
Shen et al. BMC Microbiology          (2022) 22:281  
https://doi.org/10.1186/s12866-022-02702-y

RESEARCH

The temporal and spatial endophytic 
fungal community of Huperzia serrata: diversity 
and relevance to huperzine A production 
by the host
Zhuhui Shen, Xubing Liu, Jia Yang, Yanli Wang, Kai Yao, Qingmiao Huo, Yanping Fu, Yahui Wei* and Bin Guo* 

Abstract 

Background:  Plants maintain the steady-state balance of the mutually beneficial symbiosis relationship with their 
endophytic fungi through secondary metabolites. Meanwhile endophytic fungi can serve as biological inducers to 
promote the biosynthesis and accumulation of valuable secondary metabolites in host plants through a variety of 
ways. The composition and structure of endophytic fungal community are affected by many factors, including tissues, 
seasons and so on. In this work, we studied the community diversity, temporal and spatial pattern of endophytic fungi 
detected from the roots, stems and leaves of Huperzia serrata in different seasons. The correlation between endo-
phytic fungi and huperzine A (HupA) content in plants was analyzed.

Results:  A total of 7005 operational taxonomic units were detected, and all strains were identified as 14 phyla, 54 
classes, 140 orders, 351 families and 742 genera. Alpha diversity analysis showed that the diversity of endophytic 
fungi in stem and leaf was higher than that in root, and the diversity in summer (August) was lower than that in other 
months. NMDS analysis showed that the endophytic fungal communities of leaves, stems and roots were significantly 
different, and the root and leaf communities were also different between four seasons. Through correlation analysis, it 
was found that 33 genera of the endophytic fungi of H. serrata showed a significant positive correlation with the con-
tent of HupA (p < 0.05), of which 13 genera (Strelitziana, Devriesia, Articulospora, Derxomyces, Cyphellophora, Trechispora, 
Kurtzmanomyces, Capnobotryella, Erythrobasidium, Camptophora, Stagonospora, Lachnum, Golubevia) showed a highly 
significant positive correlation with the content of HupA (p < 0.01). These endophytic fungi may have the potential to 
promote the biosynthesis and accumulation of HupA in plant.

Conclusions:  This report is the first time to analyze the diversity of endophytic fungi in tissues of H. serrata in differ-
ent seasons, which proves that there is variability in different tissues and seasonal distribution patterns. These findings 
provide references to the study of endophytic fungi of H. serrata.
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Introduction
Huperzia serrata (Thunb. ex Murray) Trev., also known 
as Qian Ceng Ta, is a perennial medicinal fern in Lyco-
podiaceae. It has the curative effects of hemostasis, 
removing blood stasis, detoxification and treatment of 
schizophrenia [1–4]. Alkaloids, triterpenoids and flavo-
noids are the main effective ingredients of H. serrata [5].
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Huperzine A (HupA), isolated from H. serrata in 1986, 
has been proved to be a highly selective and reversible 
acetylcholinesterase inhibitor with a new chemical struc-
ture, and has a strong efficacy in the treatment of Alzhei-
mer disease (AD) and myasthenia gravis [4, 6, 7]. HupA 
has been approved as a drug for the treatment of AD in 
China [8] and is used as a supplement to prevent fur-
ther memory degradation in the United States [9]. How-
ever, the content of Hup A in wild H. serrata plants is 
low (0.0046%-0.0133%) [10], and the plants grow slowly, 
which is difficult to meet the market demand. Overex-
ploitation and habitat fragmentation have made H. ser-
rata an endangered plant in China [11, 12]. At present, 
the chemical synthesis of HupA is not suitable for indus-
trial production [13], as is the artificial cultivation tech-
nology and tissue culture technology of H. serrata [14].

Endophytic fungi reside in cells or intercellular spaces 
at a certain life stage or throughout the life cycle in 
healthy plants, inducing hidden and asymptomatic infec-
tions in plant tissues, without causing disease symp-
toms. Among them, fungi that have a dormant or latent 
period in plant tissues before causing disease symptoms 
on the host plants are still endophytic fungi, although 
these fungi are clearly pathogenic; pathogenic fungi that 
are parasitic in plants but where disease symptoms do 
not appear after infection are also endophytic fungi [15]. 
Endophytic fungi obtain most of the nutrients from the 
host plants and provide ecological benefits to the plants 
in return. Apparent host benefits include improved tol-
erance to heavy metals, increased drought resistance, 
reduced herbivory, systemic resistance against patho-
gens, and generally enhanced growth [16]. In addition, 
endophytic fungi also promote the production of second-
ary metabolites of host plants by stimulating key genes in 
the plant biosynthesis pathway and synthesizing enzymes 
that can convert precursors to active compounds or 
their analogues [17–19]. It is reported that the content 
of HupA produced by plants varies from different tissues 
and seasons [10]. At present, researchers have isolated 
some endophytic fungi, which produce HupA, from H. 
serrata and other Phlegmariurus by using conventional 
methods of isolation and purification of endophytic fungi 
[20–34]. Several studies have also shown that endophytic 
fungal community composition is correlated with plant 
tissues and seasons [35–37]. Therefore, it is necessary to 
study the diversity and composition of endophytic fungi 
of H. serrata.

In this study, we explored the temporal and spatial 
diversity of endophytic fungal community of H. ser-
rata. Furthermore, endophytic fungi with significant 
positive correlation between HupA content of H. serrata 
were screened. It provides more reference to a clearer 

understanding of the fungal community ecology of this 
important medicinal plant.

Results
Classification and distribution of endophytic fungi
A total of 7005 operational taxonomic units (OTUs) 
were detected in 36 samples(4 seasons × 3 tissues × 3 
replicates)of H. serrata. In all samples, the rarefaction 
curves tended to be flat, indicating that the sequencing 
depth was sufficient (Fig. 1). According to ITS sequence 
classification, all strains were identified as in 14 phyla, 
54 classes, 140 orders, 351 families, 742 genera (includ-
ing unclassified and unidentified groups). At the phylum 
level, Ascomycota was the dominant phylum, followed by 
Basidiomycota (Fig. 2), and their relative abundance was 
54% and 25% respectively (Fig. S1). The main classes of 
Ascomycota were Eurotiomycetes (20%), Dothideomy-
cetes (12%) and Leotiomycetes (11%). The main classes of 
Basidiomycota were Agaricomycetes (11%) and Tremel-
lomycetes (8%) (Fig. S1).

At the genus level, Cladophialophora (8%), Sebacina 
(3%), Cladosporium (2%), Russula (2%), Tausonia (2%), 
Trichomerium (2%) and Cypellophora (2%) were the top 
7 genera with high abundance, and they were distributed 
among different tissues in different seasons (Fig. S1). The 
dominant endophytic fungal groups (genera with rela-
tive abundance > 2%) varied with tissues and seasons. In 
terms of tissue distribution, the dominant genera of the 
leaf, stem and root were all in the top 20 of the total rela-
tive abundance, of which Cladophialophora was the com-
mon dominant genus in the three tissues. The dominant 
genera in the leaf were Cladosporium, Cladophialophora, 
Tausonia, Cypellophora and Endophora. The dominant 
genera in the stem were Cladophialophora, Trichome-
rium and Cypellophora. The dominant genera in the root 
were Sebacina, Cladophialophora, Russula, Cystofiloba-
sidium, Chloridium and Oidiodendron. Latifluus was a 
fungal genus restricted to roots (Fig. 3).

In terms of seasonal distribution, the dominant gen-
era of February, May, August and November were all 
in the top 20 of the total relative abundance, of which 
Cladophialophora was the common dominant genus 
in four months. The dominant fungal genera in Febru-
ary were Cladophialophora, Tausonia, Leucosporidium, 
and Russula. In May, the dominant fungal genera were 
Cladophialophora, Chloridium, Russula, Trichomerium, 
Cyphellophora and Mortierella. In August, the dominant 
fungal genera were Sebacina, Cladosporium, Cystofiloba-
sidium, Cladophialophora, Dioszegia, Endophoma, Lac-
tifluus and Tausonia. In November, the dominant fungal 
genera were Cladophialophora, Russula and Cyphel-
lophora. Latifluus was a fungal genus found only in the 
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August sampling. Chloridium was not detected in the 
samples of August (Fig. 4).

Diversity of endophytic fungi
A total of 7005 OTUs were detected in all ITS libraries, 
of which less than 10% were found in common for all 
three tissues (Fig. 5a). The numbers of unique and com-
mon OUTs for the three tissues were leaf > stem > root. 
The endophytic fungal communities in three tissues were 
calculated for alpha diversity indices. The depth index 
(Goods coverage) of each sample library was more than 
99.9%, indicating that the sampling was reasonable. Shan-
non, Simpson’s and Pielou’s evenness indexes of stems 
were significantly higher than those of roots (Fig.  6a). 
In general, all diversity indexes showed that the highest 
richness, diversity and evenness of endophytic fungal 
community was from the stem, followed by the leaf, and 
the lowest was the root.

Of the detected OTUs, less than 5% were found 
in common for all four months (Fig.  5b). Overall, 
the total and unique OTUs in the four months were 
M2 > M5 > M11 > M8. Alpha diversity values of the endo-
phytic fungal communities in the four months were cal-
culated. Simpson’s index and Pielou’s evenness index in 
M5 were significantly higher than it in M8 (Fig. 6b). This 
indicates that the richness, diversity and evenness of 
endophytic fungi were highest in M5 and lowest in M8.

The temporal and spatial patterns of endophytic fungal 
community
The similarity between endophytic fungi in different tis-
sues and seasons was analyzed by Non-metric multi-
dimensional scaling (NMDS). The results showed that 
there were highly significant differences (p = 0.001) in 
endophytic fungi between different tissues (Fig. 7a). The 
results of four months’ analysis showed that there were 
highly significant differences (p < 0.01) in the commu-
nity distribution of endophytic fungi between the three 
tissues in August and November (Fig. 7b, c). In February 
and May, the endophytic fungal communities of leaf and 
stem were similar, and they were significantly different 
from those of root (p < 0.05) (Fig. 7d, e).

Adonis results showed that there were significant dif-
ferences (p = 0.024) in fungal communities of endophytic 
fungi between different months, but NMDS analysis 
showed that stress more than 0.2 (Fig. 8a). Therefore, we 
analyzed the three tissues independently, and the endo-
phytic fungal communities of the three tissues were sig-
nificantly different (p < 0.05) between the four months. 
The results of NMDS analysis showed that the grouping 
results of roots and leaves were more reliable (stress < 0.2) 
(Fig.  8b, d), while the fungal communities of stems 
were not reliable for grouping between the four months 
(Fig.  8c). The fungal communities in roots were similar 
in November and May. The fungal communities of leaves 

Fig. 1  Rarefaction curves of OTUs in 12 groups of samples (M8, August; M11, November; M2, February; M5, May; R, root; S, stem; L, leaf )
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were similar in February, August and November. The fun-
gal communities of stems in August and November were 
similar, those in February and May were similar.

Correlation between endophytic fungal communities 
and HupA content of H. serrata
The contents of HupA in 36 samples of H. serrata (4 sea-
sons × 3 tissues × 3 replicates) were determined (Fig.  9). 
Considering same month of sampling, HupA content was 
highest in leaves, followed by stems and roots. The HupA 
content of leaves in November was highest.

The correlation between the contents of HupA with 
endophytic fungal communities was further analyzed 
and the Spearman correlation index was calculated. It 
was found that 33 genera of the endophytic fungi of H. 
serrata showed a significant positive correlation with the 
content of HupA (p < 0.05), of which 13 genera showed a 
highly significant positive correlation with the content of 
HupA (p < 0.01) (Table 1).

Discussion
This is the first study where endophytic fungal commu-
nities of H. serrata were analyzed during four seasons. 
A total of 7005 OTUs were identified, belonging to 14 
phyla, 54 classes, 140 orders, 351 families and 742 gen-
era. Ascomycota was the dominant phylum, followed by 
Basidiomycota, and their abundance accounted for 79% 

of the communities. At the genus level, the dominant 
genera of endophytic fungi in each sample were different. 
Cladophialophora (8%) was the dominant genus in differ-
ent seasons and different tissues. Latifluus was a unique 
genus of root samples of August.

The number of endophytic fungi identified from the 
three tissues was leaf > stem > root. The highest rich-
ness and diversity of endophytic fungal community 
was in stems, followed by leaves and roots. This result 
is different from previous reports [38–40], which may 
be due to the fact that endophytic fungi were identified 
from H. serrata in different seasons, and the differences 
of endophytic communities in tissues are shaped by the 
factors such as plant species, soil type, geographic, and 
environmental conditions [41]. NMDS analysis showed 
that there were significant differences between endo-
phytic fungal communities when all four seasons were 
considered in root, stem and leaf. However, in Febru-
ary and May, the endophytic fungal communities of leaf 
were similar to that of stem. This was consistent with the 
reported results [38–40]. The NMDS analysis of the same 
tissue across four months revealed that there were signif-
icant differences in the communities of root and leaf, but 
the analysis of stem communities provided a poor repre-
sentation. Since the fungal diversity of stem was higher 
than that of leaf and root, the analysis of whole plant 
communities across four months was largely influenced 

Fig. 2  Relative abundance of fungal phylum in 36 samples of H. serrata (excluding unclassified and unidentified phyla)
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by the distribution of endophytic fungal communities in 
the stem. So far, we have come to the conclusion that the 
distribution of endophytic fungi community of H. serrata 
varies with tissues and seasons.

Alpha diversity analysis showed that the richness and 
diversity of endophytic fungi was the lowest in summer 
(August) and the highest in spring (May). The variation 
in a seasonal pattern of fungal colonization might be 
notably associated with the seasonal behavior of endo-
phytic fungi. In seasonal studies, some endophytic fungi 
detected from summer or autumn had high diversity. It 
was suggested that the high humidity and high tempera-
ture in the rainy season are conducive to the growth and 
diffusion of fungal spores [37, 42]. However, some stud-
ies have reported that the diversity of endophytic fungi 
is higher in winter [43–45]. Since spring, a large number 
of fungal species in H. serrata have gradually been in a 
dynamic equilibrium through continuous interspecific 
competition. The dominant position of dominant species 
was gradually strengthened. The relative abundance of 
the top 20 genera in August is higher than that of other 
three months. Therefore, the richness and diversity index 

in August are low. With the decrease of temperature, 
the physiological activity of endophytic fungi decreased, 
interspecific competition was not active in winter, and 
species diversity began to increase. However, this infer-
ence needs further research to verify.

Up to now, about 16 fungal genera have been reported 
to produce HupA [20–34], of which 13 genera were found 
in this report. Their relative abundance was the highest 
in leaves (Acremonium, Alternaria, Arthrinium, Botrytis, 
Cladosporium, Colletotrichum, Podospora), followed by 
stems (Aspergillus, Leptosphaeria, Mucor, Penicillium), 
and the lowest in roots (Fusarium, Trichoderma)(Fig. 
S2a). In the distribution of months, there were 10 genera 
(Alternaria, Cladosporium, Colletotrichum, Fusarium, 
Leptosphaeria, Mucor, Acremonium, Arthrinium, Asper-
gillus, Penicillium) with higher relative abundance in 
August and November (Fig. S2b). The climate of August 
where the plant materials were collected is suitable for 
the growth of endophytic fungi producing HupA [46, 47]. 
Cladosporium was dominant in leaf samples of August. 
So, for future isolations, at least from this field site, the 
probability of successful isolation in summer is higher.

Fig. 3  Relative abundance of fungal genera in root, stem and leaf samples of H. serrata (top 20 genera of the total)
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Fig. 5  Venn diagrams showing number of shared OTUs among sample groups. a Number of shared OTUs among the root, stem and leaf samples 
associated with H. serrata. b Number of shared OTUs among the August (M8), November (M11), February (M2) and May (M5) samples

Fig. 4  Relative abundance of fungal genera in August (M8), November (M11), February (M2) and May (M5) samples (top 20 genera of the total)
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Fig. 6  a Alpha diversity indices of endophytic fungi in different tissue samples. b Alpha diversity indices of endophytic fungi in different season 
samples (M8, August; M11, November; M2, February; M5, May). The number under the diversity index label is the p value of Kruskal Wallis test. The 
asterisk on the line in the figure indicates that there is a significant difference between the two groups (p < 0.05)

Fig. 7  NMDS analysis of fungal communities among three tissues samples of H. serrata in different seasons (a, four seasons; b, M8, August; c, M11, 
November; d, M2, February; e, M5, May)
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Fig. 8  NMDS analysis of fungal communities among four seasons (M8, August; M11, November; M2, February; M5, May) samples of H. serrata in 
different tissues (a, three tissues; b, root; c, stem; d, leaf )

Fig. 9  Content of HupA in H. serrata (M8, August; M11, November; M2, February; M5, May; R, root; S, stem; L, leaf ). Different letters above the bars 
indicate statistically significant (p < 0.05) differences according to Tukey’s Method tests. Error bars represent SE
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The accumulation of alkaloids is an important chemi-
cal defense strategy for plants to adapt to environmen-
tal stress [48–50], and the defense response of plants is 
usually triggered by the perception of endophytic fungi 
[51, 52]. The content of HupA in plants was consistent 
with the trend of the endophytic fungi presence, across 
tissues and seasons. Thus, the existence of some special 
fungal species might be one key factor that induced the 
accumulation of HupA in H. serrata. Spearman analysis 
showed positive correlation of 33 endophytic fungal gen-
era with the content of HupA (p < 0.05), with 13 genera as 
highly significant (p < 0.01). Correlation analysis is a fea-
sible and convenient method to detect endophytic fungi 

that potentially promote the accumulation of secondary 
metabolites in plants [53]. These endophytic fungi have 
the potential to promote the biosynthesis and accumu-
lation of HupA in plant. Endophytic fungi can serve as 
biological inducers biological inducers to promote the 
production of secondary metabolites of host plants by 
stimulating key genes and synthesizing enzymes in plant 
biosynthesis pathway [54]. Endophytic fungus Mucor cir-
cinelloides DF20 promote tanshinone biosynthesis and 
accumulation in Salvia miltiorrhiza root by upregulat-
ing the key enzyme genes expression levels of the biosyn-
thesis pathway [18]. Endophytic fungi that promote the 
biosynthesis and accumulation of HupA in plants and its 
mechanism need to be further studied.

Sebacina was the most dominant community in 
August. Sebacina has been reported to promote plant 
growth while weakening plant resistance to herbivores 
[55]. HupA produced by H. serrata is an alkaloid that can 
resist herbivores [56, 57]. In this study, Sebacina showed 
a highly significant negative correlation with the content 
of HupA in plant (Table S1). It can be speculated that 
Sebacina reduced the content of HupA and damaged the 
herbivorous resistance of plants, which is the reason for 
the low content of HupA in August plants.

Conclusions
Fungal endophytic communities of H. serrata varied with 
season and tissue type, showing high variability in the 
spatial–temporal distribution patterns. Content of HupA 
was consistent with the relative abundance of 33 fungal 
genera across seasons and tissues. It provides a data ref-
erence to the promotion of plant HupA biosynthesis.

Materials and methods
Plant samples procedure
The natural populations of H. serrata materials were col-
lected from Ningqiang County (latitude 32°55′N / longi-
tude 105°55′E, with an altitude of 840 m), Hanzhong City, 
Shaanxi Province, China and deposited in the Provincial 
Key Laboratory of Biotechnology, Northwest Univer-
sity (voucher No. NWUHS1708001, NWUHS1711001, 
NWUHS1802001, NWUHS1805001). The plant material 
was identified by Prof. Shuonan Wei of Northwest Uni-
versity. According to the local climate, March–May is 
spring, June–August is summer, September–November 
is autumn, and December-the following February of the 
year is winter [46]. H. serrata was collected at the end of 
the four months in August 2017, November 2017, Feb-
ruary 2018, and May 2018. We choose to collect mature 
plants with plant height of 15–20 cm [58]. We randomly 
selected 5 plants from 30 plants collected each time and 
merged them into one sample, which was divided into 
three parts: the root, stem and leaf. Three biological 

Table 1  The positive correlation of endophytic fungi with HupA 
content within H. serrata (p < 0.05)

Genus Spearman’s correlation 
coefficient

Significance(p)

Strelitziana 0.776542 0

Devriesia 0.644937 0.000022

Articulospora 0.643924 0.000023

Derxomyces 0.640771 0.000026

Cyphellophora 0.579162 0.000215

Trechispora 0.556435 0.000425

Kurtzmanomyces 0.474750 0.003438

Capnobotryella 0.453266 0.005500

Erythrobasidium 0.448894 0.006030

Camptophora 0.446763 0.006304

Stagonospora 0.445764 0.006436

Lachnum 0.440435 0.007181

Golubevia 0.435129 0.007996

Phyllosticta 0.421009 0.010558

Taphrina 0.409584 0.013113

Colacogloea 0.395349 0.017009

Bannoa 0.393780 0.017492

Lepiota 0.393608 0.017546

Arachnopeziza 0.391924 0.018079

Helminthosporium 0.384183 0.020705

Marasmius 0.381949 0.021519

Cryptocoryneum 0.379425 0.022472

Pestalotiopsis 0.375937 0.023845

Pseudeurotium 0.371951 0.025498

Meira 0.361083 0.030493

Alternaria 0.357805 0.032148

Herpotrichia 0.349738 0.036536

Carlosrosaea 0.349643 0.036590

Proliferodiscus 0.347363 0.037917

Lactarius 0.341633 0.041423

Tylospora 0.339846 0.042568

Arthrinium 0.339309 0.042918

Moesziomyces 0.339130 0.043034
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repeats were prepared for each sample, a total of 36 
samples.

The whole plants were dug up with the roots and soil, 
kept the plants moist, placed in sterile self-sealing bags 
at 4  °C, and the material was processed within 24  h. 
The surface of the fresh H. serrata tissues were washed 
with water. After removing all spores, the samples were 
divided into three parts: the root, leaf, and stem. The 
samples were surface sterilized using the following steps: 
rinsed with sterilized distilled water for 30  s, soaked in 
75% ethanol for 2 min, rinsed 3 times with sterilized dis-
tilled water for 1 min each, then sterilized in 0.1% HgCl2 
for 8  min, rinsed 5 times with sterile water for 2  min 
each, finally dried with sterile filter paper. The last rinsing 
water was collected and used as the control. The material 
was divided into two parts. One part was used for DNA 
extraction of endophytic fungi, which was quickly frozen 
with liquid nitrogen and stored at –80 °C, and the other 
part was used for HupA content detection.

DNA extraction, PCR amplification and high‑throughput 
sequencing
Each sample was fully ground in liquid nitrogen, and 1 g 
was transported to a 1.5  mL centrifuge tube with 700 
µL Cetyltrimethylammonium Bromide (CTAB) extract 
added(β-mercaptoethanol accounts for 0.2% of the 
extract). Extraction of total DNA from plant materials by 
CTAB method [59]. The extraction quality of total DNA 
was verified using electrophoresis on 1.2% agarose gels, 
and the concentration and purity of DNA were deter-
mined by DeNovix DS-11 spectrophotometer (DeNovix 
Scientific, Delaware, USA).

The intergenic transcribed spacer 1 (ITS1) region of 
the fungal rRNA genes was amplified with primers ITS1F 
(5’–CTT​GGT​CAT​TTA​GAG​GAA​GTAA–3’) [60] and 
ITS2R (5’–GCT​GCG​TTC​TTC​ATC​GAT​GC–3’) [61]. The 
PCR mixture (50 µL) contained 200 ng genomic DNA, 2 
µL forward and reverse primers (10  µM for each), 5 µL 
dNTPs (2.5 mM), 10 µL 5 × buffer, and 1 µL TransStart® 
FastPfu Fly DNA Polymerase (TransGen Biotech, Beijing, 
China), ddH2O to final volume. The PCRs conditions 
were as follows: 95  °C for 2  min; 30 cycles of 95  °C for 
20 s, 58 °C for 20 s, 72 °C for 1 min; a final extension at 
72 °C for 5 min. At the same time, set the collected rins-
ing water as the negative control, and any sample group 
with bands amplified by the negative control can’t be 
used for subsequent experiments. The 50 µL amplifica-
tion products were purified and recovered by 0.8 × vol-
ume of VAHTS® DNA Clean Beads (Vazyme, Jiangsu, 
China), and quantified with a FLx800 Microplate reader 
(BioTek, Vermont, USA).

The sequencing library was generated using the TruSeq 
Nano DNA LT library preparation kit (Illumina, Califor-
nia, USA), and the library was purified by 2% agarose gel 
electrophoresis. Finally, the construction and sequencing 
of the ITS clone libraries were performed by Personalbio 
(Shanghai Personal Biotechnology Co., Ltd., China) using 
an Illumina NovaSeq6000 platform.

Sequence processing and data analysis
Using DADA2 method, QIIME2 software was used 
for quality control, denoising, splicing and chimerism 
removal of sequencing data [62]. The above steps were 
analyzed for each library. After the denoising of all librar-
ies was completed, the OTUs feature sequences and 
OTU tables were merged, and singletons OTUs were 
removed (in all samples, the total number of sequences is 
only 1 OTU). We used the UNITE database (Release 8.0, 
https://​unite.​ut.​ee/) [63] to annotate species taxonomy.

In the previous analysis steps, the abundance table of 
OTU has been generated, and some subsequent analy-
sis steps need to be carried out at the same sequencing 
depth level. Therefore, the table needs to be transformed. 
The rarefaction method was adopted, and the flattening 
depth was set to 95% of the minimum sample sequence 
size [64, 65].

Python tools are used to visualize the composition and 
distribution of samples at a specific classification level. 
We used Krona software (https://​github.​com/​marbl/​
Krona/​wiki) to make an interactive display of the taxo-
nomic composition of the community [66].

In order to comprehensively evaluate the alpha diver-
sity of endophytic fungal communities, Chao [67], 
observed species, Shannon [68], Simpson  [69], faith’s 
PD [70], Pielou’s evenness [71] and Good’s coverage [72] 
indices were evaluated using QIIME2 analysis software. 
Subgroup samples were plotted as box plots using the 
Python tool alpha diversity index to visualize the differ-
ences in alpha diversity between sample groups. Kruskal 
Wallis rank sum test and Dunn’ test were used to verify 
the significance of the difference.

Beta diversity analysis was used to compare the simi-
larity between sample communities. Jaccard distance 
were calculated using QIIME2 analysis software, and 
then NMDS analysis was done on these distance matrices 
using Python [73], and the results were plotted as two-
dimensional scatter plots. It is generally believed that 
when the stress value of the NMDS result is less than 0.2, 
the NMDS analysis result is more reliable [73]. Adonis 
was used to calculate the significance (p) between the 
sample groups. Differences were considered significant at 
p < 0.05 and highly significant at p ≤ 0.01.

https://unite.ut.ee/
https://github.com/marbl/Krona/wiki
https://github.com/marbl/Krona/wiki
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Extraction and content detection of HupA in plants
The extraction method of HupA from plants has been 
improved on the basis of traditional methods [74].

The plant materials were dried at 40  °C for 24 h, then 
ground into powder using liquid nitrogen and dried 
again. The material was weighed, mixed with 0.5% HCl at 
a ratio of 1:20 (g/mL), sonicated (500 W for 15 min), then 
left to stand for 12–14 h. The supernatant was obtained 
by centrifugation and filtration, and the above extrac-
tion steps were repeated twice (without standing), and 
the supernatants of the three extractions were combined. 
The supernatant was adjusted to pH 9.0 with NH4OH, 
allowed to stand for 2–3  h, extracted three times using 
equal volumes of chloroform (2  min of standing and 
15  min of sonication each time), and the chloroform 
of the three times was combined. The chloroform lay-
ers were evaporated to dryness with a rotary evaporator 
under low pressure. The residue was dissolved in 2  mL 
chromatographic methanol, purified through 0.22  μm 
Organic microporous membrane filtration and stored in 
injection vial for standby.

The detection of HupA was performed by high per-
formance liquid chromatography (HPLC) on a Shi-
madzu LC-20AT (Shimadzu, Tokyo, Japan) high 
performance liquid chromatograph with a C18 column 
(250 mm × 4.6 mm, 5 μm; Thermo Scientific, Massachu-
setts, USA). The mobile phase was ammonium acetate 
(0.08 mol/L)–methanol–acetonitrile (60:30:10, v/v/v), the 
flow rate was 0.8  mL/min, the injection volume was 10 
μL, and the detection wavelength was 308 nm.
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