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Abstract 

Backgrounds:  The aims of this study were to construct spore-displayed p40, a Lacticaseibacillus rhamnosus GG-
derived soluble protein, using spore surface display technology and to evaluate transcriptional responses in human 
intestinal epithelial cells.

Results:  p40 was displayed on the surface of Bacillus subtilis spores using spore coat protein CotG as an anchor 
protein. Effects of spore-displayed p40 (CotG-p40) on gene expression of intestinal epithelial cell line HT-29 were 
evaluated by transcriptome analysis using RNA-sequencing. As a result of differentially expressed gene (DEG) analysis, 
81 genes were up-regulated and 82 genes were down-regulated in CotG-p40 stimulated cells than in unstimulated 
cells. Gene ontology enrichment analysis showed that CotG-p40 affected biological processes such as developmental 
process, metabolic process, cell surface receptor linked signaling pathway, and retinoic acid metabolic process. Gene-
gene network analysis suggested that 10 DEGs (EREG, FOXF1, GLI2, PTGS2, SPP1, MMP19, TNFRSF1B, PTGER4, CLDN18, 
and ALDH1A3) activated by CotG-p40 were associated with probiotic action.

Conclusions:  This study demonstrates the regulatory effects of CotG-p40 on proliferation and homeostasis of HT-29 
cells. This study provided comprehensive insights into the transcriptional response of human intestinal epithelial cells 
stimulated by CotG-p40.
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Background
Probiotics are live microorganisms that can confer a 
health benefit on the host when administered in appro-
priate amounts [1]. Despite many health benefits, pro-
biotics have some limitations because they are live 
microorganisms. The effects of probiotics vary depend-
ing on the gut microbiome compositions of the host and 

on strains or doses of probiotic bacteria ingested [2]. 
Because probiotic bacteria are greatly affected by factors 
such as pH, temperature, moisture, and air, there are con-
cerns about their viability and stability during storage or 
processing as well as in the human gastrointestinal (GI) 
tract [3]. To overcome these limitations, the research on 
probiotics are shifting focus to proteins derived from 
probiotic bacteria [4]. They not only mimic the probiotic 
activity of probiotic bacteria, but also have several advan-
tages such as a specific mechanism of action and ease of 
storage and production [5, 6]. Thus, they are considered 
as a safe alternative to compensate limitations associated 
with live probiotics. Moreover, many researchers have 
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been attempting to develop novel probiotics with desir-
able effects using probiotics engineering technology that 
comprehends metabolic engineering and synthetic biol-
ogy [2, 7, 8].

Lacticaseibacillus rhamnosus GG (LGG) is one of the 
most commonly used Gram-positive probiotics strains 
isolated from healthy human intestines [9]. LGG can 
help treat diseases such as diarrhea, GI disorders, and 
atopic dermatitis [10–12]. As one of secreted proteins 
from LGG, p40 plays a role in the probiotic functionality 
of LGG [13]. p40 protein also is known to carry cysteine, 
histidine-dependent aminohydrolase/peptidase (CHAP) 
domain that exhibits peptidoglycan hydrolase (PGH) 
activity [14]. p40 protein suppresses disruption of bar-
rier function and cytokine-induced apoptosis of intesti-
nal epithelial cells by activating epidermal growth factor 
(EGF) receptor [15]. The activated EGF receptor also 
enhances proliferation, migration, and survival of intes-
tinal epithelial cells [16]. Another study has revealed that 
p40 protects intestinal epithelial cells against injuries and 
maintain their homeostasis [17]. Although roles of p40 in 
intestinal epithelial cells are well understood at the pro-
tein level, its roles at the gene expression level are unclear 
[16–18].

Bacillus subtilis is a spore-forming Gram-positive bac-
terium [19]. It also has good safety records in that it has 
been used as an additive in human and animal prepara-
tions as probiotics [20]. Spore surface display technology 
offers many functional and economic advantages. B. sub-
tilis spores are comprised of core, cortex, and more than 
70 coat proteins including inner coat and outer coat pro-
teins [21]. Since spores have a rigid structure, they can 
withstand heat, radiation, and chemicals in harsh envi-
ronments such as industrial process or GI tract [22]. This 
unique structure of spore provides the enhanced stabil-
ity to the protein displayed on the spore surface [21, 22]. 
These properties are extremely useful for oral delivery. 
In addition, only cultivation and centrifugation were 
required to prepare the spore displayed proteins. Spores 
can be obtained at a high rate (up to 1010 spores/mL) 
through flask culture and can be stored for a long period 
of time after purification [23]. Due to these advantages, 
spore surface display has been applied in several fields, 
such as whole-cell biocatalyst and vaccine development 
[24–27]. In our previous study, another LGG-derived 
p75 protein was displayed on the spore surface and its 
effects on transcriptional response of human intestinal 
epithelial cells was evaluated [28, 29].

In this study, we aimed to construct spore-displayed 
p40 (CotG-p40) by displaying LGG-derived p40 pro-
tein on the surface of B. subtilis spore using CotG as an 
anchor protein. The effect of CotG-p40 on transcrip-
tional response of HT-29 cells is evaluated at the gene 

expression level by RNA-sequencing (RNA-seq). Analysis 
methods such as differentially expressed genes (DEGs), 
gene ontology (GO) enrichment, and gene-gene interac-
tion network analysis were used to comprehend effects of 
CotG-p40 on gene expression of HT-29 cells.

Results
Construction of spore‑displayed p40
To construct the recombinant plasmid pUB19-cotG- 
p40, the cotG gene from the outer coat protein CotG of 
B. subtilis 168 and the p40 gene from L. rhamnosus GG 
were amplified and overlapped. The overlapped cotG-p40 
fragment was inserted into pUB19 vector. The pUB19 
plasmid was digested with NotI and MluI and ligated. 
A flexible linker (Gly-Gly-Gly-Gly-Ser) was inserted 
between the C-terminus of CotG and the N-terminus 
of p40 to provide flexibility of structural domain move-
ments. The construction of plasmid was verified by 
restriction enzymes digestion and polymerase chain 
reaction (PCR) methods. The recombinant plasmid was 
named pUB19-cotG-p40 and a diagram of its structure is 
presented in Fig. 1.

Expression of spore‑displayed p40
The expression of p40 on the spore surface was verified 
by a ninhydrin test in that p40 exhibits PGH activity. Pep-
tidoglycan (PG) was exposed to various concentrations of 
CotG-p40 (1.4, 2.8, 4.2, 5.6, and 7.0 × 103 spores/mL). The 
PG degradation levels were determined by the ninhydrin 
test. As presented in Fig. 2, the absorbance increased lin-
early as CotG-p40 concentration increased (R2 = 0.9252). 
This result showed that the PGH activity of p40 protein 
was well maintained even when displayed on the spore 
surface. Therefore, it is considered that the fusion of p40 
and CotG protein does not affect the biological activity of 
p40 protein. On the other hand, the PGH activity of wild-
type spores was not observed (Fig. S1).

Thermal and pH stability of spore‑displayed p40
The stable expression of PGH activity of CotG-p40 was 
determined under various temperature and pH condi-
tions. The PGH activity of CotG-p40 measured at room 
temperature (25 °C) and pH 7 was used as a control. As 
shown in Fig. 3a, when the temperature increased from 
40 °C to 80 °C, the PGH activity of CotG-p40 decreased 
gradually. However, CotG-p40 still retained its initial 
activity more than 70 and 65% at 40 and 50 °C. CotG-p40 
exhibits high thermostability retaining more than 35% of 
its activity even at a high temperature of 80 °C. The pH 
stability is also tested under various pH conditions. As 
presented in Fig.  3b, CotG-p40 maintained its original 
PGH activity at a wide range of pH 3–7 (p > 0.05). How-
ever, the PGH activity of CotG-p40 was greatly reduced 
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Fig. 1  Plasmid diagram of recombinant plasmid. pUB19-cotG-p40 includes antibiotic markers (kan, kanamycin; amp, ampicillin), replication origin 
(ori), and replication protein B (repB). cotG represents the spore coat protein CotG encoding gene of Bacillus subtilis, and p40 represents the p40 
protein encoding gene of Lacticaseibacillus rhamnosus GG

Fig. 2  Determination of the peptidoglycan hydrolase activity of CotG-p40. After treatment of peptidoglycan with different concentrations of 
CotG-p40 (●) and wild-type spore (■) at 37 °C for 15 min, the absorbance of each sample was measured at 570 nm. All tests were performed in 
triplicate, and the data are presented as mean ± standard deviation
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to 15% at pH 2 strongly acidic and 30% at pH 8 a relatively 
weak alkaline.

RNA‑sequencing and data analysis
To investigate transcriptional responses, RNA-seq was 
performed for CotG-p40 treated- and wild-type spore 
treated- human intestinal epithelial HT-29 cells. All sam-
ples were treated for 3 h. Cells treated with PBS instead 
of spores were used as a control. Before functional analy-
ses were conducted, quality control analysis was car-
ried out for raw data obtained from RNA-seq. Clean 
reads were obtained after removing low-quality data and 
adapter sequences from raw data. As a result, 62,200,250, 
80,150,244, and 77,090,466 clean reads were obtained 
from cells treated with CotG-p40, wild-type spores, and 
control, respectively, with clean ratios more than 98%. 
The average Q30 quality score of these three samples was 
above 95% and the percentage for mapped reads was over 
97% (Table S1).

Differentially expressed genes in HT‑29 cells stimulated 
with CotG‑p40
DEG analysis was performed to determine transcriptome 
changes in HT-29 cells treated with CotG-p40. Genes 
with |fold change| ≥ 2 and raw p-value < 0.05 were con-
sidered as DEGs. A total of 163 DEGs were detected 
between the CotG-p40 treatment group and the control 
group, including 81 up-regulated and 82 down-regu-
lated genes. A total of 75 DEGs were detected between 
the wild-type spore treatment group and the control 
group, showing 36 up-regulated and 39 down-regulated 
genes (Table S2). To confirm the similarity of expres-
sion, DEGs between samples were represented by heat 
maps as shown in Fig.  4. Results showed that DEGs 
in control and wild-type spore-stimulated cells were 
similar in their expression, but different from those in 

CotG-p40-stimulated cells. As shown in the volcano plot 
of Fig. 5, there were more DEGs between the control and 
CotG-p40 treated group than between the control and 
wild-type spore treated group. These results confirmed 
that transcriptome changes in HT-29 cells were mediated 
by p40 displayed on the spore surface.

Among genes activated by CotG-p40, DEG analysis 
results of genes associated with the probiotic function 
of LGG are shown in Table 1. fold change values of ZO-
1, CLDN, OCLN, PTGS2, MMP19, ADAM17, HB-EGF, 
MUC2, and APRIL genes are shown. Expression levels 
of PTGS2 and MMP19 were increased by 3.2 and 4.87 
times, respectively, confirming that gene expression pat-
terns of CotG-p40 and p40 were partially consistent. The 
results of DEG analysis for all comparison groups, CotG-
p40 stimulated cells vs. control, CotG-p40 stimulated 
cells vs. wild-type spore stimulated cells, and wild-type 
spore stimulated cells vs. control, are provided in Table 
S2 − S4 in supplementary file, respectively.

Gene ontology enrichment analysis and gene‑gene 
interaction network analysis
GO enrichment analysis was performed to analyze bio-
logical functions associated with DEGs. Gene ontol-
ogy is largely divided into three categories: biological 
process, cellular component, and molecular function. 
According to the analysis, there were 46 GO terms with 
corrected p-value < 0.05, all of which belonged to bio-
logical process (Table S3). Among these 46 GO terms, 
the top 20 GO terms based on the corrected p-value are 
presented in Table  2. The interaction between all GO 
terms is presented as a network as shown in Fig. 6 using 
BiNGO. As a result, most genes activated by CotG-p40 
were annotated in organ development (GO:0048513), 
system development (GO:0048731), anatomical struc-
ture development (GO:0048856), tissue development 

Fig. 3  Relative peptidoglycan hydrolase activity of CotG-p40 after heat (a) and pH (b) treatments. Relative activity was calculated by defining its 
activity at 25 °C and pH 7 as 100%. All tests were performed in triplicate, and the data are presented as mean ± standard deviation. Statistical analysis 
was performed by an unpaired two-tailed t-test. Asterisks (*) indicate a significance difference from the control (* p < 0.05, ** p < 0.01, *** p < 0.001)
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Fig. 4  Analysis of hierarchical clustering. Heat map shows expression levels of DEGs in three samples. Each column represents three different 
samples of CotG-p40 treated cells (G40), control cells (CON), and wild-type spore treated cells (WT). Each row represents DEGs. High expression 
level is indicated by “yellow” and lower expression level is indicated by “blue”

Fig. 5  Volcano plot of all differentially expressed genes between two samples. Fold change values are plotted on the x-axis and negative log10 
p-values are plotted on the y-axis. Up-regulated genes are indicated by “yellow”. Down-regulated genes are indicated by “blue”. Genes showing no 
significant difference are indicated by “gray”. a, Volcano plot between wild-type spore-treated cells and control; b, Volcano plot between CotG-p40 
treated cells and control
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(GO:0009888), epithelial development (GO:0060429), 
and multicellular organismal development (GO:0007275). 
These are subordinate to the developmental process 
(GO: 0032502). Results also confirmed that many DEGs 
were involved in GO terms such as cell surface receptor 
linked signaling pathway (GO:0007166) under signaling 
(GO:0023052) and retinoic acid metabolic process (GO: 
0042573) associated with the synthesis of vitamin A and 
retinoic acid under metabolic process (GO: 0008152). 

The results of GO enrichment analysis for all comparison 
groups, CotG-p40 stimulated cells vs. control, CotG-p40 
stimulated cells vs. wild-type spore stimulated cells, and 
wild-type spore stimulated cells vs. control, are provided 
in Table S5, Table S6 (Fig. S2), and S7 (Fig. S3) of the sup-
plementary file, respectively.

Additionally, to identify interactions between DEGs 
involved in these biological processes, we obtained a 
gene-gene interaction network using the STRING pro-
gram. Representative genes involved in each process were 
EREG, FOXF1, GLI2, PTGS2, SPP1, MMP19, TNFRSF1B, 
PTGER4, CLDN18, and ALDH1A3. Fold change values of 
the DEGs obtained from RNA-seq are shown in Table 3. 
Relationships between each gene and related GO terms 
are described in Fig.  7. Analysis of GO enrichment and 
the gene-gene interaction network showed that many 
genes activated by CotG-p40 were involved in biological 
process, including developmental process, signaling, and 
metabolic process.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR) validation
RT-qPCR was performed to validate RNA-seq results. 
We selected 7 genes (EREG, FOXF1, PTGS2, SPP1, 
TNFRSF1B, CLDN18, and ALDH1A3) associated with 

Table 1  Fold change values of genes related to intestinal 
function improvement of Lacticaseibacillus rhamnosus GG in 
CotG-p40 stimulated HT-29 cells

Gene symbol Description Fold change

ZO-1 (TJP1) Tight junction protein 1 − 1.37

CLDN1 Claudin 1 −1.11

OCLN Occludin 1.02

PTGS2 Prostaglandin-endoperoxide synthase 2 3.20

MMP19 Matrix metallopeptidase 19 4.87

ADMA17 ADAM metallopeptidase domain 17 1.24

HB-EGF Heparin-binding EGF-like growth factor 2.44

MUC2 Mucin 2, oligomeric mucus/gel-forming 1.24

APRIL A proliferation-inducing ligand −1.00

Table 2  Top 20 gene ontology (GO) terms of differentially expressed genes between CotG-p40 treated cells and control cells

a Corrected p-value: After correction, the p value in the hypergeometric test
b Cluster frequency: the numerator represents the number of each GO term genes and the denominator represents the total number of genes with GO annotation
c Total frequency: the numerator represents the number of reference genes annotated in the listed GO term and the denominator represents the number of reference 
genes with GO annotation

GO ID GO Description Corrected p valuea Cluster frequencyb Total frequencyc

48,513 organ development 9.04E-03 27/107 (10.0%) 1792/17785 (10.0%)

48,731 system development 9.04E-03 32/107 (29.9%) 2422/17785 (13.6%)

42,471 ear morphogenesis 1.97E-02 5/107 (4.6%) 66/17785 (0.3%)

34,754 cellular hormone metabolic process 1.97E-02 5/107 (4.6%) 66/17785 (0.3%)

9913 epidermal cell differentiation 1.97E-02 5/107 (4.6%) 66/17785 (0.3%)

48,856 anatomical structure development 1.97E-02 32/107 (29.9%) 2656/17785 (14.9%)

8285 negative regulation of cell proliferation 2.26E-02 10/107 (9.3%) 379/17785 (2.1%)

90,068 positive regulation of cell cycle process 2.26E-02 4/107 (3.7%) 43/17785 (0.2%)

42,573 retinoic acid metabolic process 2.26E-02 3/107 (2.8%) 17/17785 (0.0%)

9888 tissue development 2.26E-02 14/107 (13.0%) 750/17785 (4.2%)

30,728 ovulation 2.26E-02 3/107 (2.8%) 18/17785 (0.1%)

48,598 embryonic morphogenesis 2.26E-02 9/107 (8.4%) 336/17785 (1.8%)

60,429 epithelium development 2.26E-02 9/107 (8.4%) 337/17785 (1.8%)

48,562 embryonic organ morphogenesis 2.26E-02 6/107 (5.6%) 140/17785 (0.7%)

7166 cell surface receptor linked signaling pathway 2.26E-02 19/107 (17.7%) 1280/17785 (7.1%)

42,904 9-cis-retinoic acid biosynthetic process 2.26E-02 2/107 (1.8%) 4/17785 (0.0%)

42,905 9-cis-retinoic acid metabolic process 2.26E-02 2/107 (1.8%) 4/17785 (0.0%)

35,238 vitamin A biosynthetic process 2.26E-02 2/107 (1.8%) 4/17785 (0.0%)

7275 multicellular organismal development 2.26E-02 33/107 (30.8%) 2971/17785 (16.7%)

6692 prostanoid metabolic process 2.41E-02 3/107 (2.8%) 21/17785 (0.1%)
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probiotic action extracted from gene-gene interac-
tion analysis. Results of comparison between RNA-seq 
and RT-qPCR are shown in Fig.  8. As a result of RT-
qPCR validation, we found that expression levels of all 
selected genes showed the same tendency as RNA-seq 
results.

Discussion
Probiotics help humans maintain homeostasis of internal 
microbiota and keep the intestine healthy [30]. Soluble 
proteins secreted by probiotics play key roles in probi-
otic effects, including alleviation of intestinal diseases 
such as inflammatory bowel disease (IBD) [31]. p40 is 
one of soluble proteins secreted by LGG. It controls cell 

Fig. 6  Gene ontology (GO) analysis for DEGs between CotG-p40 treated cells and control. The color of each node represents the enrichment level 
of each GO term. The size of each node represents the number of genes that map to the category represented by each node. The color saturation 
of the node represents the significance (p-value) of the category represented by each node

Table 3  Differential expression of selected genes between CotG-p40 treated cells and control

Gene ID Gene symbol Description Fold change

2069 EREG Epiregulin 3.38

2294 FOXF1 Forkhead box F1 7.18

2736 GLI2 GLI family zinc finger 2 3.67

5743 PTGS2 Prostaglandin-endoperoxide synthase 2 3.20

6696 SPP1 Secreted phosphoprotein 1 4.34

4327 MMP19 Matrix metallopeptidase 19 4.87

7133 TNFRSF1B TNF receptor superfamily member 1B 5.94

5734 PTGER4 Prostaglandin E receptor 4 5.14

51,208 CLDN18 Claudin 18 3.46

220 ALDH1A3 Aldehyde dehydrogenase 1 family member A3 8.07
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proliferation, apoptosis, and intestinal homeostasis [32]. 
In our previous study, we have displayed a p75 protein, 
another LGG derived protein, on the spore surface and 
verified its stability at various pH and temperature condi-
tions [28].

This study designed CotG-p40 by displaying p40 on 
the spore surface of B. subtilis. RNA-seq was conducted 
to analyze the transcriptome of CotG-p40 treated HT-29 
cells to identify effects of CotG-p40 on human intesti-
nal epithelial cells. The comparison of CotG-p40-stim-
ulated and wild-type spore-stimulated cells to control 
cells identified 163 and 75 DEGs, respectively (Table S4). 
This explains that spore surface-displayed p40 mediate 

transcriptional responses of human intestinal epithelial 
cells.

A previous study has found that administration of 
LGG to neonatal mice increases the expression of 
CLDN3, a tight junction protein, along with the matu-
ration of intestinal barrier function [33]. Another study 
has also found that LGG mediates CLDN1 to enhance 
the barrier function of human intestinal epithelial 
cells [34]. CLDN18, a claudin family protein, also sup-
ports mucosal homeostasis of cells [35]. LGG induces 
the expression of PTGS2 (also known as COX2) in 
human colon epithelial T84 cells [36]. Morteau et  al. 
have revealed that PTGS2 contributes to maintaining 

Fig. 7  Visualization of gene-gene interaction network and gene ontology (GO) term analysis for selected genes using Cytoscape. Yellow nodes 
represent GO terms. Blue nodes represent DEGs. Each line represents the interaction between annotated GO terms and DEGs

Fig. 8  Quantitative reverse transcription PCR (RT-qPCR) analysis data for the seven differentially expressed genes. Experiments were repeated three 
times. Error bars represent mean ± standard deviation (n = 3)
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mucosal integrity and healing colitis by preventing 
colonic injuries from acute mucosal inflammation [37].

p40 transactivates the EGF receptor by activation of 
matrix metalloproteinases (MMPs) and releases of a met-
alloproteinase domain-containing protein 17 (ADAM17) 
mediated heparin binding-epidermal growth factor (HB-
EGF) [16, 31]. This suggests that p40 suppresses the 
apoptosis of the colon and preserves the barrier function 
[16, 31]. MMP19, a member of the MMP protein fam-
ily, is involved in maintaining the epithelial barrier of the 
colon and attenuating colitis development [38]. Likewise, 
CotG-p40 showed similar effects on intestinal epithelial 
cells as it up-regulated the expression of PTGS2, MMP19, 
and CLDN18. These results indicate that CotG-p40 can 
help maintain the barrier function of intestinal epithelial 
cells similar to p40.

Results of GO enrichment analysis and gene-gene 
interaction network of 163 DEGs from CotG-p40 treated 
HT-29 cells showed that CotG-p40 was related to bio-
logical processes such as developmental process, cell sur-
face receptor linked signaling pathway, and retinoic acid 
metabolic process. CotG-p40 activated genes includ-
ing EREG, ALDH1A3, FOXF1, GLI2, PTGS2, SPP1, and 
MMP19, are associated with the developmental process. 
In addition, it stimulated the ALDH1A3 gene related to 
the retinoic acid metabolic process and other genes, such 
as EREG, FOXF1, GLI2, TNFRSF1B, and PTGER4, asso-
ciated with cell surface receptor linked signaling pathway.

DEGs related to the developmental process, such as 
EREG, SPP1, and PTGS2, are known to be associated 
with the treatment of IBD. EREG affects the proliferation 
of intestinal epithelial cells and mediates intestinal wound 
healing and protection from IBD [39]. Over-expressed 
SPP1 ameliorates TNF-α induced apoptosis and par-
ticipates in the mucosal protective mechanism from 
IBD [40]. PTGS2 is associated with maintaining mucosal 
integrity and healing of colitis [36]. Up-regulated EREG, 
SPP1, and PTGS2 by CotG-p40 support the claim that 
it can protect intestinal epithelial cells from intestinal 
diseases.

FOXF1 and GLI2 are genes related to the homeostasis 
of the intestinal epithelium. The FOXF1 regulates home-
ostasis and proliferation of adult intestinal epithelium 
[41]. GLI2 is a major effector in the hedgehog signal-
ing (Hh) pathway during gut development [42]. The Hh 
signaling pathway is crucial in that it participates in the 
development of the gastrointestinal tract and regulates 
its homeostasis [43]. Therefore, CotG-p40 is expected to 
help control the homeostasis of intestinal epithelial cells.

PTGER4 and TNFRSF1B belong to cell surface recep-
tor linked signaling pathway. They are associated with 
wound repair and treatment of intestinal diseases. 
PTGER4 is one of prostaglandin E2 (PGE2) receptors. 

The expression of PTGER4 can improve wound repair 
responses of the intestinal epithelium [44]. TNFRSF1B 
affects wound healing of the IBD by stimulating intesti-
nal cell migration [45].

In this study, ALDH1A3 annotated both the develop-
mental process and the retinoic acid metabolic process. 
ALDH1A3 turns retinal into retinoic acid in vitamin A 
metabolism [46]. Retinoic acid is a biologically active 
form of vitamin A. It protects the intestinal barrier and 
determines epithelial integrity [47]. Thus, retinoic acid 
produced by ALDH1A3 may help maintain the integrity 
of intestinal epithelial cells.

Considering the effects of wild-type spore on HT-29 
cells, wild-type spore treated cells showed higher fold 
change values of SPP1 and CLDN18 than CotG-p40 
treated ones. Although the expression level of SPP1 was 
only a little higher in wild-type spore treated cells, the 
expression level of CLDN18 was about two times higher 
in wild-type spore treated samples. Rhayat et al. already 
demonstrated that B. subtilis strains reinforce intestinal 
barrier integrity through up-regulation of the expression 
of tight junction proteins [48]. Thus, our results are par-
tially consistent with a previous study that have shown 
probiotic features of B. subtilis.

Conclusions
In conclusion, we displayed p40, a significant protein 
in probiotic action of LGG, on the surface of B. subti-
lis spore and its effects on transcriptional response of 
human intestinal epithelial HT-29 cells were evaluated 
by RNA-seq. There were 10 DEGs acted similarly to the 
probiotic activity of p40 and LGG. CotG-p40 was associ-
ated with the developmental process, cell surface recep-
tor linked signaling pathway, and retinoic acid metabolic 
process of intestinal epithelial cells. These results suggest 
that CotG-p40 can regulate proliferation and homeosta-
sis of human intestinal epithelial cells.

Methods
Bacterial strains, culture conditions, and transformation
Bacterial strains used in this study are listed in Table 4. 
Escherichia coli DH5α and B. subtilis 168 were used for 
transformation and incubated at 37 °C in Luria-Ber-
tani (LB) medium. L. rhamnosus GG ATCC 53103 was 
used to obtain the p40 gene and incubated at 37 °C in 
Man-Rogosa-Sharpe (MRS) medium. E. coli DH5α was 
transformed using the CaCl2-mediated method [52]. 
Transformation of B. subtilis was performed according to 
the method described by Juhas and Ajioka [53]. Ampicil-
lin (50 μg/mL) and kanamycin (50 μg/mL) were used to 
screen E. coli and B. subtilis transformants, respectively.
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Plasmid construction
Plasmids and primers used in this study are shown in 
Table 4. pUB19 was used as an E. coli-B. subtilis shuttle 
vector. The DNA fragment (866 bp) containing cotG pro-
moter and structure gene was amplified by PCR using 
forward primer set cotG-F/cotG-R with chromosomal 
DNA of B. subtilis. The DNA frangment (1206 bp) con-
taining p40 structure gene except 84 bp of the signal 
peptide sequence was amplified from LGG chromo-
some using primer set p40-F/p40-R. These amplified 
cotG and p40 genes were fused by overlap extension 
PCR using primer set p40-F /cotG-R. To provide flexibil-
ity and mobility between functional domains, a flexible 
linker (Gly-Gly-Gly-Gly-Ser) was inserted between cotG 
and p40 genes [54]. The amplified cotG-p40 fragment 
(2042 bp) was digested with restriction enzymes NotI and 
MluI and ligated into pUB19 shuttle vector digested with 
the same enzymes.

Preparation of spores
B. subtilis 168 containing pUB19-cotG-p40 was incubated 
at 37 °C for 62 h in shaking incubator at 150 rpm in Difco 
Sporulation Medium (DSM) consisting of the 0.8% nutri-
ent broth, 0.025% MgSO4‧7H2O, 0.1% KCl, 10 M MnCl2, 
1 M FeSO4‧7H2O, 1 M Ca (NO3)2. After cultivation, the 
spores and the sporangial cells of B. subtilis 168 recombi-
nant plasmid were collected by centrifugation at 5000×g 
for 10 min at 4 °C. Spores were obtained with a previously 
reported method [55]. Shortly, these spores were resus-
pended in 50 mM sodium phosphate buffer (pH 7.2) and 
treated with lysozyme to destroy residual sporangial cells 

at 4 °C for 1 h. After centrifugation at 5000×g for 10 min 
at 4 °C, the purified spores were washed with 1 M NaCl 
and 1 M KCl. After the final washing with 50 mM sodium 
phosphate buffer, spores were resuspended in sterile 
phosphate-buffered saline (PBS, pH 7.4) and stored at 
4 °C. Plating of serial dilutions was carried out on LB agar 
plates to count spores. The final concentration of spores 
was adjusted to 105 spores/mL.

Preparation of peptidoglycan
The peptidoglycan extraction was carried out based on 
the method as described Atrih et  al. [56]. Briefly, the 
bacterial pellet recovered from a 250 mL of the mid-log 
phase cell culture of B. subtilis. The pellet was boiled, 
and then centrifuged at 14,000×g for 8 min at 4 °C. The 
collected pellet was resuspended in boiling 5% (W/V) 
sodium dodecyl sulfate (SDS) and incubated for 25 min. 
After centrifugation, the pellet was resuspended in boil-
ing 4% (W/V) SDS and incubated for 15 min. The insolu-
ble residue was collected and washed in distilled water 
(DW) 6–7 times to eliminate SDS. Then the sediment 
was treated with proteinase K (2 mg/mL) and trypsin 
(200 μg/mL) for 1 h and 16 h, separately, at 37 °C to 
remove covalently attached proteins. Then the insoluble 
materials were collected by centrifuge and incubated in 
48% (V/V) hydrofluoric acid for 24 h at 4 °C. After cen-
trifugation, the pH of the insoluble cell wall was adjusted 
to 7.0 by resuspending in Tris-HCl buffer (50 mM, pH 7) 
and washing five times with cold DW. Finally, the PG 
extract was suspended in 1.5 mL DW and stored at 4 °C 
for further analysis.

Table 4  Bacterial strains, plasmids, and primers used in this study

a ATCC, American type culture collection (Manassas, VA, USA)
b Bold letters indicate restriction sites

Bacterial strains, plasmids, or primers Description Reference

Bacterial strains
  Escherichia coli DH5α F−, φ 80dlacZ∆M15, ∆(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rK−, 

mK+), phoA, supE44, λ−, thi-1, gyrA96, relA1
[49]

  Bacillus subtilis 168 trpC2 [50]

  Lacticaseibacillus rhamnosus GG ATCC​a 53,103 Purchased from ATCC​

Plasmids
  pUB19 E. coli-B. subtilis shuttle vector, Apr, Kmr [51]

  pUB19-cotG-p40 Spore display of p40 using the CotG anchor This study

Primers
  CotG-F 5′-CCC​TTC​GACG​CGT​bCAG​CTG​GC-3′ This study

  CotG-R 5′-ACT​TGT​GTC​GCT​TCC​TCC​TCC​TCC​TTT​GTA​TTTC​
TTT​TTG​ACT​ACC​CAG​CAA​TTG​CCG​TC-3′

This study

  p40-F 5′-TAC​AAA​GGA​GGA​GGA​GGA​AGC​GAC​ACA​AGT​G
CCA​GCA​TCG​CAT​CTA​ACA​AGA​GCG​-3′

This study

  p40-R 5′- AAG​GAA​AAA​GCG​GCC​G†CAA​AAG​GAA​AAT​TA
CCG​GTG​GAT​GTA​AAC​GTA​GCT​GCT​GGC-3’

This study
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PGH activity assay of CotG‑p40
The PGH activity of CotG-p40 was measured using the 
ninhydrin method [57]. The PG of B. subtilis was used as 
a substrate. Briefly, 30 μL of CotG-p40 at different con-
centrations (1.4, 2.8, 4.2, 5.6, and 7.0 × 103 spores/mL) 
was mixed with 30 μL of PG extract. The mixtures were 
incubated at 37 °C for 15 min. After the reaction, the 
unhydrolyzed PG extract was precipitated by centrifu-
gation at 14,000×g for 5 min. Then, 30 μL of the super-
natant was taken in a new tube and 3 μL of 2% (W/V) 
ninhydrin solution was added. The reaction solution was 
incubated in boiling water bath for 5 min and cooled to 
room temperature for 5 min in ice bath. The absorbance 
of the reaction mixture was measured at 570 nm using 
a Nanodrop 2000 spectrophotometer (Thermo Fisher 
Scientific, Wilmington, DE, USA). PG treated with DW 
instead of CotG-p40 was used as a blank. PG treated with 
wild-type spores was used as a control.

Stability test
The thermal and pH stability of CotG-p40 was deter-
mined under various temperature and pH condi-
tions based on ninhydrin assay. The thermal stability of 
CotG-p40 was examined by incubating 30 μL of spores 
(7.0 × 103 spores/mL) at various temperatures (40, 50, 
60, 70, and 80 °C) for 15 min and cooling to room tem-
perature (25 °C). The pH stability of CotG-p40 was deter-
mined by incubating 30 μL of spores in various pH buffers 
ranging from 2 to 8 for 15 min. Then all samples were 
washed at least three times with PBS. After each temper-
ature and pH treatment, all samples were incubated with 
the PG extract at 37 °C for 15 min. The residual activity 
of each sample was measured with the ninhydrin assay 
as already described. Relative activity was calculated by 
defining the respective original activity measured at 25 °C 
and pH 7 as 100%.

Cell culture and spore treatment
Human intestinal epithelial cell line HT-29 was cultured 
in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% heat-inactivated fetal bovine serum 
(FBS), 100 U/mL penicillin, and 100 μg/mL streptomy-
cin. Cells were incubated at 37 °C in a 5% CO2 incubator. 
The culture medium was changed every other day. HT-29 
cells were then seeded into 12-well plates at a density of 
4 × 105 cells/mL. After cells reached appropriate conflu-
ence, the medium was removed and cells were treated 
with spores (105 spores/mL) for 3 h. Cells treated with 
PBS instead of spores were used as a control.

RNA extraction, library construction, and RNA‑sequencing
Total RNA was extracted using TRIzol reagent (Inv-
itrogen, Waltham, MA, USA) according to the 

manufacturer’s instruction. Total RNA extraction from 
each sample was performed independently in triplicate. 
Total RNA samples were treated with RNase-free DNaseI 
to eliminate possible DNA contaminants. The quality and 
quantity of the RNA were verified by a NanoDrop 2000 
UV spectrophotometer (Thermo Scientific, Waltham, 
MA, USA). Only RNA samples meeting the quality con-
trol parameters were used for RNA-seq and qRT-PCR.

Libraries were constructed using a TruSeq Stranded 
mRNA LT sample prep kit (Illumina, San Diego, CA, 
USA) following the protocol outlined by Illumina 
(https://​suppo​rt.​illum​ina.​com/​seque​ncing/​seque​ncing_​
kits/​truseq-​stran​ded-​mrna.​html). Briefly, mRNA was 
purified and fragmented from 1 μg of total RNA using 
oligo dT magnetic beads. The fragmented mRNAs were 
synthesized as single-stranded cDNAs using random 
hexamer primers. Using this as a template, double-
stranded cDNA was obtained. Subsequently, end repair, 
A-tailing, and adapter ligation were performed. Then, the 
products were amplified with PCR to generate the final 
cDNA library.

RNA sequencing was performed as paired-end 
(2 × 101 bp) on an Illumina NovaSeq 6000 platform (Illu-
mina, San Diego, CA, USA). Sequencing quality con-
trol was carried out using FastQC v0.11.7 (http://​www.​
bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/). To 
obtain clean reads, adapter and low-quality reads from 
raw data were removed using a Trimmomatic 0.38 [58]. 
Clean reads were mapped to human reference genome 
(GRCh37) using HISAT2 version 2.1.0 and Bowtie2 
2.3.4.1 software. The sequence data from this study have 
been deposited into Sequence Read Archive (http://​
www.​ncbi.​nlm.​nih.​gov/​sra) under accession number 
PRJNA746714.

Identification of differentially expressed genes (DEGs)
The mapped reads for each sample were assembled 
using StringTie (https://​ccb.​jhu.​edu/​softw​are/​strin​gtie/). 
StringTie and DESeq2 were used to estimate the expres-
sion levels of transcripts [59]. The value of fragments per 
kilobase of transcript per million mapped reads (FPKM) 
was used to normalize gene expression level. Genes 
meeting the criteria of |fold change| > 2 and raw p-value 
< 0.05 were defined as DEGs.

Gene ontology (GO) enrichment analysis and gene‑gene 
interaction network analysis
To identify biological functions of DEGs, Biological Net-
work Gene Ontology (BiNGO) tool was used to perform 
GO enrichment analysis [60]. The p-values were adjusted 
by Benjamini-Hochberg correction for multiple hypothesis 
testing. The GO terms with a corrected p-value < 0.05 were 
considered significantly enriched. To identify interactions 

https://support.illumina.com/sequencing/sequencing_kits/truseq-stranded-mrna.html
https://support.illumina.com/sequencing/sequencing_kits/truseq-stranded-mrna.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
https://ccb.jhu.edu/software/stringtie/
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between DEGs, gene-gene interaction network was con-
structed using Search Tool for the Retrieval of Interacting 
Genes (STRING, https://​string-​db.​org/) with a minimum 
required interaction score set at > 0.4 [61]. GO enrichment 
analysis and gene-gene interaction network analysis were 
visualized using Cytoscape v3.7.2 [62].

Quantitative real‑time PCR (qRT‑PCR) validation
The seven genes (EREG, FOXF1, PTGS2, SPP1, 
TNFRSF1B, CLDN18, and ALDH1A3) associated with 
probiotic action were selected and validated by RT-
qPCR. cDNA was synthesized from total RNA using ran-
dom hexamers (Roche, Basel, Switzerland) and M-MLV 
reverse transcriptase (Promega, Madison, WI, USA). 
RT-qPCR was performed on a CFX Connect™ Real-Time 
System (Bio-rad, Hercules, CA, USA) under the condi-
tions at 95 °C for 10 s, followed by 40 cycles of 95 °C for 5 s 
and 60 °C for 31 s using SYBR-Green PCR Master Mix kit 
(Takara, Shiga, Japan). Primer sets were listed in Table 5. 
GAPDH gene was used as an internal control to normal-
ize data. Relative gene expression levels were calculated 
using a comparative cycle threshold method [63].

Statistical analysis
For RT-qPCR data, all experiments were performed in 
triplicates. All the numeric values were expressed as 
mean ± standard deviation (SD). All statistical analyses 
were carried out using unpaired t-test of GraphPad Prism 
5.0 software (GraphPad, San Diego, CA, USA).
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