resistance 
(AMR) with foodborne pathogens, including Salmo-
nella, has been associated with increased mortalities in 
humans, prolonged hospitalization, and cost/treatment 
factors due to therapy failure. In the 1990s and 2000s, 
several clones of multi-drug resistance (MDR) Salmo-
nella have emerged, and their prevalence in human hosts, 

domestic animals, and wildlife species expanded glob-
ally [13, 14], though some antibiotics like trimethoprim-
sulfamethoxazole, ampicillin, and ciprofloxacin showed 
good results [15]. Vaccines are one of the most effective 
interventions to recover public health, yet the generation 
of highly effective vaccines for various diseases, includ-
ing salmonellosis remained hard. An important progress 
in the recent past is the data expansion of numerous 
pathogen’s genomes, proteomes, and transcriptomes. 
These datasets establish a groundwork for developing 
and employing novel methodologies to mine, and classify 
target proteins for the development of vaccines, drugs, 
and diagnostic tests. For instance, reverse vaccinology is 
the screening of the entire pathogen genomic data using 
bioinformatics tools to find antigenic outer membrane 
proteins as good vaccine targets followed by synthetic 
production and screening in infected animal models. 
It was first used for vaccine development against sero-
group B. meningococcal and later, this methodology was 
employed against other bacteria.

Similar correlated methodologies like pangenomics 
and subtractive genomics have largely exposed so far, 
the potential targets in various challenging pathogenesis 
such as typhoid, paratyphoid fever, and others. These 
approaches employee the complete genome sequences 
of pathogens for predicting novel therapeutic targets and 
inhibitors [16–18]. In this current study, an integrated 
bioinformatics based subtractive genomics approach was 
designed for mining novel protein-based targets using 
the complete genomic/proteomic data of Salmonella 
Typhi and it is proposed that the same kind of approach 
could further be extended to other microbial pathogens.

Material and methods
Strains selection, data retrieval and phylogenetic analyses
S. typhi belongs to the phylum Proteobacteria and repre-
sents an important food and water-borne human patho-
gen, for which numerous genomes have already been 
sequenced worldwide, thus showing the importance of 
this pathogen. Briefly, We retrieved the genomic data 
information of Salmonella Typhi, available at the GOLD 
database (Genome Online Database) (http://​gold.​jgi.​doe.​
gov) [19]. A total of eight strains of Salmonella enterica 
Typhi were included in this study. All strain files, includ-
ing complete genomes, genes, and protein sequences, 
were retrieved from the National Center for Biotechnol-
ogy Information (NCBI) (http://​www.​ncbi.​nlm.​nih.​gov).

Phylogenetic tree construction for ancestral inference 
is a hypothetical chart representation and not definitive 
facts of evolutionary relationships among organisms. 
Their pattern of branching reflects how species evolved 
from a series of ordinary ancestors. For this purpose, the 
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housekeeping gene/protein of 16S rRNA having maxi-
mum sequence length was selected for phylogenetic tree 
construction. A multi-fasta file that comprised of 16S 
rRNA genes from all strains was prepared and used as 
an input file. The phylogenetic tree was constructed in 
MEGA (v10) using neighbor-joining method [20, 21].

Prediction of Core, non‑host homologous and essential 
genome
To predict the core genome/proteome of Salmonella 
enterica Typhi, a high throughput automatic compara-
tive genome analyses platform, the EDGAR v2.3 (Elec-
tronic Data Gathering Analysis and Retrieval) (https://​
edgar.​compu​tatio​nal.​bio.​uni-​giess​en.​de) was used [22]. 
The EDGAR offers multiple novel web-based services 
and features and significantly simplifies the comparative 
genome analyses of related genomes via user-friendly 
interface. A single strain was randomly selected (Salmo-
nella enterica Typhi CT 18) as the reference genome, the 
remaining seven strains were compared to the reference 
genome using the inherent default parameters. The core 
genome/proteome prediction is made based on % iden-
tity and coverage information provided in the EDGAR 
output files. From core genome analyses, the core file 
was submitted to NCBI-BLASTp (e-value = 0.0001, bit 
score = 100 & identity ≥ 35%) against the human genome 
for filtering non-host homologous proteins in the patho-
gen core genome. This step is important to avoid cross-
reactivity with human homologous proteins. BLASTp 
works by identifying match regions among biological 
sequences. The program compares nucleotide or protein 
sequences to sequence databases (7 strains in this case) 
and calculates the significance of the statistical value 
(www.​ncbi.​nlm.​nih.​gov/​BLASTp). A minimal set of genes 
important for vital activities of any cellular life is termed 
essential genes. The Database of Essential Genes (DEG 
v10) (www.​essen​tial.​org) encompass experimentally vali-
dated essential genes, among others, from a number of 
bacterial, eukaryotic as well as archaeal species that can 
be comparatively used to identify essential genes in a tar-
get bacterium, e.g., of Salmonella enterica Typhi [23]. For 
the identification of essential genes in our target bacte-
ria, the set of core-conserved and non-host homologous 
proteins from the previous step was subjected to the 
DEG database. The cut-off values used for BLASTp were: 
evalue = 0.0001, bit score ≥ 100, identity ≥ 35%, using the 
same parameters adapted previously [16, 17]. 

Modelome construction through comparative homology 
modelling
The pool of core essential non-host homologous 
(CENHH) was subjected to the MHOLline server for 

protein 3D (three-dimensional) structure modelling 
(http://​www.​mholl​ine.​lncc.​br/http://​www.​mholl​ine2.​
lncc.​br) [24]. Usually, MHOLline provides very good 
results, but in some cases, if the structures obtained are 
not of the required quality, a number of other 3D struc-
ture modeling software could be used. It predicts 3D 
structures for a small (a single protein sequence) as well 
as a large number sequences (≥  50), hence, sometimes 
compromising the quality of the predicted 3D structures. 
The MHOLline assign group 2 (G2) to all sequences for 
which models can be generated, and then further classi-
fies them into seven distinct quality groups. Sequences 
from very high, high, good and medium to good groups 
were considered where the selection of good quality 
structures was based on Ramachandran plot (≥  92%). 
Alternatively, we deployed SWISS-MODEL (www.​swiss​
model.​expasy.​org), a fully automated online server pre-
dicting 3D model for a single target sequence using 
multiple template structures from the PDB database. 
SWISS-MODEL employs the same comparative homol-
ogy modeling approach as the MHOLline server. The 
quality of each target was checked using structure quality 
validation tools including the model quality assessment 
at SWISS-MODEL, PDBsum available at EMBL-EBI 
(https://​www.​ebi.​ac.​uk/​thorn​ton-​srv/​datab​ases/​pdbsum/​
Gener​ate.​html), Verify 3D [25] and were then visualized 
using the PyMOL tool (http://​pymol.​org). Both platforms 
use MODELLER program but since the SWISS-MODEL 
predict the 3D structure for a single protein in contrary 
to the MHOLline workflow, it might explain the quality 
difference in predicted structures.

Protein‑protein interaction (PPI), cellular localization 
and virulence analyses
The proteins are in a homogenous environment inside the 
cell, performing multiple biological processes. The filtered 
proteins from the previous step were analyzed for pro-
tein-protein interaction (ppi) network using the STRING 
(v10.5) database (https://​string-​db.​org/) [26]. Salmo-
nella enterica CT18 was selected as the reference organ-
ism using the following thresholds; Network Type: full 
STRING network, Required score: medium confidence 
(0.400), FDR stringency: medium (5%). This step showed 
that the filtered targets were involved in multiple reac-
tions in which the nodes stood for the selected proteins 
and the edges marked the interactions among the targets. 
The cello2go software (cello.​life.​nctu.​edu.​tw/​cello​2g) was 
next used for subcellular localizations of the final set of 
sequences (four .faa sequences) having 3D modeled struc-
tures [27]. The parameters used were; Blast search = bac-
teria, Prediction model for bacteria = gram negative, 
e-value = 0.001. The acquired results are displayed online 
as pie charts allowing the user to visualize the cellular 
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localization of final targets. Finally, the molecular weight 
of target proteins was determined using an online bioin-
formatics program (www.​bioin​forma​tics.​org). Further-
more, the Virulence Factor Database (VFDB, (www.​mgc.​
ac.​cn) was used to check virulence properties by recog-
nizing epitope regions (cut-off values, bit score  >  100, 
e-value = 0.001, identity > 35%) [28].

ZINC library screening, molecular docking and ADMET 
profiling
The druggability of a protein or druggable protein pock-
ets defines the maximum affinity of a drug-like mol-
ecule to interact with that protein. Therefore prior to 

druggability analysis, the DoGSiteScorer (www.​DogSi​
te.​zbh.​uni-​hambu​rg.​de) was used to check the availabil-
ity of druggable pockets in the 3D structures of the final 
target proteins [29]. Virtual screening was performed by 
first retrieving a ligand library from the ZINC database 
(http://​ZINC15.​docki​ng.​org) [30], containing 12,000 
druglike molecules, with the Tanimoto cut-off level of 
60%. The template structures of all target proteins were 
checked for the presence of inhibitors and, where present, 
were used for ligand structure-based virtual screening 
by selecting and comparing the already predicted pro-
tein druggable cavities. In contrast, when no ligand was 
found in the template structure, only the druggable cavi-
ties of the target proteins were used. Later, all the protein 

Fig. 1  Workflow based on subtractive genomics approach describing various steps involved in protein 3D-based novel therapeutic targets 
identification (modified from Hassan et al., 2014 [16])

http://www.bioinformatics.org
http://www.mgc.ac.cn
http://www.mgc.ac.cn
http://www.dogsite.zbh.uni-hamburg.de
http://www.dogsite.zbh.uni-hamburg.de
http://zinc15.docking.org
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3D structures were checked for structural errors such as 
missing atoms or erroneous bonds and protonation states 
in the standalone MOE software (Molecular Operating 
Environment-v2016) following a slightly modified proto-
col adapted by Hassan et al., and Basharat et al., [16, 31–
33]. Among the top 10 hits that had the most negative 
scores and were able to pass Lipinski’s drug-like test were 
selected as suitable inhibitors. ADME/Tox analysis was 
performed on top-scored compounds using an ADMET 
prediction server (http://​lmmd.​ecust.​edu.​cn/​admet​sar2) 
to validate their parameters as suitable drug/binding can-
didates. Skin permeation and other physicochemical val-
ues were calculated from Swiss ADME (http://​www.​swiss​
adme.​ch/). Prior to docking, the structure of ligands was 
optimized by calculating charges, structure correction 
if required, applying force field (MMFF94x) and, mini-
mizing energy. The cavities predicted via DogSiteScorer 
(druggability ≥0.60–0.80) for all protein targets, were 
compared with the cavities detected by MOE and were 
followed.

Molecular dynamic simulation
The first two best complexes from docking studies were 
used as inputs for molecular dynamics simulations 
using the NAMD package v2.14 GPU [34] using the 

CHARMM36m force field [35–37]. The particle mesh 
Ewald (PME) method evaluated long-range Coulom-
bic interactions. The integration time step was set to 2 fs. 
The production simulations were performed in the NPT 
ensemble (constant number of particles, pressure, and 
temperature) (p = 1.01325 bar and T = 300 K), using the 
Langevin dynamics. The solution builder module was used 
to generate the system topology on a cubic box with a pad-
ding of 15 Å in each direction. The TIP3P water was used 
to solvate the box, and Na+ and Cl− ions, corresponding 
to a physiological concentration of 150 mM, were placed in 
the simulation box to set the ionic strength and neutralize 
the systems. The number of water molecules were auto-
matically set by the solution builder module depending on 
the system size and ran between 12,324 and 43,602. After 
10,000 steps (20 ps) of minimization, the complexes were 
equilibrated for 135,000 steps (270 ps). The production 
simulations last 200 ns. The trajectories from MD were 
analyzed using MD Analysis software [38, 39]. Interactions 
were calculated with PLIP v2.1.6 software [40].

Binding free energy calculations by molecular mechanics 
Poisson Boltzmann surface area (MM/PBSA)
The MM/PBSA method is one of the most widely 
adopted approaches for calculating binding free energies 

Table 1  Genome statistics of Salmonella Typhi strains available at National Center for Biotechnology Information (NCBI)

S. No. Selected strains Strains Status Bio- project Assembly Replicon Genes Proteins

1 S. enterica subsp. 
enterica serovarTyph‑
istr. CT18

CT18 Complete SAMEA1705914 GCA_000195995.1 Chr 1: NC_003198.1/
AL513382.1
Pls2: (NC_003384.1/
AL513383.1)

4829 4473

2 S. enterica subsp. 
enterica serovar Typhi 
str. Ty2

Ty2 Complete SAMN02604095 GCA_000007545.1 Chr1: NC_004631.1/
AE014613.1

4969 4804

3 S. enterica subsp. 
enterica serovar Typhi 
str. Ty21a

Ty21a Complete PRJNA34855 GCA_000385905.1 Chr1: NC_021176.1/
CP002099.1

4970 4593

4 S. enterica subsp. 
enterica serovar Typhi 
str. P-stx-12

P-stx-12 Complete PRJNA80939 GCA_000245535.1 Chr1: NC_016832.1/
CP003278.1
Pls: NC_016825.1/
CP003279.1

5160 4473

5 S. enterica subsp. enter-
ica serovar Parayphi A 
str. AKU_12601

AKU_12601 Complete PRJEA30943 GCA_000026565.1 Chr1: NC_011147.1/
FM200053.1

4675 4318

6 S. enterica subsp. 
enterica serovar Typhi 
str. B_SF_13_03_195

B_SF_13_03_195 Complete PRJNA286162 GCA_001302625.1 Chr1: NZ_CP012151.1/
CP012151.1

4795 4310

7 S. enterica subsp. enter-
ica serovar Paratyphi C 
str. RKS4594

RKS4594 Complete PRJNA20993 GCA_000018385.1 Chr1: NC_012125.1/
CP000857.1
Pls: 
pSPCV:NC_012124.1/
CP000858.1

4764 4414

8 S. enterica subsp. 
enterica serovar Typhi 
str. BL6006

BL6006 Complete – – – – –

http://lmmd.ecust.edu.cn/admetsar2
http://www.swissadme.ch/
http://www.swissadme.ch/
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(ΔGbind) of ligands bound to biomolecule receptors after 
molecular docking or molecular dynamics. These calcu-
lations are performed in three steps, Molecular Mechan-
ics (MM), Poisson Boltzmann (PB) (or generalized 
Born (GB), and Surface Area solvation (SA) before the 

summation is used to estimate the binding energy [41]. 
Binding free energy calculations were done using the 
molecular mechanics Poisson-Boltzmann surface area 
methodology (MM/PBSA) [42], as implemented in the 
CaFE package [43], a plugin of VMD software [44]. The 

Fig. 2  Evolutionary relationships of taxa: The evolutionary history was inferred using the Neighbor-Joining method [49] for this unrooted tree. The 
bootstrap consensus tree inferred from 1000 replicates is taken, with two main clusters, to represent the evolutionary history of the taxa analyzed. 
Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which 
the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The evolutionary distances were 
computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site [50]. This analysis involved 8 
amino acid sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There was a total of 479 positions 
in the final datasets. Evolutionary analyses were conducted in MEGA (v10) [48]

Table 2  Molecular weight and druggability characterization of the predicted targets

Target Protein Name Template 
Coverage / 
Identity

QMEAN
Z-Scores

QMEANDisCo Scores Ramachandran 
Score

Total Pockets Highly 
Druggable

M. Wt
(≤  110 KDa)

STY0490 ATP-dependent CLP 
protease proteolytic subunit clpP

6nb1.1.A
0.95 / 99.03%

0.70 0.85 ± 0.05 94.3% 108 11 21.51KDa

STY2284 Imidazole glycerol phos-
phate synthase hisH

4gud.1.A
0.90 / 61.03%

−1.25 0.85 ± 0.06 89.9% 6 1 21.71 KDa

STY3473 7,8-dihydropteroate 
synthase folP

3tzf.1.A
0.98 / 74.18%

0.53 0.88 ± 0.05 90.3% 12 1 30.52 KDa

STY4091 2,3-bisphosphoglycer-
ate-independent phosphoglycer-
ate mutase gpmI

5vpu.1.A
0.99 / 62.33%

−0.78 0.87 ± 0.05 94.8% 15 2 55.56 KDa
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Fig. 3  Protein-protein interaction using STRING database. The different nodes in the network represent the proteins while the network edges 
represent specific and meaningful protein-protein associations. The network is a scalable vector graphic [SVG]; interactive. The different node 
colors show the different level of interactions whereas the edge colors show their known, predicted and other interactions. The colored nodes 
show the query proteins and first shell of interactors, the white nodes represent second shell of interactors, empty nodes represent proteins of 
unknown 3D structure and filled nodes represent some 3D structure is known or predicted. The edges indicate both functional and physical 
protein associations whereas line color indicates the type of interaction evidence and the line thickness indicates the strength of data support. 
Among the known Interactions, Cyan are from curated databases and Purple are experimentally determined. In Predicted Interactions, green is 
from gene neighborhood analyses, red are gene fusions events, and blue are from gene co-occurrence. The other remaining interactions are; 
Olive = text-mining, black = co-expression, Navy Blue = protein homology

Fig. 4  Subcellular localization of final 4 targets using CELLO2GO software. The identified putative targets were found in the cytoplasm of the S. typhi 
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different steps followed through subtractive genomics 
from data retrieval to the identification of putative pro-
tein targets are given in Fig. 1.

Results and discussions
 Data retrieval of selected Salmonella Typhi genomes / 
strains
The genomic data was retrieved in fasta format (.faa and 
.fna files) for some important Salmonella Typhi strains 
included in this study, available at the GOLD database 
(Genome Online Database, http://​gold.​jgi.​doe.​gov) and 
strains comprising their complete genomes, gene and 
protein sequences were retrieved from (NCBI) National 
center for biotechnology information (http://​www.​ncbi.​
nlm.​nih.​gov). This database provides a comprehensive 
open-source access to information regarding genome 
and meta-genome sequencing projects and their asso-
ciated meta-data around the world. A total of eight 
(8) Salmonella enterica subsp. enterica serovar Typhi 
strains were included in this study. Genome statistics 
like genome size, number of proteins, % GC content, 
bio-project information and genome assembly data, 
among others, of all the selected strains are tabulated 
below (Table 1).

Phylogenetic analyses
A phylogenetic tree is an estimation of the relation-
ships among taxa or sequences and their hypothetical 
common ancestors [45–48]. Today most phylogenetic 
trees are built from molecular data like DNA or pro-
tein sequences. Building a phylogenetic tree requires 
four distinct steps, which are as follows; step-1: iden-
tify and acquire a set of homologous DNA or protein 
sequences, step-2: align those sequences, step-3: esti-
mate a tree from the aligned sequences, and step-4: 

present that tree in such a way as to clearly convey the 
relevant information to others [48]. For this purpose, 
we selected the long chain of 16S rRNA house-keeping 
genes for phylogenetic tree construction. A multi-fasta 
file (sequences of 16S rRNA genes from 8 strains) was 
prepared and used as an input file here, each constitut-
ing 479 amino acid residues. The tree was constructed 
in MEGA (v10) using neighbor joining method show-
ing the relative position of each strain in comparison to 
others (Fig. 2).

Mining Core genome, non‑host homologous and essential 
genome
The core genome/proteome of Salmonella enterica 
Typhi comprised of 3207 genes/proteins. For this, Sal-
monella enterica Typhi CT18 was randomly selected as 
the reference genome, using the EDGAR platform with 
default parameters. The core region of nucleotides of 
selected microorganisms represents the conserved set 
of genes among all strains that might contain interest-
ing therapeutics targets for drug development projects. 
Since Salmonella Typhi is a human pathogen there-
fore it is necessary to filter out those genes/proteins 
which exhibit certain degree of homology towards 
their host proteome, a step know as host off-targeting. 
The comparison to the NCBI-BLASTp program sepa-
rated human homologs from the aforementioned core 
proteome and resulted in 2450 proteins. Afterwards, 
the file of 2450 proteins were submitted to the DEG 
database for essential genes identification. Essential 
genes/proteins represent a minimal set of data vital 
for an organism’s survival and this analysis drastically 
reduced our dataset to only 37 essential proteins and 
are given in supplementary materials (S1_table_37_
targets and S1_data_37_targets).

Table 3  STY0490_ATP-dependent CLP protease proteolytic 
subunit: Top - 10 ZINC compounds from a library of 12,000 
drug-like compounds with minimum energy scores / maximum 
H-bond

S. No. ZINC ID Score (kcal/mol) 2D Interactions

1 ZINC19340748 −5.8724 His152, Gly140.
2 ZINC08738207 −5.7044 Gly140
3 ZINC83429827 −5.6663 GlyA140, ArgB132

4 ZINC08536413 −5.4598 GlyA141, IIeA156

5 ZINC16941742 −5.5048 HisA152

6 ZINC33888075 −4.7700 ArgB132

7 ZINC09319798 −5.3005 AlaC153

8 ZINC03852531 −5.2317 His152

9 ZINC00440425 −5.1016 ArgB132

10 ZINC06655690 −5.0493 GlyA140

Table 4  STY2284_Imidazole glycerol phosphate synthase: 
Top −10 ZINC compounds from a library of 12,000 drug-like 
compounds with minimum energy scores / maximum H-bond

S. No. ZINC ID Score (kcal/mol) 2D Interactions

1 ZINC09319798 −5.7257 Arg181, Gly183
2 ZINC71771245 −5.5123 Ala187
3 ZINC04876827 −5.4462 Trp118, Pro178

4 ZINC05002395 −5.2251 Val142, Arg181

5 ZINC36585021 −5.2436 Gly183

6 ZINC67743322 −5.2282 Gly183, Arg181, Tyr140

7 ZINC04521524 −5.1224 Glu180, Arg181

8 ZINC40266587 −5.0669 Tyr140

9 ZINC08655469 −5.0449 Gly48, Glu89, Val142

10 ZINC05593430 −5.0485 Gly183

http://gold.jgi.doe.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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Modelome construction (3D comparative homology 
modelling)
The three-dimensional structure of proteins infers their 
functions and therefore are of utmost importance in 
understanding their role in various biological processes, 
specifically in pathogen target identifications projects 
and developing inhibitors/drugs for them. Since no 
experimental structural information are available in the 
RCSB-PDB database, therefore both MHOLline and 
SWISS-MODEL were deployed for protein 3D struc-
tures identification. The set of core, essential and non-
host homologous (CENHH) proteins were consequently 
subjected to both structure prediction workflows and 
in total, 7 structures were obtained (S2_data_7_tar-
gets), out of which only 4 (S3_data_4_targets) showed 
high quality that were selected as the final targets 
(Ramachandran value ≥  90%). The PDB templates 
identified by the SWISS-MODEL for constructing 3D 
models were; STY0490_WP_000122257.1=6nb1.1.A, 

STY2284_WP_001103591.1=4gud.1.A, STY3473_
WP_000764715.1=3tzf.1.A, and STY4091_
WP_000116577.1=5vpu.1.A (also Table  2). For all 
constructed models , the coverage between the 
target and template sequences was > 90%, and 
the identity was ≥ 50%, with the highest coverage and 
identity for STY0490_WP_000122257.1. In compara-
tive homology modelling for 3D structures, these val-
ues are considered as better [16, 17, 33]. For each target, 
the SWISS-MODEL and the PDBsum generated the 
Ramachandran plots, though all the four models qualify 
this quality-check threshold, there is a slight variation in 
their Ramachandran values. In any case, a good quality 
3D model would be expected to have over 90% residues 
in the most favored regions [1–3]. The QMEAN Z-Score 
demonstrates that how many standard deviations from 
the mean is my target model score, given a score distribu-
tion from a large set of experimentally determined struc-
tures. Thus, a Z-score around 0.0 reflect a “native-like” 

Table 5  STY3473_Dihydropteroate synthase: Top - 10 ZINC compounds from a library of 12,000 drug-like compounds with minimum 
energy scores / maximum H-bond

S. No. ZINC ID Score (kcal/mol) 2D-Interaction

1 ZINC00494142 −6.4818 Lys221, Asp185, Arg255.
2 ZINC1614648 − 6.2975 Arg255, Lys221, Gly217, Asp185, Asn115, Met139
3 ZINC1404681 −6.2576 Asp185, Met139

4 ZINC31163220 −6.1968 Gly217, Asp185, Met139, Asn115

5 ZINC04521524 −6.0752 Asn115, Asp185, Met139, Arg255, Lys221

6 ZINC05722559 −6.0137 Arg255, Asn115

7 ZINC05468369 −5.7699 Arg255, Lys221, Gly217, Asp185, Gly187, Met139

8 ZINC05593430 −5.6062 Asp96, Gly58

9 ZINC06659051 −5.5168 Met139, Asp56, Lys221

10 ZINC67743322 −6.0257 Lys221

Table 6  STY4091_2,3- bisphosphoglycerate-independent phosphoglycerate mutase: Top - 10 ZINC compounds from a library of 
12,000 drug-like compounds with minimum energy scores / maximum H-bond

S. No. ZINC ID Score (kcal/mol) 2D Interactions

1 ZINC32918650 −7.3714 Thr360, Thr361, Arg148
2 ZINC20389823 −6.7390 Arg192, Tyr181, Thr360, Arg148, Glu328, Arg259
3 ZINC71777356 −6.4355 Arg148

4 ZINC04718072 −6.2037 Arg261, Asp258, Glu328, Thy330

5 ZINC17748644 −6.1492 Arg192, Asp185, Tyr181, Tyr181, Glu227, Arg148, Arg259, Glu328

6 ZINC01582533 −6.0171 Arg192, Glu328, Asp185, Tyr181, Arg180, Arg259, Arg148, Glu227

7 ZINC68222743 −6.1124 Tyr181, Arg259, Arg148, Tyr361

8 ZINC17043741 −5.8952 Asp185, Arg259, Arg180, Arg148

9 ZINC13136442 −5.6630 Arg148, Tyr361, Thr360

10 ZINC71789643 −5.5325 Glu227, Arg180, Arg259, Arg148, Tyr181, Glu328, Arg192
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structure and a Z-score below − 4.0 indicates a model 
with low quality [51]. It is evident from Table 2 that all the 
four targets exhibited an acceptable QMEAN Z-Score. 
QMEANDisCo Global Scores are the average per-resi-
due QMEANDisCo score, which has been found to cor-
relate well with the lDDT score [52]. QMEANDisCo is 
a composite score for single model quality estimation. It 
employs single model scores suitable for assessing indi-
vidual models, extended with a consensus component 
by additionally leveraging information from experimen-
tally determined protein structures that are homologous 
to the model being assessed. Typically, residues showing 
a score below 0.6 are expected to be of low quality [53–
56]. The details of different values of structure valida-
tion analyses are given in supplementary materials for all 
identified targets, respectively (S1_figures (a-g) – S4_fig-
ures (a-g).

Molecular weight and Druggability analyses
Finally, the molecular weight of the target proteins and 
their respective druggable pockets/cavities were deter-
mined prior to virtual screening and molecular docking. 
The molecular weights (MW) of potential targets were 
assessed using ExPASy Server and were classified accord-
ingly (https://​web.​expasy.​org/​compu​te_​pi/). The drugga-
bility of a protein mlecule defines their efficiency to bind 
a drug-like molecule. For this purpose, the DogSiteScorer 
program (www.​prote​ins.​plus/www.​Dogsi​te.​zbh.​uni-​
hambu​rg.​de) aided in exploring the druggable pockets. 
The DoGSiteScorer automatically predict pockets and 
sub-pocket in a target protein 3D structure, performs 
functional characterization and druggability estima-
tion. A highly druggable protein is considered the one 
that shows maximum interaction affinity toward a drug 
molecule. The druggability measurement is measured on 

Fig. 5  Diagram showing In Silico interactions of 2 best ZINC compounds (ZINC19340748 and ZINC08738207) with the identified putative target 
STY0490_ATP-dependent CLP protease proteolytic subunit. The 2D interactions (left panel) were determined via MOE software (v2016–17) while 
their respective 3D interactions (right panel - target protein in surface representation) were developed using PyMOL visualizing tool

https://web.expasy.org/compute_pi/
http://www.proteins.plus
http://www.dogsite.zbh.uni-hamburg.de
http://www.dogsite.zbh.uni-hamburg.de
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a scale of 0–1, for a medium to high druggable protein, 
the score is ≥ 0.6 while for highly druggable protein, it is 
≥ 0.8 (Table 2). A protein of interest might contain sev-
eral predicted druggable pockets yet the highly drugga-
ble pockets are normally considered for docking analyses. 
The drug targets were further crosschecked in the Target-
Pathogen Database (http://​target.​sbg.​qb.​fcen.​uba.​ar) to 
prioritize them by determining the structural druggabil-
ity, essentiality and different metabolic roles.

Protein‑protein interaction network
The current STRING database contains information of 
about 24,584,628 proteins and their interactions from 
more than 5000 organisms. Mainly these interactions 
are derived from 5 sources including a) predictions at 
genomic data b) high-throughput wet-lab experimental 
data c) co-expression data from conserved sequences d) 

automatic text mining from literature etc., and e) previ-
ous knowledge in other databases. It is an integrated 
bioinformatics web database of known (direct physi-
cal/experimental data) and indirect predicted protein–
protein interactions (functional association data). The 
interactome for 37 essential and non-host homologs 
was build that was useful to check interactions of the 
target proteins with the neighbors. We emphasized our 
search whether our predicted targets were involved in 
more than a single interaction or not (≥  3 interactions) 
explaining the promiscuous nature of the target proteins 
(Fig. 3). The network statistics showed the total number 
of nodes (n = 37), edges (n = 109) and the expected num-
ber of edges (n = 28). The average node degree or aver-
age number of interactions exhibited by a protein was 
5.89, with average local clustering coefficient of 0.658. 
The PPI enrichment p-value (< 1.0− 16) was significant, 

Fig. 6  Diagram showing In Silico interactions of 2 best ZINC compounds (ZINC09319798 and ZINC71771245) with the identified putative target 
STY2284_hisH Imidazole glycerol phosphate synthase subunit HisH. The 2D interactions (left panel) were determined via MOE software (v2016–17) 
while their respective 3D interactions (right panel - target protein in surface representation) were developed using PyMOL visualizing tool

http://target.sbg.qb.fcen.uba.ar
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the network showed significantly more interactions than 
it was expected. The interaction enrichment means that 
these proteins have more interactions among themselves 
than what would be expected for a random set of proteins 
of the same size and degree distribution drawn from the 
genome. Such an enrichment indicates that the proteins 
are at least partially biologically connected, as a group.

Sub‑cellular localization and virulence prediction
A vector-based machine method and suffix tree algorithm 
feature, Cello2GO software investigated the subcellular 
location of target proteins of S. typhi for exo-proteome 
and secretome, a source of vaccine candidates due to 
their continuous contact with biotic and abiotic elements 
of the extracellular environment. It was found that all 
putative targets belonged to the cytoplasmic region of 
the pathogen cell (Fig. 4). The Virulence Factor Database 
(VFDB) checked the targets for virulent proteins that are 
involved in disease intensity, a property associated with 

microbial pathogenesis. This step is important because 
antigenic/virulent proteins could serve worthy vaccine 
candidates since they intervene in serious flagging path-
ways in the host cells and might potentially activates the 
host immune system in contrast to non-virulent proteins. 
The VFDB predicted two targets as virulent proteins 
(STY0490_clpP_ATP-dependent protease proteolytic 
subunit_WP_000122257) and (STY2284_hisH_Imidazole 
glycerol phosphate synthase_WP_001103591) by pro-
ducing significant alignments with the VFDB core data-
set proteins associated with experimentally verified 4188 
sequences (virulence factors VFs). Albeit being cytoplas-
mic in nature, they might have an indirect role in cellular 
signaling or a metabolic pathway to propagate virulence 
and disease outcome.

Virtual screening, molecular docking and ADMET profiling
After performing virtual screening, the top 200 hits were 
selected from the ZINC library of 12,000 molecules for 

Fig. 7  Diagram showing In Silico interactions of 2 best ZINC compounds (ZINC00494142 and ZINC1614648) with the identified putative target 
STY3473 Dihydropteroate synthase. The 2D interactions (left panel) were determined via MOE software (v2016–17) while their respective 3D 
interactions (right panel - target protein in surface representation) were developed using PyMOL visualizing tool
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each target protein (top drug-like molecules based on 
minimum ligand-receptor complex energy, RMSD scores 
and maximum number of Hydrogen bonds (H-bonding). 
These were then docked in the final set of our target pro-
teins using the MOE software (15 poses selected for each 
ligand in the highly druggable protein cavity) and then 
visually inspected. In MOE, docking and visualization 

were performed according to a slightly modified proto-
col by Basharat et al., 2021; placement = triangle matcher, 
rescoring 1 = London dG, refinement = forcefield, res-
coring 2 = affinity dG. All docked ZINC compounds 
were arranged in ascending order according to their 
binding energies and those with least energy of ligand-
receptor complex were considered as top conformation. 

Fig. 8  Diagram showing In Silico interactions of 2 best ZINC compounds (ZINC32918650 and ZINC20389823) with the identified putative target 
STY4091 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. The 2D interactions (left panel) were determined via MOE software 
(v2016–17) while their respective 3D interactions (right panel - target protein in surface representation) were developed using PyMOL visualizing 
tool

Table 7  Pharmacokinetic parameters of the top-scoring ZINC compounds for predicted targets in S. typhi 

Targets - S. typhi Compounds Molar 
refractivity

Polar surface 
area topology 
(Å2)

Bioavailability Lipinski
violations

Lead 
likeness 
violations

Consensus 
Log P o/w

Skin 
permeation 
Log Kp (cm/s)

STY0490 ZINC19340748 79.18 129.97 0.55 0 3 −0.18 −7.94

ZINC08738207 76.78 125.61 0.55 0 3 −0.48 −7.61

STY2284 ZINC09319798 77.53 147.15 0.55 0 0 0.42 −8.01

ZINC71771245 88.40 71.71 0.55 0 0 1.96 −6.91

STY3473 ZINC00494142 55.39 112.53 0.55 0 1 −0.65 −7.72

ZINC1614648 71.26 26.30 0.55 0 1 3.91 −4.19

STY4091 ZINC32918650 79.57 78.87 0.56 0 0 1.05 −8.46

ZINC20389823 54.59 147.39 – – – – –
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Compounds that were able to pass Lipinski’s drug-like 
test and had minimum energy were selected as suit-
able inhibitors. Later, the top 10 best drug-like molecules 
were selected that showed favorable interactions, favora-
ble docking orientation and minimum energy scores for 
each target protein. ZINC codes and MolDock scores of 
selected ligands, the number of hydrogen bonds as well 
as protein residues involved in these interactions are tab-
ulated (Tables 3, 4, 5 and 6). For convenience, the figures 
(Figs. 5, 6, 7 and 8) represent docking results of the top 
two ligands only while for MD simulation and energy cal-
culation, only the 1st of the top two ligands was selected. 
In silico pharmacokinetics and pharmacology properties 
of selected compounds were studies for absorption dis-
tribution metabolism and excretion (ADME), to filter out 
the best possible drug candidate, with higher penetra-
tion and least side effects to the human and other possi-
ble hosts. Some of these compounds showed blood-brain 
barrier permeability or mutagenicity while most of them 
were substrates for P-glycoprotein. Majority of them also 
did not show maximum inhibition of cytochromes. Some 
compounds were predicted positive for mutagenicity, 
albeit, majority were not, in the predicted AMES toxicity 
test, it is presumed that they do not cause mutations in 
the host DNA replication or translation processes. Nearly 
all compounds exhibited the least acute oral toxicity for 
humans. Since only 2 compounds were characterized for 
each target protein from the top 10 hits, it is presumed 
that toxic compounds perilous to humans or other hosts, 
if any, could be replaced with the remaining 8 inhibitors 
from the list for ADMET profiling. Log P (o/w) is the 
lipophilicity of a molecule that is expressed as a parti-
tion coefficient (Log P) of an n-octanol/water system, 
where more lipophilic compounds are partitioned in the 
n-octanol layer. For a drug molecule to reach its target, it 
will be required to pass through lipid cell membranes, the 
drug requires to be sufficiently soluble in a lipid medium. 
For drug molecules that require oral administration, thay 
cannot be overly lipophilic since this will lead to poor 
absorption and hence will deviate the Lipinski’s ‘rule of 
five’ that predicts likely poor absorption or permeability 

when the Log P value is greater than five [57, 58]. The Log 
Kp values, on the other hand, is another physicochemi-
cal property that show the skin permeability coefficient 
(Kp) of a compound through mammalian epidermis and 
thus provide an insight into the mechanism of molecu-
lar transport through the stratum corneum (SC) [59]. 
The drug-like compounds mined in this study as poten-
tial inhibitor candidates were found to be active, safe and 
have not previously been studies as anti-Salmonella to 
date. These novel candidates might be interesting to be 
explored as Salmonella inhibitors, owing to future labo-
ratory tests. The biological importance of each target and 
an analysis of the predicted protein-ligand interaction are 
described below (Table 7).

MD simulation and binding free energy calculations 
by MM/PBSA
The physicochemical and thermodynamic stabilities of 
the four predicted targets interacting with their cor-
responding inhibitors, the protein-ligand complexes, 
depends upon several properties like the free binding 
energy, the number of interactions, the root mean square 
deviation (RMSD), the root mean square fluctuation 
(RMSF) and the radius of gyration (Rg). Table 8 demon-
strates the free binding energies (ΔG) for each of the four 
complexes. All the energies have negative values which 
indicates a favorable protein-ligand complex formation.

Using the PLIP software, the number of hydrogen 
bonds (H-bond), hydrophobic contacts, salt-bridge, π-π 
stacking and π-cation interactions through the simu-
lation were determined for each complex. The figures 
below show the calculated contacts for all the residues 
(only residues with more than ten (10) interactions 
were taken into account). The results show that the 
three complexes with lower free binding energy also 
have the greater number of interactions (greater than 
500) and that the main interaction mechanisms are due 
to hydrophobic and H-bond contacts. The complexes 
with lowest number of contacts (05 and 06) show a 
diversity of contacts were salt-bridge, π-π stacking and 
π-cation also contribute to their stability (Fig. 9).

The RMSD calculated for all the complexes is shown 
in the Fig. 10. As can be seen, all the complexes show 
stability. Complexes (A and C) have some oscillations at 
the first half of the simulation but then attain stability 
after 100–125 ns whereas the other complexes (B and 
06) attain stability around the first 50 ns.

The RMSF is a measure of the residue fluctuations. 
Looking for the residues that made the greater num-
ber of interactions from Fig.  11, their RMSF values 
are lower than 4 Å. Complexes B and D, that have the 
greatest variety of interactions, show the lower RMSF 
values.

Table 8  Free binding energy calculations of stable complexes 
during the last 25 ns (250 frames) of the molecular dynamic 
simulation (order of the increased values of the free binding 
energy)

Target-Inhibitor Complex ID ΔG (kcal/
mol) for 250 
frames

STY0490_ ZINC19340748 −7.2039

STY4091_ ZINC32918650 −2.9975

STY2284_ ZINC09319798 −2.2178

STY3473_ ZINC00494142 −1.6335
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The radius of gyration (Rg) can verify how compact or 
not the protein becomes in the complex as it measures 
the hydrodynamic capacity of the protein. From Fig. 12, 
it is observed that in all cases, the radii of gyration show 
a stable value with oscillations inside the 1.5 Å window.

STY 0490_clpP (EC 3.4.21.92) ATP-dependent CLP 
protease proteolytic subunit is a caseinolytic serine 
protease that cleaves peptides in various proteins that 
require ATP hydrolysis. ClpP has a chymotrypsin-like 

activity by playing a major role in the degradation of 
misfolded proteins. The catalytic activity comprises the 
hydrolysis of proteins to small peptides in the presence 
of ATP and Magnesium where alpha-casein is the usual 
test substrate, the absence of ATP causes hydrolysis of 
only oligopeptides shorter than five residues. It has been 
proved that alteration of the ClpP function is closely 
related to the altered virulence and infectivity of a num-
ber of pathogens thereby rendering ClpP as an attractive 

Fig. 9  Free binding energy calculations: Interactions calculated for., A) STY0490_ ZINC19340748., B) STY4091_ ZINC32918650., C) STY2284_ 
ZINC09319798., D) STY3473_ ZINC00494142
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and potentially viable target for antivirulence drugs 
and antibiotics to tackle the pathogen by the activation 
or inhibition of ClpP [60–62]. The physiological role of 
the ClpP proteolytic subunit and their ability to degrade 
misfolded proteins generated under different stress con-
ditions in S. typhimurium and other bacteria has also 
been reported by constructing an in-frame deletion of 
the clpP gene [63, 64]. The VS and docking showed 2 best 

hits including ZINC19340748 and ZINC08738207 that 
interact with the residues His152, Gly140 and Gly140, 
respectively in the predicted druggable pocket with the 
least possible ligand-receptor energy values (− 5.8724 
and − 5.7044, respectively) whereas other best hits are 
also tabulated (Table 3 and Fig. 5).

STY2284_hisH (4.3.2.10) Imidazole glycerol phos-
phate synthase subunit HisH (IGPS) (CHEBI:58525). This 

Fig. 10  RMSD curves: The curves were calculated for., A) STY0490_ ZINC19340748., B) STY4091_ ZINC32918650., C) STY2284_ ZINC09319798 and 
D) STY3473_ZINC00494142

Fig. 11  RMSF curves: The curves were calculated for., A) STY0490_ ZINC19340748., B) STY4091_ ZINC32918650., C) STY2284_ ZINC09319798 and D) 
STY3473_ZINC00494142
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protein is involved in step 5 of the 9-step-subpathway of 
L-histidine biosynthesis pathway, an Amino-acid biosyn-
thesis pathway and synthesizes/catalyzes the conversion 
of PRFAR (5-[(5-phospho-1-deoxy-D-ribulos-1-ylimino) 
methylamino]-1-(5-phospho-β-D-ribosyl) imidazole-
4-carboxamide) and glutamine (L-glutamine) to IGP 
(D-erythro-1-(imidazol-4-yl) glycerol 3-phosphate), 
AICAR (5-amino-1-(5-phospho-β-D-ribosyl) imida-
zole-4-carboxamide) and glutamate. The HisH subunit 
catalyzes the hydrolysis of glutamine to glutamate and 
ammonia as part of the synthesis of IGP and AICAR. The 
resulting ammonia molecule is channeled to the active 
site of HisF (https://​www.​unipr​ot.​org/​unipr​ot/​P0A1R5). 
The enzyme has been reported as a potential target for 
drug and herbicide development as the histidine pathway 
does not occur in mammals [65–67]. We showed that 
Arg181, Gly183 and Ala187, among others, of the pre-
dicted druggable cavity of IGPS protein interact favora-
bly with most of the top 10 ZINC compounds, especially 
the top two hits i.e., ZINC09319798 and ZINC71771245, 
thereby supposedly aiding in the available list of drug 
molecules against this enzyme (Table 4 and Fig. 6).

STY3473_folP (EC 2.5.1.15) Dihydropteroate syn-
thase. This enzyme protein catalyzes the condensation 
of para-aminobenzoate (pABA) with 6-hydroxyme-
thyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 
7,8-dihydropteroate (H2Pte), the immediate precursor 

of folate derivatives possessing the Mg+ 2 ion. The 
condensation process is involved in the step-1 sub-
pathway of the tetrahydrofolate biosynthesis pathway. 
The folP gene has long been reported among sulfona-
mide class of drugs resistance genes and has been well 
studied to get an insight into the evolution of drug 
resistance mechanisms [68, 69]. Our docking results 
showed that ZINC00494142 and ZINC1614648 
showed good interactions with dihydropteroate syn-
thase with Lys221, Asp185 and Arg255, among others, 
with minimum energy scores (Table 5 and Fig. 7).

STY4091_gpmI (5.4.2.12) 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase is an important 
cytoplasmic enzyme involved in the sub-pathway step 
3 of a 5-step glycolysis pathway to catalyze the inter-
conversion of 2-and 3-phosphoglycerate, where Mn+ 2 
serve as a cofactor bound to the enzyme. The phos-
phoglycerate mutases (PGAMs, EC 5.4.2.1) are either 
dependent or independent of the 2,3- bisphosphoglyc-
erate and participate in both the glycolytic and the glu-
coneogenic pathways in reversible isomerization and 
have been reported as attractive molecular target for 
drug development approaches in Trypanosoma  brucei 
[70, 71]. A total of 15 druggable cavities were predicted 
where two were highly druggable (≥  0.8) and three 
were medium druggable (≥  0.6 -  ≤  0.8) representing 
different degree affinity towards ligand binding. Two 

Fig. 12  Rg curves: The curves were calculated for., A) STY0490_ ZINC19340748., B) STY4091_ ZINC32918650., C) STY2284_ ZINC09319798 and D) 
STY3473_ZINC00494142

https://www.uniprot.org/uniprot/P0A1R5
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ZINC compounds, ZINC32918650 and ZINC20389823 
were shown to interact effectively with multiple amino 
acid residues of the predicted highly druggable cavities 
(Table 6 and Fig. 8).

Conclusion
Identification of important proteins/enzymes as interest-
ing therapeutic targets has become possible from inte-
grated “omics data” including genomics, transcriptomics, 
metabolomics and proteomics using bioinformatics and 
computational approaches. The scientific community is 
emphasizing more and more in usages of methodologies 
such as comparative and subtractive genomics as well 
as other reverse vaccinology techniques for the identifi-
cation of novel drug and vaccine therapeutic targets in 
multiple viral, bacterial, parasitic and fungal pathogens 
[72, 73]. The increasing availability of bioinformatics and 
computational tools together with the recently sequenced 
complete genomes, online availability of millions of natu-
ral as well as synthetic small molecular inhibitors, and 
the increasing drug resistance in pathogenic microorgan-
isms has facilitated numerous in silico studies to develop 
pipelines for therapeutic targets identification [74–76]. 
Such efforts have also prompted us to perform this 
study in an attempt to find novel 3D based therapeutic 
drug targets to cope with the pathogenesis caused by S. 
typhi species. In a nutshell, bioinformatics based com-
parative and subtractive genomics/structural proteomics 
analyses has reduced the list of final therapeutic targets 
in selected S. typhi strains in a stepwise manner. Since 
most of the predicted therapeutic targets are involved in 
critical metabolic pathways of the pathogen that regu-
late bacterial growth, protein biosynthesis and energy 
metabolism, among others, a systematic way to develop 
inhibitors against these targets would aid in combating 
the chronic onsets of typhoid fever. It is expected that the 
drugs investigated this way might act specifically over the 
pathogen thereby development of drug resistance by the 
pathogen and toxicity to the host might be attenuated.
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