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Abstract 

Background:  The mortality of colorectal cancer is high, the malignant degree of poorly differentiated colorectal 
cancer is high, and the prognosis is poor.

Objective:  To screen the characteristic intestinal microbiota of poorly differentiated intestinal cancer.

Methods:  Fecal samples were collected from 124 patients with moderately differentiated CRC and 123 patients 
with poorly differentiated CRC, and the bacterial 16S rRNA V1-V4 region of the fecal samples was sequenced. Alpha 
diversity analysis was performed on fecal samples to assess the diversity and abundance of flora. The RDP classifier 
Bayesian algorithm was used to analyze the community structure. Linear discriminant analysis and Student’s t test 
were used to screen the differences in flora. The PICRUSt1 method was used to predict the bacterial function, and 
six machine learning models, including logistic regression, random forest, neural network, support vector machine, 
CatBoost and gradient boosting decision tree, were used to construct a prediction model for the poor differentiation 
of colorectal cancer.

Results:  There was no significant difference in fecal flora alpha diversity between moderately and poorly differenti-
ated colorectal cancer (P > 0.05). The bacteria that accounted for a large proportion of patients with poorly differenti-
ated and moderately differentiated colorectal cancer were Blautia, Escherichia-Shigella, Streptococcus, Lactobacillus, 
and Bacteroides. At the genus level, there were nine bacteria with high abundance in the poorly differentiated group, 
including Bifidobacterium, norank_f__Oscillospiraceae, Eisenbergiella, etc. There were six bacteria with high abundance 
in the moderately differentiated group, including Megamonas, Erysipelotrichaceae_UCG-003, Actinomyces, etc. The RF 
model had the highest prediction accuracy (100.00% correct). The bacteria that had the greatest variable importance 
in the model were Pseudoramibacter, Megamonas and Bifidobacterium.

Conclusion:  The degree of pathological differentiation of colorectal cancer was related to gut flora, and poorly dif-
ferentiated colorectal cancer had some different bacterial flora, and intestinal bacteria can be used as biomarkers for 
predicting poorly differentiated CRC.
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Introduction
Colorectal cancer (CRC) is the fourth most deadly can-
cer in the world, killing nearly 900,000 people each year. 
Advances in pathophysiological research have increased 
the number of treatment options for local and advanced 
disease, thereby facilitating the development of individual 
treatment regimens [1]. However, the clinicopathological 
features of poorly differentiated colorectal cancer have 
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not been well studied due to the low frequency of occur-
rence of this type of cancer (3.3–18% of all colorectal 
cancer cases). The prognosis of patients with poorly dif-
ferentiated colorectal cancer is generally reported to be 
worse and more adverse than that of patients with mod-
erately differentiated cancer. The 5-year survival rate for 
poorly differentiated colorectal adenocarcinoma is 20% 
to 45.5% [2]. A large number of studies have shown that 
the occurrence and development of colorectal cancer are 
related to intestinal microbes. Therefore, a deeper under-
standing of the biology of poorly differentiated colorectal 
cancer can help analyze the biological changes of poorly 
differentiated tumors and determine the relationship 
between biology and pathology in colorectal cancer, thus 
providing a more theoretical basis for understanding the 
pathophysiology of poorly differentiated tumors. How-
ever, a way to bridge the gap between pathology and biol-
ogy is needed.

In routine histopathological practice, tumor grade is 
one of the most important predictors of CRC aggres-
siveness [3]. The most widely accepted histopathological 
grading is based on tumor differentiation. When cancer 
is heterogeneous in differentiation, histopathological 
grading is determined according to the least differenti-
ated components [4]. Compared with moderately differ-
entiated tumors, poorly differentiated tumors have more 
solid structures. Poorly differentiated clusters (PDCs) are 
defined as ≥ 5 small populations of tumor cells without 
glandular differentiation, which has been considered a 
promising prognostic factor for colorectal cancer. A large 
number of studies have shown that poorly differentiated 
tumor morphology is significantly correlated with poor 
histopathological features and worse clinical prognosis 
[5]. In cytopathological studies, compared with moder-
ately differentiated tumors, poorly differentiated tumors 
tend to have stronger invasiveness and growth, which is 
reflected in a stronger EMT and higher expression of cell 
proliferation capacity. The EMT is the process by which 
cells lose epithelial characteristics and acquire mesenchy-
mal characteristics. In colorectal cancer, the EMT plays 
an important role in tumor progression, metastasis and 
drug resistance [6].

Mucosal epithelial cells are common targets of chronic 
bacterial infection and toxin damage, and most can-
cers originate from this tissue [7]. The gut microbiota is 
located near the colorectal epithelium and consists of a 
large number of microorganisms that interact with host 
cells to regulate many physiological processes, such as 
energy collection, metabolism and immune response, 
and sequencing studies have revealed microbial compo-
sition and ecological changes in CRC patients [8]. Some 
of these microbial characteristics have been used as bio-
markers to improve the sensitivity of colorectal cancer 

diagnosis, and functional studies have shown the mecha-
nism of certain bacteria in colorectal cancer [9]. Current 
studies have found that gut microbiota can affect cir-
cRNA expression to regulate the level of corresponding 
miRNAs, thus regulating the expression of genes related 
to the EMT [10]. In addition, some bacterial pathogens 
in the gut microbiome can exert tumor-promoting activ-
ity and interfere with important host cell signaling path-
ways related to cell proliferation by producing enzyme 
active protein toxins [11]. Therefore, imbalance of the gut 
microbiome is also associated with enhanced aggressive-
ness of poorly differentiated tumor cells.

The intestinal tract has an independent and complex 
microecosystem, and the interaction between different 
intestinal microbiota can maintain the homeostasis of 
the intestinal microenvironment, and jointly participate 
in the host’s metabolism, material absorption and trans-
formation process [12, 13]. Intestinal microorganisms 
are involved in the development of CRC [14]. The abun-
dance of intestinal probiotics such as Clostridium butyri-
cum, Bifidobacterium, Lactobacillus and Bacteroides 
decreased. The abundance of enterotoxin-producing 
bacteroids fragilis, Escherichia coli, Clostridium difficile 
and other pathogenic bacteria increased. Metagenomic 
analysis of stool samples from CRC patients has identi-
fied bacteria that are strongly associated with CRC devel-
opment, including Bacteroides fragilis, Fusobacterium 
nucleatum, Porphyromonas asaccharolytica, Parvimonas 
micra, Prevotella intermedia, Alistipes finegoldii and 
Thermanaerovibrio acidaminovorans [15, 16]. Intestinal 
flora can play an anti-tumor role through its metabolites. 
For example, enterotoxins produced by clostridium per-
fringens can lead to the lysis of cancer cells through the 
imbalance of cell osmotic balance [17]. Ferritin secreted 
by lactobacillus casei directly induced apoptosis of tumor 
cells through the JNK pathway [18]. Clostridium butyri-
cum can produce short-chain fatty acid sodium butyrate 
through anaerobic fermentation of dietary fiber [19]. The 
gut microbiota is complex, and there’s a lot of research on 
CRC. However, there are few studies on the correlation 
between bacteria and the degree of pathological differ-
entiation. We first reported that characteristic gut bac-
teria of poorly differentiated CRC were Bifidobacterium, 
norank_f__Oscillospiraceae, Eisenbergiella, etc., and the 
characteristic gut bacteria of moderately differentiated 
CRC were Megamonas, Erysipelotrichaceae_UCG-003, 
Actinomyces, etc. The relationship between the forma-
tion and transformation of different degrees of differen-
tiation is unclear. It is difficult to confirm the relationship 
between microorganisms and different degrees of dif-
ferentiation, and it needs a large number of animal and 
cell experiments to verify. The poor prognosis of poorly 
differentiated CRC has been clinically confirmed. It is of 
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great significance to study the bacteria and the degree of 
differentiation to judge the different prognosis of the dis-
ease. Based on these characteristics, the prediction model 
was as a research method to screen important intestinal 
microorganisms. Screening characteristic microorgan-
isms contribute to illustrate the mechanism of poorly and 
moderately differentiated CRC.

Methods
Subjects
The included subjects were 247 CRC patients (124 
patients pathologically diagnosed with moderately differ-
entiated CRC and 123 patients pathologically diagnosed 
with poorly differentiated CRC) at Huzhou Central Hos-
pital from February 2019 to August 2020. Clinical staging 
followed the guidelines of the American Joint Council on 
Cancer (AJCC). The Huzhou Central Hospital ethics com-
mittee (No. 202202005–01) and Chinese clinical trial reg-
istry (http://​www.​chictr.​org.​cn, No. ChiCTR1800018908) 
approved the plan involving the patients’ clinical and 
informed consent. The raw sequencing data have been 
deposited into the NCBI Sequence Read Archive (SRA) 
database under the accession number of PRJNA904661 
and PRJNA904946. The general situation of the patients is 
shown in Supplementary Table 1.

The inclusion criteria were moderately differentiated 
and poorly differentiated CRC confirmed by pathological 
examination.

The exclusion criteria were as follows: 1) complica-
tions with other malignant tumors; 2) serious heart and 
lung diseases; 3) oral history of gut bacteria preparation 
1  month before admission; and 4) other intestinal dis-
eases, such as ulcerative colitis and Crohn’s disease.

Fecal sample collection
Subjects were told to collect stool samples before break-
fast. In the absence of laxatives or lubricants, approxi-
mately 5–10  g of stool samples were collected after 
defecation. Within half an hour, the samples were stored 
in a − 80° laboratory freezer. Fecal samples should not be 
stored for more than one month.

MiSeq sequencing of the microbial genome

(1)	 Genomic DNA extraction: A bacterial DNA extrac-
tion kit was used to extract bacterial DNA from 
fecal microbial samples, and a NanoDrop2000 
was used for a DNA purity analysis. After select-
ing qualified samples, professional companies were 
commissioned to conduct 16S rRNA sequencing.

(2)	 PCR amplification: Specific primers with barcodes 
were synthesized. The sequence of the 16S rDNA 
primer in the V1-V4 region was 357F: 5’-TAC​GGG​

AGG​CAG​CAG-3’; 1114R: 5’-GCA​ACG​AGC​GCA​
ACCC-3’. To ensure the accuracy and reliability of 
subsequent data analysis, two conditions should 
be met: 1) amplification with a low cycle number 
should be used as much as possible; 2) the same 
number of amplification cycles should be ensured 
for each sample. A representative sample was ran-
domly selected for the preexperiment to ensure 
that the majority of samples could be amplified at 
the appropriate concentration within the minimum 
number of cycles. Each sample had 3 replicates. 
PCR products of the same sample were mixed and 
detected by 2% agarose gel electrophoresis. An Axy-
PrepDNA Gel recovery Kit (AXYGEN company) 
was used to cut the gel and recover the PCR prod-
ucts, and Tris_HCl elution was performed with 2% 
agarose electrophoresis. The PCR products were 
detected and quantified using the QuantiFluor™-ST 
blue fluorescence quantification system (Promega 
company) based on the preliminary quantitative 
results of electrophoresis and then mixed in the 
appropriate proportion according to the sequencing 
volume requirements of each sample.

(3)	 MiSeq library construction: We connected the "Y" 
shape connector, and magnetic beads were used to 
remove self-connecting segments. The library tem-
plate was enriched by PCR amplification. Sodium 
hydroxide was denatured to produce single-
stranded DNA fragments.

(4)	 MiSeq sequencing: One end of the DNA fragment 
was complementary to the primer base and fixed on 
the chip; the other end was randomly complemen-
tary to another primer nearby, which was also fixed 
to form a "bridge." PCR amplification was used to 
produce DNA clusters, and the DNA amplicon 
then linearized into a single strand. The modified 
DNA polymerase and dNTPs with four fluorescent 
markers were added, and only one base was syn-
thesized in each cycle. The surface of the reaction 
plate was scanned by laser, and the nucleotide spe-
cies polymerized in the first reaction of each tem-
plate sequence were read. The "fluorophore" and 
"terminator" were chemically cleaved to restore the 
viscosity of the 3’ end and continued to polymerize 
the second nucleotide. The fluorescence signal col-
lected in each round was counted, and the sequence 
of the template DNA fragment was obtained.

Bioinformatics analysis

(1)	 Data optimization and statistics: The double-ended 
sequence data required for MiSeq sequencing were 
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first merged into a sequence according to the over-
lap relationship between PE reads, and the quality 
of reads and the effect of merging were controlled 
and filtered at the same time. The sequence direc-
tion was corrected according to the box sequence at 
the end of the sequence, and the samples were iden-
tified and differentiated according to the barcode 
label sequence to obtain effective data.

(2)	 OTU cluster analysis: The UPARSE (Version 7.1) 
method was used to perform OTU clustering. The 
sequence similarity in OTUs was set to 97%, and 
the representative sequence of OTUs was obtained. 
Uchime (Version 4.2.40) was used to detect the 
chimeric sequences generated in PCR amplifica-
tion and remove them from OTUs. The Usearch_
global method was used to compare the optimized 
sequence map back to the OTU representative 
sequence and obtain the sequence abundance sta-
tistics table for each OTU sample.

(3)	 Diversity analysis: Microbial diversity in fecal 
microbial community ecology was studied. The 
abundance and diversity of the microbial commu-
nity can be reflected by diversity analysis of a sin-
gle sample (alpha diversity), including a series of 
statistical analysis indices to estimate the species 
abundance and diversity of the environmental com-
munity. Mothur software (https://​www.​mothur.​org/​
wiki/​Downl​oad_​mothur) was used to calculate the 
Chao abundance index and Ace index assessment 
flora. The Shannon index and Simpson index were 
calculated to evaluate the diversity of the bacterial 
community. GraphPad software was used to draw 
the violin diagram.

(4)	 Community composition analysis: The RDP clas-
sifier Bayesian algorithm was used for taxonomic 
analysis of OTU representative sequences at a 97% 
similarity level, and the community composition of 
each sample was counted at the genus level. Vari-
ance decomposition was used to reflect the differ-
ences in multiple sets of data on the two-dimen-
sional coordinate graph, and principal component 
analysis (PCA) was carried out by taking the two 
characteristic values that best reflected the vari-
ance values on the coordinate axis. The locations of 
samples in each dimension were recorded, and the 
contribution of each OTU to each principal com-
ponent was calculated. PCA statistical analysis was 
conducted by using R language. PCoA analysis first 
sorted a series of feature values and feature vectors, 
then selected the most important feature values and 
presented them in the coordinate system. Then, R 
language was used for PCoA statistical analysis and 
mapping. A Venn diagram was used to analyze the 

number of species shared and unique by multiple 
samples in the moderately differentiated group and 
the poorly differentiated group to intuitively show 
the composition similarity and overlap of envi-
ronmental samples at different classification levels 
(mostly at the OTU level).

(5)	 Species difference analysis: According to the 
obtained community abundance data, Student’s t 
test was used for analysis to detect the abundance 
differences of microbial communities in different 
groups (or samples) and to screen bacteria with sig-
nificant differences. LEfSe multistage species dif-
ference discriminant analysis was performed. The 
nonparametric Kruskal–Wallis (KW) sum-rank test 
was used to detect significant differences in abun-
dance, and the taxa with significant differences were 
identified. Finally, linear discriminant analysis (LDA) 
was used to estimate the impact of each component 
(species) abundance on the differential effect.

(6)	 Correlation analysis: Student’s t test and Tutools 
Platform software (http://​www.​cloud​tutu.​com), a 
free online data analysis website, was used to draw 
intragroup correlation heatmaps.

(7)	 Functional prediction analysis: The PICRUSt1 
method was used for the functional prediction 
of fecal sample flora genes. PICRUSt samples for 
expansion were sequenced, and the results pre-
dicted the function of the microbial community 
composition of the package (PICRUSt1 only for 16S 
sequencing data analysis function prediction, ver-
sion 1.1.0 http://​picru​st.​github.​io/​picru​st/).

Construction and validation of a prediction model 
for poorly differentiated colorectal cancer
To filter the differences of stool sample flora for build-
ing elements, we used an integrated application of logis-
tic regression (LR), random forest (RF), neural network 
(NN), support vector machine (SVM) of CatBoost, 
and gradient boosted decision tree (GBDT) models. By 
including more decision tree classifiers, the results were 
determined on different decision trees, and the final 
classification was assigned after comprehensive consid-
eration of all the results. For the results of classification 
problems, the probability maximum was taken, and the 
probability mean was taken for regression analysis to 
select the most important biomarker for sample classifi-
cation. A series of sensitivity and specificity calculations 
were performed by setting different critical values for 
continuous variables. ROC curves were drawn with sen-
sitivity as the ordinate and specificity as the abscissa, and 
the area under the curve (AUC) was calculated to build 
a prediction model for poor differentiation in colorectal 
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patients. During data analysis, the data were divided into 
70% training set to build the model and 30% test set to 
verify the model.

Statistical analysis
For continuous variables, an independent t test was 
applied. For categorical variables between groups, Pear-
son’s chi-square test was used, depending on assumption 
validity. Statistical analysis was performed using SPSS 
V25.0 (SPSS Inc., Chicago, IL). GraphPad Prism version 
8.0 (San Diego, CA) and the Tutools platform (http://​www.​
cloud​tutu.​com) were used for the preparation of graphs. 
All tests of significance were two-sided, and p<0.05 or cor-
rected p<0.05 was considered statistically significant.

Results
Analysis of the alpha diversity of bacteria from moderately 
and poorly differentiated CRC​
The diversity of gut bacteria in patients with poor 
differentiation of CRC and those with moderate dif-
ferentiation of CRC was compared, and there was no 
significant difference in the diversity of bacterial flora 
in stool samples between the two groups (P > 0.05), 
indicating that the diversity of intestinal bacterial flora 
in the two groups was basically the same (Fig.  1A-E, 
Supplementary Table 2.).

Bacterial community structure of moderately and poorly 
differentiated CRC​
The community composition was analyzed to obtain 
the content of each genus at the level of each sample 

(Fig.  2A). The dominant species in each sample at the 
genus level mainly included Blautia, Escherichia-Shigella, 
and Streptococcus. The bacterial community structure in 
each sample was different, and the differences between 
samples were very large. The relative abundance of domi-
nant species in the samples was different. By sequencing 
the top 30 bacteria in abundance and drawing the per-
centage accumulation histogram, it was found that the 
top five bacteria with high abundance in both groups 
were Blautia, Escherichia-Shigella, Streptococcus, Lac-
tobacillus and Bacteroides (Fig.  2B). The number of 
common and unique OTUs among the two groups was 
counted, and there were 418 types of overlapping OTUs, 
including 98 types unique to CRC-differentiated groups 
and 67 types unique to CRC poorly differentiated groups 
(Fig. 2C).

Differential gut bacteria between poorly and moderately 
differentiated CRC​
At the genus level, the differential bacteria between 
the patients with poorly differentiated CRC and the 
patients with moderately differentiated CRC were finally 
screened down to a total of 15 bacteria, At the genus 
level, there were nine bacteria with high abundance in the 
poorly differentiated group, including Bifidobacterium, 
norank_f__Oscillospiraceae, Eisenbergiella, etc. There 
were six bacteria with high abundance in the moderately 
differentiated group, including Megamonas, Erysipel-
otrichaceae_UCG-003, Actinomyces, etc. (Fig.  3). Finally, 
LEfSe LDA was used to estimate the impact of species 

Fig. 1  Alpha diversity analysis of the two groups with a violin diagram at the genus level. A Shannon index. B Simpson index. C Ace index. D Chao 
index. E Coverage index. * represents a significant difference between the two groups (p < 0.05)

(See figure on next page.)
Fig. 2  Composition of bacteria in stool samples from CRC patients. A Community composition of the intestinal bacterial community. The ordinate 
is the name of the sample, and the abscissa is the proportion of bacteria in the sample. Different colors of the column represent different species, 
and the length of the column represents the size of the proportion of the species. B A histogram of percentage accumulation drawn for the top 
100 bacteria with the highest abundance in the two groups. C Venn diagram. Red represents the moderately differentiated group, blue represents 
the poorly differentiated group, and the number of nonoverlapping species represents the number of species unique to the corresponding group. 
Below is a Venn diagram of the total number of species in the two groups at the genus level

http://www.cloudtutu.com
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Fig. 2  (See legend on previous page.)



Page 7 of 15Qi et al. BMC Microbiology          (2022) 22:312 	

abundance from the domain level to the genus level on 
each population. The bacteria that showed significant 
differences in the poorly differentiated CRC group were 
g_Bifidobacterium, f_Bifidobacteriaceae, o_Bifidobacteri-
ales. The bacteria that showed significant differences in the 
moderately differentiated CRC group were g_Megamonas, 
g_Lachnoclostridium, g_Corynebacteriales (Fig. 4A-B).

Correlation of differential bacteria
We analyzed the intragroup and intergroup correlation 
of different bacteria in the two groups. Figure  5A is a 
heatmap representing the correlation of bacteria in the 
moderately differentiated group. Figure 5B is a heatmap 
representing the correlation of bacteria in the poorly 
differentiated group. The network in the moderately 

differentiated group was different from that in the 
poorly differentiated group. Figure  5C is a chord dia-
gram. Bacteria such as Blautia, Escherichia − Shigella 
and Streptococcus were abundant in both groups.

Function prediction based on gut bacteria
To further discuss the functions of intestinal bacteria, 
we analyzed the different functions of bacteria between 
the two groups. Figure 6A is the box diagram of COG 
functional classification. The abscissa represents the 
functional classification, and the ordinate represents 
the species abundance. Figure  6B is the histogram of 
COG functional classification. The two groups of differ-
ent bacteria were enriched in 24 pathways, such as Car-
bohydrate transport and metabolism and amino acid 
transport and metabolism.

Fig. 3  Multispecies difference test bar chart. Student’s t test was used to test the hypothesis of species between the microbial communities of the 
two groups and evaluate the significance level of species abundance differences. P < 0.05 indicates a significant difference. The closer the line is to 
the middle, the smaller the standard deviation, and the better the central tendency

(See figure on next page.)
Fig. 4  Diagram of different microflora between the two groups. A LDA was used to draw the histogram of LDA discriminant, and the microbial 
groups with significant effects in both groups were counted. The LDA score was obtained by linear regression analysis. The larger the LDA score, the 
greater the impact of bacterial abundance on the difference effect. LDA scores greater than 2 indicated statistically significant differences (p < 0.05). 
B The graph shows LEfSe multistage species from the inner to the outer circle and represents the phylum, class, order, family, genus, and species 
of different unit levels. Different color nodes indicate the microbial groups that were significantly enriched in the corresponding groups and had 
a significant influence on the differences between groups. The pale-yellow nodes indicate the microbial groups that had no significant difference 
among different groups or had no significant effect on the difference between groups
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Fig. 4  (See legend on previous page.)
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Construction of a prediction model for poorly 
differentiated CRC​
The LR, RF, NN, SVM, GBDT and CatBoost models 
were used to construct the prediction model of poor 

differentiation of CRC (Fig. 7A-F). Among the six mod-
els with different bacteria as factors, the RF model had 
the highest prediction accuracy (AUC = 1.00, 100.00% 
correct) (Fig.  7B). Among them, Pseudoramibacter, 

Fig. 5  Correlation analysis of different bacteria within and between groups. The numerical matrix of the two groups of different bacteria is visually 
displayed through the heatmap. The color change reflects the data information, and the color depth represents the correlation. The redder the 
color, the higher the correlation between the two bacteria. A Intragroup bacterial correlation heatmap of the moderately differentiated CRC group. 
The Pearson coefficient was used to calculate the correlation between the bacteria. The shade of color indicates the size of the data value. Pearson 
correlation coefficients are indicated in the figure. * 0.01 < p < 0.05; * * 0.001 < p ≤ 0.01; * * * p ≤ 0.001. B Intragroup bacterial correlation heatmap of 
the poorly differentiated CRC group. C Chord diagram. One side of the circle is the species name, and the other side is the sample name, which is 
represented by different colors. The species abundance is displayed as a percentage
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Megamonas and Bifidobacterium were the most impor-
tant bacteria in the model. In model validation, the 
prediction accuracy of SVM model is the highest, 
the accuracy is 70.00%, and the value of AUC is 0.700 
(Fig. 8A-F).

The difference of poorly differentiated CRC and moderately 
differentiated CRC tissues
The histopathological features of poorly differenti-
ated CRC were solid infiltrating pattern. (Supplemen-
tary Fig.  1A-B), and the histopathological features of 

Fig. 6  Diagram of the functional classification of bacteria. A Box diagram of COG functional classification. The abscissa represents the functional 
classification, and the ordinate represents the species abundance. B Histogram of COG functional classification. The abscissa represents the relative 
abundance, and the ordinate represents the groups
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moderately differentiated CRC were glandular pattern 
(Supplementary Fig. 1C-D).

The age difference existed in the moderately and poorly 
differentiated groups
The results showed that the age difference existed in the 
moderately and poorly differentiated groups. Gut bac-
teria, such as g_norank f_norank_o_Saccharimonadales 
was related to age, g_Megamonas was related to sex, 

g_DTU089 and g_Pseudoramibacter were related to dif-
ferentiation degree.The age difference was shown in 
Supplementary Fig. 2.

Discussion
The correlation between the microbiome and the occur-
rence and progression of CRC has received increas-
ing attention, but determining how microbes influence 
cancer susceptibility and progression remains a chal-
lenge. Data from cross-sectional epidemiological studies, 

Fig.7  Construction of risk prediction model for poorly differentiated CRC. We used the relevant functions in the rminer Package (version 1.4.5) of R 
language for modeling analysis and used the fit function for modeling the variable importance calculation. A-F are the LR model (A), RF model (B), 
NN model (C), SVM model (D), GBDT model (E) and CatBoost model (F). The left panel (a1, b1, c1, d1, e1, f1) show the variable importance histogram 
of the model, the upper right panel (a2, b2, c2, d2, e2, f2) show the AUC curve of the model, and the lower right panel (a3, b3, c3, d3, e3, f3) show 
the CV. confuse matrix of the model
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unbiased microbiome analyses of stool and colorectal 
tissue, and preclinical models reveal specific taxonomic 
and bacterial factors [20]. In addition, the role of gut 
flora in the host can also affect the degree of differen-
tiation or malignancy of CRC in the process of cancer. 
Metagenomic analysis of stool samples from patients 
with CRC revealed bacteria closely associated with the 
development of CRC, and these bacteria included Bacte-
roides fragilis, Fusobacterium nucleatum, Porphyromonas 
asaccharolytica, Parvimonas micra, Prevotella interme-
dia, Alistipes finegoldii, and Thermanaerovibrio acid-
aminovorans [15, 16]. Molecular mechanisms that drive 
tumorigenesis have been elucidated, including bacterial 

membrane proteins or secretory molecules that interact 
with human cancer cells. However, for most gut bacte-
ria, whether they enhance or inhibit the growth of can-
cer cells remains unknown [21]. At the same time, how 
gut bacterial disorders systematically affect the process 
and mechanism of the EMT in host CRC cells remains 
unclear. Abd-EI-Raouf et  al. [22] studied the effect of 
bacteria on tumor cells after in vitro infection of bladder 
cancer cells by Escherichia coli and found that bacteria 
enhanced the EMT effect and improved the migration 
ability of cells. Studies have shown that Clostridium 
nucleatum can promote the EMT in oral squamous cell 
carcinoma by regulating the lncRNA MIR4435-2HG\/

Fig. 8  Validation of risk prediction model for poorly differentiated CRC. We used the relevant functions in the rminer Package (version 1.4.5) of R 
language for modeling analysis and used the fit function for modeling the variable importance calculation. All data were divided into 70% training 
set to build the model and 30% test set to verify the model. A-F are the LR model (A), RF model (B), NN model (C), SVM model (D), GBDT model (E) 
and CatBoost model (F). The left panel (a1, b1, c1, d1, e1, f1) show the AUC curve of the model, and the right panel (a2, b2, c2, d2, e2, f2) show the 
accuracy of the model
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miR-296-5p\/Akt2\/SNAI1 signaling pathway, thus 
enhancing cell migration [23]. Lu et al. [24] proposed that 
the effector protein OspB, which is delivered by Shigella, 
affects cell proliferation by activating mTORC1, and that 
mTORC1 is the main regulator of cell growth. Studies 
have found that bifidobacteria may enhance the prolif-
eration ability of colon epithelial cells by generating spe-
cific extracellular protein structure scaffolds to promote 
growth [25]. Therefore, whether gut bacteria can pro-
mote or inhibit the poor differentiation process of CRC 
and its possible mechanism are worth studying.

There have been many studies on the relationship 
between bacteria and tumors, and our research had 
similar findings. Bifidobacterium reduced cancer cell 
proliferation by inhibiting growth factor signaling and 
inducing mitochondria mediated apoptosis, and reduced 
chemical/immunological/radiotherapy side effects by 
inhibiting proinflammatory cytokines [26]. The research 
showed that the abundance of Megamonas in the gut 
microbiota of patients with cachexia was reduced, and 
the abundance of Megamonas was significantly different 
from the non-cachexia group, and it was possible that 
the disturbance of this microbiota was related to the later 
stage [27]. Erysipelotrichaceae_UCG_003 was one of the 
main butyric acid-producing bacteria. The abundance of 
Erysipelotrichaceae_UCG-003 in healthy group was sig-
nificantly higher than that in lung cancer group, and it 
was negatively correlated with glycerol and phospholipid 
metabolism [28]. This negative correlation may be one of 
the ways to regulate metabolism and tumor development 
in vivo. In a research of the microbiota before and after 
chemotherapy, the abundance of Actinomyces in stool 
after chemotherapy increased to 2.5 times that before 
chemotherapy. Actinomyces in the gut may have a posi-
tive clinical outcome in CRC patients, and Actinomyces 
may inhibit tumor growth [29]. Oscillospiraceae showed 
a relationship with metabolic disorders. In the intestinal 
microorganisms of patients with high uric acid, Oscillo-
spiraceae was significantly reduced, and Oscillospiraceae 
may be related to uric acid metabolism [30]. However, 
there are few studies on the correlation between bacte-
ria and the degree of pathological differentiation. We first 
reported that characteristic gut bacteria of poorly differ-
entiated CRC were Bifidobacterium, norank_f__Oscillo-
spiraceae, Eisenbergiella, etc., and the characteristic gut 
bacteria of moderately differentiated CRC were Mega-
monas, Erysipelotrichaceae_UCG-003, Actinomyces, etc. 
At present, the differentiation degree of CRC is rarely 
analyzed with gut bacteria, and poor differentiation is 
an important manifestation of more invasive CRC. In 
the present study, certain clinical samples were included 
to screen and analyze the bacterial characteristics of 
CRC tumor differentiation. The differences in intestinal 

microbiota from the perspective of pathological char-
acteristics of CRC were explored, and the relationship 
between intestinal microbiota and biological behavior of 
CRC were studied. The study will provide a direction for 
the further research with strong innovations.

The association between poor differentiation of CRC 
and gut bacteria was significant. Dysbiosis of gut micro-
biota and subsequent inappropriate immune responses 
can lead to susceptibility to chronic inflammation, which 
contributes to the development of disease and cancer. 
Microorganisms may contribute to genetic and epige-
netic changes through the production of superoxide 
radicals and genotoxins, as well as toll-like receptor-
mediated oncogenic pathway induction [31]. The struc-
tural changes of gut bacteria and CRC differentiation 
may be mutually reinforcing. The increase in the number 
of specific microorganisms and the decrease in benefi-
cial bacteria may increase the risk of poor differentiation 
of CRC and promote more invasive CRC. In addition, 
the poor differentiation state of CRC may also interfere 
with the intestinal microbiota structure, induce intesti-
nal microbiota disorder, and further increase the prob-
ability of malignancy. Recently, Helicobacter hepaticus 
was found to increase tumor invasion by cytotoxic lym-
phocytes in mouse models, and this method can inhibit 
tumor growth [32]. This indicated that the differential 
microorganisms screened out in this study can become 
potential targets for the prevention or treatment of poor 
differentiation of CRC.

In addition, it was found that bacteria were corre-
lated with each other through an intragroup correlation. 
Therefore, it is possible that different bacteria may par-
ticipate in or assist each other in promoting or inhibiting 
the poor differentiation of CRC. In the follow-up study, 
microbial sequencing of poorly differentiated CRC is 
likely to find that the bacteria are consistent with those 
found in this study.

We further constructed a prediction model for poor 
differentiation of CRC based on differential gut bacteria, 
The research screened out important characteristic gut 
microbes, including Pseudoramibacter, Megamonas and 
Bifidobacterium. Liao et al. [33] established a kNN clas-
sification model based on the clinicopathological infor-
mation and protein expression profile analysis of CRC, 
which predicted the degree of tumor differentiation of 
CRC with high accuracy (P ≤ 0.001, receiver-operator 
characteristics-ROC-error, 0.171). The expression of 
related genes, such as HER3 and insulin receptor sub-
strate 1, was found to be a predictive target of the degree 
of CRC differentiation [34, 35]. Metabolites from gut 
microbes also play an important role. Symbiotic micro-
bial factors are short-chain fatty acids, such as butyrate, 
which reduce the growth of normal intestinal stem cells 
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and a range of cancer-derived cell lines [36]. The poten-
tial role of gut bacterial metabolites in CRC differentia-
tion was not considered in this study. This may be one of 
the problems of this research experiment. At the same 
time, gut bacteria are affected by dietary habits, drug 
use and other factors, so the impact on the results of this 
analysis is inevitable. In the present study, the MiSeq 
platform was used for the second-generation sequencing 
of 16S rRNA V1-V4 region. Our research design began in 
2018, and the third-generation sequencing technologies, 
such as NanoPore, were immature at that time. Third-
generation sequencing can make the length of sequenc-
ing up to about 10 kb, and do not need PCR enrichment 
sequence, can be directly sequenced, third-generation 
sequencing can solve the problem of information loss and 
base mismatch. Long-read platforms will provide us with 
a direction in the further research. Vuik et al. [37] found 
that poorly differentiated CRCs were more common in 
the younger group by recruiting 6400 subjects. Pereira 
et  al. [38] analyzed the pathological features of CRC in 
different groups of age and showed that poorly differenti-
ated tumors was most common in young CRC patients. 
The results showed that the age difference existed in the 
moderately and poorly differentiated groups. In future 
studies, the age-related differential bacteria could be fur-
ther analyzed. At the same time, the sample size of this 
study is insufficient, which also limits the applicability of 
the research results. In the future, multicenter studies are 
needed to further verify whether these microbiota can be 
used as promoting factors for the development of CRC, 
and to further find the link between these microbiota and 
the development of CRC.
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