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Abstract 

Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is 
known about how triploidization and microbiome affect the immune response and disease resistance in the fish 
host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome 
changes, and disease resistance in triploid Carassius auratus (3nCC). In China’s central Dongting lake water system, 
diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to 
examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization 
altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the 
genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC 
revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed 
transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, 
NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn 
result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism 
underlying disease resistance after triploidization.
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Background
Polyploidy has an important role in the disease resist-
ance of fish [1]. For instance, in Atlantic salmon (Salmo 
salar L.), triploids may be at a disadvantage compared 
with their diploid siblings in their defense against bac-
terial infections [2]. Similarly, in response to a challenge 
with Vibrio anguillarum, the mortality of triploid Chi-
nook salmon (Oncorhynchus tshawytscha) increased 
[3]. Dégremont et al. indicated that triploid oysters have 
higher disease resistance than diploids, as observed in 
Crassostrea virginica and Saccostrea glomerata [4]. In fer-
tile triploid fish, normal gonadal development causes the 

energy needed for somatic growth to be channeled into 
gamete production. Consequently, this results in adverse 
effects, including poor physical growth and flesh qual-
ity, and can increase mortality and morbidity rates [5, 6]. 
Nevertheless, this phenomenon did not occur in the Car-
assius auratus complex in the water system of Dongting 
Lake, which is manifested as triploid Carassius auratus 
(3nCC) populations exhibited less sensitivity to environ-
mental change than diploid Carassius auratus (2nCC) 
populations [7]. Consequently, it is crucial to understand 
how triploidy influences disease resistance in the Caras-
sius auratus complex.

Intestinal microbial communities of animals are 
extremely diverse and active [8]. Microorganisms inhab-
iting the gastrointestinal tract, such as bacteria, archaea, 
viruses, fungi, and microeukaryotes, make up the 

*Correspondence:  004343@hnucm.edu.cn

Medical College, Hunan University of Chinese Medicine, Changsha 410208, 
Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-022-02709-5&domain=pdf


Page 2 of 13Cai and Wei ﻿BMC Microbiology            (2023) 23:1 

intestinal microbiota [9, 10]. The intestinal microbiome 
is a source of key enzymes essential to food digestion 
and nutrient absorption for the host [11]. Technology 
development for next-generation sequencing (NGS) has 
enhanced the understanding of the diverse and complex 
communities of microbial symbionts residing within 
hosts. The diverse and dynamic microbial community of 
the gastrointestinal tract plays a critical role in modulat-
ing the host’s health and nutrition [12], immunity and 
defense against pathogens [13], growth and development 
[14], and behavior [15].

The intestinal microfloras are also closely associated 
with disease resistance in host animals and play a key 
role in the host’s immune system’s induction, education, 
and functionality [16, 17]. It has been demonstrated that 
Se-rich B. subtilis improves intestinal microbial changes 
induced by Hg, reduces Aeromonas abundance and 
inflammation in common carp [18]. Liu et al. found that 
Pb accumulated in the gut causes dysbiosis of the micro-
biota, affects intestinal immunity and digestion, and 
damages the silver carp’s intestinal barrier [19]. Shi et al. 
suggested antibiotics administered to grass carp would 
exacerbate oxidative stress, lead dysbiosis of intestinal 
bacteria, inhibit the immune system of the mucosa, and 
activate apoptosis [20]. According to Qiao et  al., poly-
hydroxybutyrate may have beneficial effects on immunity 
and disease resistance through its interaction with the gut 
microbiota [21]. In tilapia, NE can affect immunity indi-
rectly by means of microbial changes as well as directly 
by stimulating host tissue [22]. There are potential dietary 
implications to altering the intestinal microbiota because 
the microbiota aid digestion and conversion of complex 
plant molecules into short-chain fatty acids are necessary 
for daily energy metabolism [23]. To develop and func-
tion properly in zebrafish, the immune system depends 
on bacteria and their products [24]. However, the role of 
the intestinal microbiome in the disease resistance of the 
triploid Carassius auratus has not been fully elucidated.

Considering the information available from previous 
research, we hypothesized that triploidization might 
change the intestine bacterial community, boost immu-
nity, and increase disease resistance in the triploid Caras-
sius auratus. To test this hypothesis, the composition of 
intestinal microbiota between diploid and triploid Car-
assius auratus was conducted. Additionally, mRNA-seq 
revealed many transcripts that differed between diploid 
and triploid Carassius auratus.

Results
Differences of richness and diversity of the microbiota 
between diploid and triploid of Carassius auratus
There were 453,811 good-quality 16S rRNA gene 
sequences obtained. A notable number of 400,890 
sequences (88.34%) was associated with 1556 OTUs. 
OTUs were categorized into 34 phyla, 79 classes, 182 
orders, 312 families, 594 genera, and 646 species based 
on the number of effective OTUs (Table 1).

For each group, we computed the Chao1 index to assess 
the diversity of the microbiota between diploid and trip-
loid of Carassius auratus (Fig. 1a). The results imply that 
intestinal microbiota from the 3nCC group had signifi-
cantly lower species diversity levels than those from the 
2nCC group (P < 0.05).

PCoA distinguished the 3nCC group from the 2nCC 
group based on structural differences in gut microbiota 
from fecal samples (Fig. 1b). Triploidization changes the 
overall structure of the microbiota of diploid and triploid 
crucian carp.

Flora differences between diploid and triploid Carassius 
auratus
According to the LEfSe taxon, the relative abundance of 
bacterial phylum, class, order, family, genus, and species 
differed significantly between diploid and triploid cru-
cian carp (Fig. 2). In the 3nCC groups, the proportion of 
Vibrionales was greater than in the 2nCC groups.

Table 1  Species annotation statistics

2nCC_1, 2nCC_2, 2nCC_3, samples from diploid Carassius auratus (2nCC); 3nCC_1, 3nCC_2, 3nCC_3, samples from the triploid Carassius auratus (3nCC). These values 
represent the number of terms of each taxonomic level that have been annotated

Sample Kindom Phylum Class Order Family Genus Species

2nCC_1 1 21 47 120 209 389 420

2nCC_2 1 27 57 132 216 408 437

2nCC_3 1 22 51 122 209 380 411

3nCC_1 1 25 47 110 189 350 378

3nCC_2 1 24 52 115 185 304 329

3nCC_3 1 25 49 99 164 281 304

Total 1 34 79 182 312 594 646
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Additionally, we investigated how triploidization 
impacted the distribution of particular flora on 2nCC and 
3nCC at the order level (Table 2), family level (Table 3), 

genus level (Table 4), and species level (Table 5). On an 
order level (Table  2), Vibrionales greatly increased in 
abundance in the triploid population (P < 0.05) compared 

Fig. 1  Histogram diagrams and PCoA plots illustrate responses on gut microbiota diversity and structural composition. a Alpha diversity (Chao1 
index) of the gut microbiota in 2nCC and 3nCC. b PCoA ordination of unweighted UniFrac distances among crucian carp gut microbiota

Fig. 2  Taxonomic cladogram produced from LEfSe analysis. Blue and orange shows taxa enriched in 2nCC and 3nCC, respectively. The size of the 
dots is proportional to the abundance of taxon
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to 2nCC. Rhodobacterales were observed in 3nCC at 
a marginally lower abundance (P < 0.1) than in 2nCC. 
On a family level (Table  3), a significant improvement 
in Vibrionaceae relative abundance was associated with 
triploidization (P < 0.05). In 3nCC, Rhodobacteraceae and 

Peptostreptococcaceae (P < 0.1) had a marginally lower 
abundance than in 2nCC. On a genus level (Table  4), 
Vibrio became more prevalent in 3nCC (P  < 0.05) than 
in 2nCC. We observed a marginally lower abundance 
in uncultured_bacterium_f_Rhodobacteraceae and a 
higher abundance in Romboutsia (P < 0.1) were observed 
in 3nCC vs. 2nCC. On a species level (Table 5), the rel-
ative abundance of uncultured_bacterium_g_Vibrio 
was significantly increased by triploidization (P < 0.05) 
in comparison with 2nCC. Uncultured_bacteria_ 
f_Rhodobacteraceae exhibited a marginally lower 
abundance in 3nCC vs 2nCC, while uncultured_
bacteria_g_Romboutsia exhibited a markedly higher 
abundance (P < 0.1).

Analysis of transcriptome sequences and sequence 
alignment
As measured by the OD ratio A260/A280 and RNA 
integrity numbers (RINs) of RNA of six samples, the 
RNA integrity numbers were 2.2 and 8.1–8.7, respec-
tively (Additional  file 1). Despite their high qual-
ity and lack of contamination, all samples underwent 

Table 2  Proportion of dominant bacteria at the order level in 
the 2nCC and 3nCC groups

Results are expressed as means ±SD

Order Level 2nCC 3nCC P-value

Fusobacteriales 0.213 ± 0.141 0.144 ± 0.114 0.456

Aeromonadales 0.056 ± 0.046 0.209 ± 0.240 0.398

Erysipelotrichales 0.138 ± 0.113 0.041 ± 0.002 0.285

Bacteroidales 0.025 ± 0.026 0.139 ± 0.132 0.305

Clostridiales 0.039 ± 0.046 0.074 ± 0.039 0.117

Rhodobacterales 0.070 ± 0.002 0.002 ± 0.001 0.094

Vibrionales 0.0002 ± 0.00005 0.129 ± 0.051 0.049

Flavobacteriales 0.059 ± 0.049 0.002 ± 0.001 0.190

Betaproteobacteriales 0.045 ± 0.016 0.014 ± 0.007 0.133

Enterobacteriales 0.008 ± 0.003 0.043 ± 0.048 0.309

Table 3  Proportion of dominant bacteria at the family level in the 2nCC and 3nCC groups

Results are expressed as means ± SD

Family Level 2nCC 3nCC P-value

Fusobacteriaceae 0.213 ± 0.141 0.144 ± 0.115 0.453

Aeromonadaceae 0.056 ± 0.046 0.209 ± 0.240 0.398

Erysipelotrichaceae 0.138 ± 0.113 0.041 ± 0.002 0.285

Barnesiellaceae 0.002 ± 0.002 0.080 ± 0.135 0.424

Rhodobacteraceae 0.070 ± 0.039 0.002 ± 0.001 0.094

Vibrionaceae 0.0004 ± 0.0005 0.132 ± 0.034 0.022

Flavobacteriaceae 0.059 ± 0.049 0.001 ± 0.0001 0.183

Enterobacteriaceae 0.008 ± 0.003 0.043 ± 0.048 0.309

uncultured_bacterium_c_Gammaproteobacteria 0.011 ± 0.016 0.037 ± 0.032 0.391

Peptostreptococcaceae 0.014 ± 0.021 0.033 ± 0.016 0.052

Table 4  Proportion of dominant bacteria at the genus level in the 2nCC and 3nCC groups

Results are expressed as means ± SD

Genus Level 2nCC 3nCC P-value

Cetobacterium 0.212 ± 0.141 0.142 ± 0.116 0.446

Aeromonas 0.056 ± 0.046 0.209 ± 0.240 0.398

ZOR0006 0.126 ± 0.125 0.016 ± 0.006 0.255

uncultured_bacterium_f_Barnesiellaceae 0.002 ± 0.002 0.080 ± 0.135 0.423

Vibrio 0.001 ± 0.001 0.122 ± 0.042 0.038

Flavobacterium 0.059 ± 0.049 0.001 ± 0.001 0.183

uncultured_bacterium_c_Gammaproteobacteria 0.011 ± 0.016 0.037 ± 0.032 0.391

Romboutsia 0.014 ± 0.021 0.030 ± 0.019 0.098

uncultured_bacterium_f_Rhodobacteraceae 0.037 ± 0.020 0.001 ± 0.001 0.086

uncultured_bacterium_f_Enterobacteriaceae 0.001 ± 0.001 0.026 ± 0.041 0.395
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transcriptome sequencing. Illumina performed RNA 
sequencing on intestinal samples from 2nCC and 
3nCC. Tables  6 and 7 display the RNA-Seq results. 
In six RNA-Seq libraries, the clean read count ranged 
between 40,639,622 and 64,300,602. The aligned 
clean reads were then aligned with the RCC reference 
genome (https://​bigd.​big.​ac.​cn/​search?​dbId=​gwh&q=​
GWHAA​IA000​00000) using HISAT2. The mapped 
genome reads ranged from 33,237,039 to 57,311,126 
sets, and genome map rates ranged from 80.77 to 
89.22%.

Identification of differentially expressed transcripts (DETs) 
between diploid and triploid Carassius auratus
There were 293 up-regulated transcripts and 324 down-
regulated transcripts observed in 3nCC and 2nCC, 
respectively (Fig.  3). DETs between 3nCC and 2nCC 
comprised osteoclast stimulatory transmembrane pro-
tein (OCSTAMP), leucine rich repeat LGI family mem-
ber 2 (LGI2), upregulator of cell proliferation (URGCP), 
GIMAP family P-loop NTPase domain containing 1 
(GIMD1), ankyrin and armadillo repeat containing 
(ANKAR), leucine rich repeat neuronal 2 (LRN2), G pro-
tein-coupled receptor 98 (GPR98), potassium channel 
tetramerization domain containing 7 (KCTD7), predicted 
gene 12,253 (GM12253), protein kinase superfamily pro-
tein (SNRK2.4), F-box and leucine rich repeat protein 13 
(FBXL13), phosphorylase kinase regulatory subunit alpha 
1 (PHKA1), leucine rich repeat containing 31 (LRRC31), 
etc.

GO enrichment analysis uncovered 76, 8 and 16 
terms, respectively, from the biological process, cellu-
lar component, and molecular function categories for 
the 3nCC group compared to 2nCC (Additional file 2). 
As illustrated in Fig. 4, the top 20 GO-terms were the 
most enriched, such as proteolysis, immune response, 
positive regulation of cell death, response to external 
biotic stimulus, response to other organism, response 

Table 5  Proportion of dominant bacteria at the species level in the 2nCC and 3nCC groups

Results are expressed as means ± SD

Species Level 2nCC 3nCC P-value

uncultured_bacterium_g_Cetobacterium 0.212 ± 0.141 0.142 ± 0.116 0.446

uncultured_bacterium_g_Aeromonas 0.056 ± 0.046 0.209 ± 0.240 0.398

Firmicutes_bacterium_ZOR0006 0.125 ± 0.125 0.014 ± 0.006 0.250

uncultured_bacterium_f_Barnesiellaceae 0.002 ± 0.002 0.080 ± 0.135 0.423

uncultured_bacterium_g_Vibrio 0.001 ± 0.001 0.142 ± 0.052 0.042

uncultured_bacterium_c_Gammaproteobacteria 0.011 ± 0.016 0.037 ± 0.032 0.391

uncultured_bacterium_g_Romboutsia 0.014 ± 0.021 0.030 ± 0.019 0.098

uncultured_bacterium_f_Rhodobacteraceae 0.037 ± 0.020 0.001 ± 0.001 0.086

Flavobacterium_sp 0.030 ± 0.027 0.0002 ± 0.0003 0.192

uncultured_bacterium_g_Flavobacterium 0.028 ± 0.022 0.001 ± 0.001 0.173

Table 6  Overview of the RNA-Seq data collected from 2nCC and 3nCC

Sample name Raw reads Clean reads Clean bases Q20 (%) Q30 (%) GC content (%)

2nCC_1 41,848,936 41,848,742 6.24G 97.41 95.48 47.34

2nCC_2 40,741,902 40,741,652 6.08G 98.52 95.70 46.87

2nCC_3 42,839,398 42,839,258 6.40G 98.63 95.99 47.01

3nCC_1 64,300,916 64,300,602 9.60G 98.39 95.56 47.01

3nCC_2 40,639,814 40,639,622 6.07G 98.44 95.49 47.47

3nCC_3 41,573,124 41,572,714 6.21G 97.71 93.74 47.98

Table 7  Overview of clean reads mapped from 2nCC and 3nCC 
to the reference genome

Sample name Total reads Total mapped

2nCC_1 41,848,742 33,801,228(80.77%)

2nCC_2 40,741,652 33,237,039 (81.58%)

2nCC_3 42,839,258 37,652,720 (87.83%)

3nCC_1 64,300,602 57,311,126 (89.13%)

3nCC_2 40,639,622 36,258,670 (89.22%)

3nCC_3 41,572,714 36,380,282 (87.51%)

https://bigd.big.ac.cn/search?dbId=gwh&q=GWHAAIA00000000
https://bigd.big.ac.cn/search?dbId=gwh&q=GWHAAIA00000000
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to biotic stimulus, response to a bacterium, positive 
regulation of apoptotic process, positive regulation of 
programmed cell death and Golgi subcompartment. 
Moreover, several pathways implicated in disease were 
identified, including inflammatory response, response 
to xenobiotic stimulus, activation of an innate immune 
response, inflammatory response to antigenic stimu-
lus, and the detection of bacterium and cytokine pro-
duction. DETs were enriched for 38 signaling pathways 
according to KEGG analysis (Additional  file  3). As 
illustrated in Fig.  5, the top 20 KEGG pathways were 
enriched. Five of the most enriched pathways were ion 
channels, cellular senescence, calcium signaling path-
way, human cytomegalovirus infection, and proteogly-
cans in cancer.

In conclusion, the enrichment results demonstrate 
that the most-enriched pathway associated with 
immune was immune response. The up-regulated 
genes included NLRP3, LY9, PNMA1, MR1, PELI1, 
and NOTCH2, and the down-regulated genes included 
NFIL3 and NLRC4.

Validation of differentially expressed transcripts (DETs) 
in diploid and triploid Carassius auratus by RT‑qPCR
RT-qPCR was performed to validate eight DETs based on 
RNA-Seq data. Six DETs that were up-regulated in the 
3nCC group compared with the 2nCC group, while two 
DETs were down-regulated in the 3nCC group. Both RT-
qPCR and RNA-Seq revealed similar expression profiles 
for the eight DETs (Figs. 6 and 7), indicating the reliabil-
ity of the RNA-Seq results.

Discussion
A prior study has indicated that environmental changes 
and variations can impact the population of diploid and 
triploid Carassius auratus [7]. In the Dongting lake water 
system, triploid Carassius auratus has been found to 
have a more generalized distribution and can adapt to 
many environments compared to diploid Carassius aura-
tus [25]. This is likely because genetic and epigenetic reg-
ulation occurred in 3nCC and its adaptability to diverse 
environments [26, 27]. It is well-documented that the 
makeup of the host-microbial community is influenced 

Fig. 3  Volcano plot showing differential transcript expression between 2nCC and 3nCC
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by many endogenous and exogenous factors [28–31] 
and plays a role in regulating immune function [32]. By 
improving immune responses, systemic infections can be 
prevented [33–36]. Consequently, revealing the molecu-
lar mechanism of disease resistance from the perspective 
of the composition and diversity of the bacterial com-
munity in 3nCC helps us to understand its adaptability 
to various environments. The impact of triploidization on 
the microbiome and the mechanisms involved have not 
yet been thoroughly examined.

Triploidization raises questions about whether the 
immune response is influenced by the microbiota or 
directly by the host immune system, so we identified 
microbiota and gene expression in the intestines between 
diploid and triploid Carassius auratus. A shift or change 
in the structure and diversity of intestine microbiota 
was evident in this study. Moreover, 3nCC was signifi-
cantly more abundant than 2nCC in the Vibrio genus. 

Numerous studies have revealed that Vibrio is associated 
with immune responses. For instance, grouper control of 
immunity and protection from Vibrio anguillarum infec-
tions can be achieved using a probiotic lactic acid bacte-
rium Pediococcus pentosaceus strain 4012 [37]. An entire 
cDNA for a clip domain serine proteinase gene could 
bond to Aeromonas hydrophila, Vibro anguillarum, and 
Vibro alginolyticus, which thus reduced the pathogen-
induced mortality rate [38]. The consumption of 1.0 and 
2.0% Siegesbeckia glabrescens extract enriched diet signif-
icantly improved immune activity, improved the disease 
resistance of Epinephelus bruneus to Vibro parahaemo-
lyticus, and reduced its cumulative mortality [39]. Several 
prior works suggested that Vibro is a harmful bacteria 
population. However, one indicates that the bacteria of 
the Vibrionaceae family (Vibro) are the key component of 
bivalve microbiota, which can cope with infectious dis-
eases [40]. Our results suggest that triploidization can 

Fig. 4  Scatter plot of enriched GO terms for DETs between 3nCC and 2nCC. Pvalue is presented on the x-axis, and the top 20 pathways are shown 
on the y-axis. Qvalue is the corrected Pvalue. Color scale indicates Qvalue. Circle diameters represent the number of transcripts associated
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potentially alter intestine microbiota. It can be specu-
lated that the higher abundance of Vibro in 3nCC may be 
more resistant to infections through immune response.

In this study, NLRP3, LY9, PNMA1, MR1, PELI1, and 
NOTCH2 were the up-regulated genes, and NFIL3 and 
NLRC4 were the down-regulated genes as a result of trip-
loidization. NLRP3 has been demonstrated to have an 
important role in the inflammatory response in numer-
ous studies. Christ et  al. depicted that NLRP3-deficient 
mice were not affected by western diet-induced sys-
temic inflammation, myeloid progenitor proliferation, 
and re-programming, which might have contributed to 
mediating the negative effects of trained immunity in 
inflammatory diseases [41]. Deng et  al. uncovered that 
NLRP3 inflammasome in Tetraodon nigroviridis may 
contribute to the antibacterial immune response and pro-
duce mature TnIL-1β after activation [42]. In zebrafish, 

NLRP3 inflammasome has functional roles in anti-bacte-
rial immunity [43]. In the case of LY9, it is independent 
of genetic background that LY9-deficient mice sponta-
neously developed antinuclear antibodies (ANA), anti-
dsDNA, and anti-nucleosome autoantibodies, which are 
typical markers of systemic autoimmunity [44].

PNMA1 falls under the family of proteins implicated 
in an autoimmune disorder called paraneoplastic neu-
rological syndrome [45]. The high expression of PNMA1 
in mice is possibly a risk factor for neurodegenerative 
disorders [46]. Mammals possess a non-classical class 
I molecule, MR1, which serves as a sensor of microbial 
metabolomes and should be able to detect intracellu-
lar infection early on [47]. Many studies suggest MR1 
restricted T cells have an important role in immune con-
texts, ranging from cancer to autoimmunity and infec-
tion [48]. As a transcriptional regulator of immune cell 

Fig. 5  Scatter plot of enriched KEGG pathways for DETs between 3nCC and 2nCC. Pvalue is presented on the x-axis, and the top 20 pathways are 
shown on the y-axis. Pvalues are corrected to produce Qvalues. Color scale is used to represent Qvalues. Numbers of transcripts associated with 
each circle are indicated by their diameters
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differentiation, NFIL3 is well-known [49]. According 
to Geiger et  al., NFIL3 plays an important cell-intrinsic 
role in developing gut-associated ILC3s. Additionally, 
NFIL3 deficiency significantly reduces the intestinal 
innate immune response against acute bacterial infec-
tions such as Citrobacter rodentium and Clostridium 
difficile [50]. In grass carp, NFIL3 participates in host 

immunity against pathogen infection and can activate 
various gene expressions [51]. NLRC4 belongs to the 
Nod-like receptor family (NLRs), a group of cytosolic 
receptors that sense bacterial molecules [52]. By inhibit-
ing the NLR pathway, Wang et al. suggested that NLRC4 
silencing alleviates lung injury and inflammation induced 
by septic shock [53]. Ubiquitin E3 ligase PELI1 facilitates 

Fig. 6  Analysis of selected DETs between 3nCC and 2nCC by qPCR. The data represent means ± SD from three independent experiments. *p < 0.05 
versus control, **p < 0.01 versus control

Fig. 7  Correlation between normalized mRNA-seq results and qRT-PCR expression values. The scatterplot shows the log2 fold change of FPKM and 
qRT-PCR expression values; a trend line is shown in blue
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innate immunity and is activated by receptor signals [54]. 
The experimental autoimmune encephalomyelitis with 
mice lacking PELI1 found that antigen presentation was 
enhanced, adaptive and innate immune cells were more 
active, and proteins involved in iron metabolism were 
altered [55]. NOTCH2 is a single-pass transmembrane 
receptor that responds to ligands from the DSL (Delta-
like family) receptors [56]. This transcription factor is 
expressed by various tissues and cells within the hemato-
lymphatic compartment. It has a crucial role in the differ-
entiation and functionality of various immunity cells [57]. 
Maekawa et al. demonstrated the impaired differentiation 
of Notch2-deficient T cells into cytotoxic T lymphocytes 
[58]. Triploidization may influence immune function by 
modulating the expression levels of these genes. How-
ever, it remains unclear whether changes in immune-
related genes are caused either by triploidization or by 
an increase in Vibrio. We speculate that these immune-
related genes could potentially modulate the immune 
response and may have a role in immune tolerance to 
commensal microbes, enabling 3nCC to exhibit stronger 
resistance to disease than 2nCC.

Conclusions
Triploidization could modify the intestine microbiota 
and significantly increase the relative abundance of Vibro, 
which may, in turn, enhance disease resistance in 3nRR. 
We also found that eight immunity-related genes have 
important implications in regulating immune response 
and may function in immune tolerance to commensal 
microbes, enabling 3nCC to exhibit a stronger resistance 
to disease than 2nCC. The observations provide clues to 
decipher disease resistance in 3nCC in future work.

Methods
Sample preparation
In 2021, three specimens of both diploid (2nCC) and 
triploid (3nCC) Carassius auratus were sampled from 
the same area of Dongting Lake in Hunan Province. A 
flow cytometer (BD Biosciences, San Jose, California, 
USA) was employed to determine the ploidy type of each 
sample. Each fish was injected with heparinized syringes 
to obtain its red blood cells from its caudal vein. Stain-
ing solution (NIM-DAPI 731085) (NPE systems, Pem-
broke Pines, FL, USA) was added to the blood samples 
for 10 min. Against the DNA of red crucian carp, the total 
DNA content of each of the fish was compared.

After euthanizing the fish with MS-222 (100 mg/L, 
Western Chemical, Inc., Ferndale, Washington), the 
intestinal tracts were dissected with sterile scissors. Then 
the intestinal contents were carefully collected into ster-
ile tubes and stored at − 80 °C for further sequencing of 
the 16 s rRNA. And RNA latter (Thermo Fisher Scientific, 

USA) was used to store the intestinal tissue shortly after 
collection, clearing out the contents, and storing it at 
− 80 °C.

Sequencing of the 16S rRNA gene
To extract the gut microbiome DNA, MoBio’s PowerSoil 
DNA Isolation Kit (Carlsbad CA) was used; the quality 
and quantity of the resulting DNA were measured using 
a NanoDrop analysis method. The Illumina HiSeq 2500 
library was constructed at the Biomarker Technologies 
Company (Beijing, China). These primers targeting the 
V4 and V5 regions of the 16S rRNA region were used: 
338-Forward (5′-ACT​CCT​ACG​GGG​GAG​GCC​AG) and 
806-Reverse (5′-GGA​CTA​CHVGGG​TWT​CTAAT).

NCBI has uploaded the raw 16S rRNA sequences 
under BioProject ID PRJNA856111. With the aid of 
Trimmomatic (version 0.33), the original data were quali-
fied, and the primer sequences were removed with Cuta-
dapt (version 1.9.1). Following merging the paired-end 
reads, chimeras were removed through UCHIME (ver-
sion 8.1), resulting in effective reads. Using USEARCH 
version 10.0, sequences with > 97% homology were clas-
sified into multiple operational taxonomic units (OTUs). 
Based on the SILVA reference database (version 132) and 
QIIME2 (version 2020.6), naïve Bayesian classifiers were 
employed to assign OTU sequences to SILVA representa-
tive sequences. To analyze differences in community 
structure between different groups, principal coordi-
nate analysis (PCoA) was performed. Through QIIME2, 
the beta diversity parameters (Chao1) were calculated. 
At the phylum, order, class, family, genus, and species 
taxonomic levels, histograms were created with the R 
software (version 3.5.3). LEfSe (http://​hutte​nhower.​sph.​
harva​rd.​edu/​galaxy/) applied the nonparametric factorial 
Kruskal-Wallis and Wilcoxon rank-sum tests to detect 
significantly different species at a level of 0.05 to deter-
mine the significant difference between different groups.

mRNA sequencing
Intestinal tissue RNA was isolated with Trizol rea-
gent (Invitrogen) after treatment with RNase Free 
DNase I (Dalian Takara Co. Limited, China). A Nan-
oDrop-2000 spectrophotometer (Implant, Westlake 
Village, USA) was used to measure RNA concentration 
and quality, and agarose (1%) gel electrophoresis was 
used to determine RNA integrity. cDNA synthesis and 
sequencing were performed using high-quality RNA 
from each sample. Under the manufacturer’s protocol, 
we constructed paired-end libraries with the TruSe-
qTM RNA library prep kit (Illumina, San Diego, CA, 
USA). Six cDNA libraries were generated by combin-
ing end-repair, 3′ end adenylation, and adapter ligation 
and enrichment (3 2nCC, 3 3nCC). High-throughput 

http://huttenhower.sph.harvard.edu/galaxy/
http://huttenhower.sph.harvard.edu/galaxy/
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sequencing was performed on an Illumina sequencing 
platform (Illumina HiSeqTM 2500). The public reposi-
tory of sequenced data at the NCBI (PRJNA857759) 
was considered.

Using the fastp software (version 0.20.0), adapters 
and low-quality reads were removed after sequencing. 
A quality assessment of the clean reads was performed 
using FastQC software (version 0.11.9), and alignments 
of the libraries to the RCC reference genome (https://​
bigd.​big.​ac.​cn/​search?​dbId=​gwh&q=​GWHAA​IA000​
00000) were performed with the HISAT2 tool (ver-
sion 2.1.0). Fragments per kilobase per million mapped 
fragments (FPKMs) were used to calculate the gene 
expression level. DEGSeq2 R package (Version 1.28.1) 
was used to analyze the differentially expressed tran-
scripts (DETs) of 3nCC versus 2nCC. DETs were 
genes with a fold change (FC) > 2 and false discovery 
rate (FDR) < 0.05. ClusterProfiler (version 3.6.0) with 
p < 0.05 was used to perform Gene ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses on these DETs.

Verification of quantitative real‑time PCR
A set of eight DETs (six up-regulated DETs and two 
down-regulated DETs) was tested using quantitative 
real-time (qRT) PCR to assess the reliability of 3nCC 
sequencing results compared with 2nCC sequencing 
results. Following manufacturer’s instructions, cDNA 
synthesis was performed using the PrimeScriptTM 
RT reagent kit (Takara, Dalian, China). Listed in Addi-
tional  file  4 are the primer sequences for β-actin (the 
internal control gene) and these DETs. qRT-PCR reac-
tions were conducted in a 10 μL volume using 5 μL of 
the SYBR Green qPCR Master Mix, 0.5 μL of 20 μM 
of each primer, 1 μL of cDNA (1:10 dilution), and 3 μL 
of nuclease-free water. As a general rule, the thermal 
cycle for qRT-PCR was 95 °C for 2 min, 40 cycles at 
95 °C for 15 s, and annealing at 60 °C for 30 s. qRT-PCR 
comprised three replications per biological sample. 
By using the 2−ΔΔCt method, we computed the relative 
mRNA expression levels. The data were analyzed using 
SPSS (v22.0) software (SPSS Inc., Chicago, IL, USA). 
We analyzed Students’t-tests to determine whether the 
results were statistically significant.
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