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Abstract 

Background:  Salmonella are pathogenic foodborne bacteria with complex pathogenicity from numerous virulence 
genes housed in Salmonella pathogenicity islands (SPIs), plasmids, and other gene cassettes. However, Salmonella vir-
ulence gene distributions and mechanisms remain unestablished. In the Philippines, studies mainly report Salmonella 
incidences and antimicrobial resistance, but little to none on virulence profiles, their associations to animal sources, 
collection sites and Salmonella serogroups. Hence, a total of 799 Salmonella isolates, previously obtained from pig, 
cow, and chicken meat samples in wet markets and abattoirs (wet markets: 124 chicken, 151 cow, and 352 pig meat 
isolates; abattoirs: 172 pig tonsil and jejunum isolates) in Metro Manila, Philippines, were revived and confirmed as 
Salmonella through invA gene polymerase chain reaction (PCR). Isolates were then screened for eight virulence genes, 
namely avrA, hilA, sseC, mgtC, spi4R, pipB, spvC and spvR, by optimized multiplex PCR and significant pair associations 
between virulence genes were determined through Fisher’s exact test. Gene frequency patterns were also deter-
mined. Salmonella serogroups in addition to animal sources and location types were also used to predict virulence 
genes prevalence using binary logistic regression.

Results:  High frequencies (64 to 98%) of SPI virulence genes were detected among 799 Salmonella isolates namely 
mgtC, pipB, avrA, hilA, spi4R and sseC, from most to least. However, only one isolate was positive for plasmid-borne 
virulence genes, spvC and spvR. Diversity in virulence genes across Salmonella serogroups for 587 Salmonella isolates 
(O:3 = 250, O:4 = 133, O:6,7 = 99, O:8 = 93, O:9 = 12) was also demonstrated through statistical predictions, particularly 
for avrA, hilA, sseC, and mgtC. mgtC, the most frequent virulence gene, was predicted by serogroup O:9, while sseC, 
the least frequent, was predicted by serogroup O:4 and chicken animal source. The highest virulence gene pattern 
involved SPIs 1-5 genes which suggests the wide distribution and high pathogenic potential of Salmonella. Statistical 
analyses showed five virulence gene pair associations, namely avrA and hilA, avrA and spi4R, hilA and spi4R, sseC and 
spi4R, and mgtC and pipB. The animal sources predicted the presence of virulence genes, sseC and pipB, whereas loca-
tion type for hilA and spi4R, suggesting that these factors may contribute to the type and pathogenicity of Salmonella 
present.
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Background
Salmonella are Gram-negative, rod-shaped, facultative 
anaerobic, and motile pathogenic bacteria within the 
Enterobacteriaceae family [1] that commonly reside in 
food animals such as livestock and poultry. They are one 
of the leading causes of food-borne illnesses [2]. Exten-
sive diseases, whether gastroenteritis to systemically dis-
seminated infections, are brought about by numerous 
antigenic variations among more than 2600 serovars [3–
5]. Despite this, the genus Salmonella is divided only into 
S. enterica and S. bongori, with the former further divided 
into six subspecies [6]. However, subspecies I (S. enterica 
subsp. enterica) is the only one often associated with dis-
eases among mammals. This includes Enteritidis, Typh-
imurium, and Typhi, which commonly cause infections 
[7]. Salmonella classification depends on the antigenic 
characterization of O (somatic), H (flagellar), and Vi (cap-
sular) antigens and is traditionally performed through 
the White-Kauffmann-Le Minor scheme for serological 
testing [8]. The O-antigen corresponds to the O-polysac-
charide found in the outermost layer of Gram-negative 
cells. It varies in structure and sugar composition, thus 
providing discrimination of Salmonella serogroups, such 
as B (O:4), C1 (O:6,7), C2-3 (O:8), D (O:9), and E (O:3,10) 
[9–12]. Meanwhile, H antigens allow differentiation 
of serovars and primarily have two types; phase 1 and 
phase 2 flagellin proteins, encoded by fliC and fliB genes, 
respectively [13–15]. In the Philippines, several studies in 
genotyping Salmonella using multiplex polymerase chain 
reaction (PCR) of O, H1, and H2 associated genes have 
been conducted in Salmonella from abattoirs and wet 
markets in Metro Manila [16–19].

Salmonella pathogenicity islands (SPIs) contain a 
plethora of virulence genes encoding for type III secre-
tion systems (T3SS), transcriptional regulators, trans-
porters, host immune interference proteins, and effectors 
that mediate invasion within host intestinal cells [20]. 
With currently 23 SPIs, containing numerous viru-
lence factors and may have different distributions and 
genetic stabilities across Salmonella serovars [21, 22], 
Salmonella pathogenesis remains complex and largely 
unknown. The most studied SPI is SPI1, which is 40 kb 

in size and contains virulence genes such as inv, avr, 
hil, spa, sip, among others, and encodes for the T3SS 
responsible for contact-dependent transport of effec-
tor protein complexes into host cells hence contributing 
to invasion, pathogenesis, and host inflammatory path-
ways [23]. SPI2, also a well-studied SPI and 40 kb in size, 
encodes for another T3SS distinct from SPI1 and is acti-
vated intracellularly required for Salmonella replication 
[22, 23]. It contains effectors such as sse, sif, sop, srf, ssp, 
among others, that affect Salmonella-containing vacu-
ole positioning, host cytoskeleton, and immune signal-
ing [24]. Meanwhile, SPI3, although less studied and only 
17 kb in size, has been involved with intramacrophage 
survival and primarily contains mgt, mis and mar genes 
[23]. SPI4 is 27 kb in size and has largely unknown func-
tions although has been shown to encode a type 1 secre-
tion system (T1SS) and mediates in adhesion [23, 25]. 
It harbors sii genes involved with immune modulation 
and bacterial internalization [26]. Lastly, SPI5 is only 
7 kb in size with roles in enteropathogenicity encoding 
genes such as pip which have been associated with lipid 
raft accumulation and intramacrophage survival [22, 23, 
27]. Meanwhile, plasmid-borne virulence genes in Sal-
monella, particularly spv genes, have only been found 
in a small number of subspecies I Salmonella serovars 
such as Choleraesuis, Dublin, Typhimurium and Enter-
itidis, among others, with variable sizes and contributes 
to increased pathogenicity, Salmonella replication in 
animals and systemic infections in humans [28]. Factors 
such as the amount of viable Salmonella ingested, Salmo-
nella serovar and pathogenicity, and host status can also 
influence the clinical outcome [29]. Virulence genes were 
previously shown to be differentially expressed among 
S. enterica serovars and strains. Invasive forms of Ente-
ritidis and Typhimurium, for example, exhibited repres-
sion of SPI1 and SPI4 virulence genes. In contrast, less 
invasive serovars Infantis and Hadar exhibited upregula-
tion during intramacrophage infection experiments [30]. 
In contrast, a comparison of invasive and non-invasive 
phenotypes within a serovar Typhimurium strain from 
phase-variation, showed that SPI1 virulence genes, such 
as those encoding flagellins and bacterioferritin, were 

Conclusion:  The high prevalence of virulence genes among Salmonella in the study suggests the high pathogenic 
potential of Salmonella from abattoirs and wet markets of Metro Manila, Philippines which poses food safety and pub-
lic health concerns and threatens the Philippine food animal industry. Statistical associations between virulence genes 
and prediction analyses across Salmonella serogroups and external factors such as animal source and location type 
and presence of virulence genes suggest the diversity of Salmonella virulence and illustrate determining factors to 
Salmonella pathogenicity. This study recommends relevant agencies in the Philippines to improve standards in food 
animal industries and increase efforts in monitoring of foodborne pathogens.
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upregulated in invasive phenotypes [31]. Besides inci-
dence, serogroup and serovar data [12, 16–19] and in 
silico serotyping using invA virulence gene [32], there is 
little to no information about the prevalence of virulence-
associated genes in Salmonella in the Philippines with 
only spvC being detected from wet markets of Metro 
Manila [16]. Hence, this study detects virulence genes 
through multiplex PCR of Salmonella that were previ-
ously isolated and serogrouped in earlier studies from 
various retail meat of pig, cow, or chicken origins in wet 
markets, and pig tonsils and jejuna in abattoirs of Metro 
Manila. This study also determines statistical associations 
among virulence genes and predictions of their preva-
lence by Salmonella serogroups and external factors.

Methodology
Revival of Salmonella isolates
A total of 799 Salmonella isolates were previously col-
lected from 2013 to 2016 by the Pathogen-Host-Envi-
ronment Interactions Research Laboratory, Institute of 
Biology, College of Science, University of the Philippines 
Diliman from various meat samples obtained from wet 
markets and slaughtered pig tonsil and jejunum samples 
from abattoirs of Metro Manila, Philippines [12, 18, 19]. 
Of the 799 isolates, only 587 were previously subjected to 
molecular serogrouping, while the remaining 212 isolates 
were either not previously subjected to serogrouping or 
possessed putative identities [12, 19]. For wet market 
location type, various meat samples resulted in a total 
of 672 isolates wherein 151 isolates were from cows, 124 
from chickens and 352 from pigs. Various meat samples 
included different meat products in retail wet markets 
such as different parts and raw or processed meats of the 
three animal sources. For abattoir location type, there 
were a total of 172 isolates, all from tonsils and jejuna of 
slaughtered pigs. In the case of Salmonella serogroups, 
250 belong to the O:3 serogroup, 133 to O:4, 99 to O:6,7, 
93 to O:8, and 12 to O:9. Culture-based isolation of Sal-
monella from these studies followed standard proto-
cols [16, 17, 19]. Additionally, confirmed isolates stored 
in glycerol stocks at − 20 °C were subjected to a revival 
process for this study based on protocols from previous 
studies [12, 19] with some modifications. Briefly, 100-μL 
glycerol stock culture was transferred to 900-μL trypti-
case soy broth (TSB) (BD Diagnostics System, NJ, USA) 
and incubated at 37 °C for 18-24 h. Then, a loopful of TSB 
culture was streaked onto xylose lysine deoxycholate 
(XLD) agar (BD Diagnostics System, NJ, USA) plates and 
incubated at 37 °C for 18-24 h. Typical Salmonella colo-
nies were then sub-cultured and purified on nutrient agar 
(NA) (BD Diagnostics System, NJ, USA) for DNA extrac-
tion and molecular confirmation through invA gene 
detection.

DNA extraction
DNA extraction was conducted using the boil-lysis 
method [16, 17, 19]. Two to three colonies of Salmonella 
grown on NA for 18-24 h at 37 °C were suspended in 
50-μL 1X Tris-EDTA (TE) buffer and heated at 100 °C for 
10 min. After cooling to room temperature, suspensions 
were then centrifuged at 2656 x g for 5 min. The superna-
tant, which contains the DNA was then transferred to a 
new sterile microcentrifuge tube and stored at − 20 °C for 
subsequent assays.

Molecular confirmation of Salmonella
DNA extracts in TE buffer were subjected to confirma-
tory PCR for Salmonella by amplifying and detecting the 
invA gene based on protocols from previous studies [16, 
17, 32]. Each PCR reaction was 12.5 μL in volume, which 
consisted of 6.25 μL 2× GoTaq Green Master Mix (Pro-
mega, WI, USA), 4.25 μL nuclease-free water, 0.5 μL each 
of 10 μM forward and reverse primers for invA gene, and 
1 μL DNA template. Descriptions, primer sequences, 
amplification conditions, amplicon size, and correspond-
ing references for invA gene can be found in Table 1.

Multiplex PCR optimization and detection of virulence 
genes
Multiplex and singleplex assays to detect eight viru-
lence genes, namely avrA, sseC, mgtC, pipB, spi4R, hilA, 
spvC, and spvR, representing SPIs 1–5 and plasmid-
borne genes, were optimized by temperature gradient 
PCR and used to screen invA confirmed Salmonella. 
Each multiplex PCR reaction was 12.5 μL in volume, 
which consisted of 6.25 μL 5X MyTaq HS Red Mix (Bio-
line, London, UK), 0.25 μL each of 10 μM forward and 
reverse primers, and 2 μL DNA template in TE buffer 
while variable amounts of nuclease-free water depend-
ing on the number of primer sets used to make up for the 
12.5 μL volume. Each singleplex PCR reaction was also 
12.5 μL in volume and followed the same composition as 
invA gene PCR, except for spi4R, which required 20 μM 
primer concentrations. avrA, sseC, mgtC, and pipB genes 
were optimized for multiplex PCR. Meanwhile, hilA and 
spvR genes were also optimized for multiplex PCR with 
the same conditions as with spvC, which was conducted 
in singleplex PCR. This is due to lack of amplification if 
all three genes (hilA, spvR and spvC) were included in 
the multiplex reaction. Amplification of the spi4R gene 
was optimized in singleplex PCR. Similar to invA gene, 
descriptions, primer sequences, amplification condi-
tions, amplicon sizes, and corresponding references for 
virulence genes investigated in this study can be found 
in Table  1. Through Kwik-Stik™ (Microbiologics), S. 
enterica subsp. enterica ATCC (American Type Culture 
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Collection) serovars Typhimurium (ATCC 14028) and 
Enteritidis (ATCC 13076) were used as positive controls 
for invA, avrA, sseC, mgtC, pipB, and spi4R, and Choler-
aesuis (7001) for hilA, spvC, and spvR. Negative controls 
used include Escherichia coli (ATCC 35218) and Kleb-
siella pneumoniae (ATCC 7881) also through Kwik-Stik™.

Gel electrophoresis and visualization
All PCR amplicons were analyzed in 2% agarose gels 
(Vivantis, Malaysia) in 1x Tris-Acetate-EDTA (TAE) 
with 10,000x SYBR® Safe DNA Gel Stain (ThermoFisher 
Scientific, MA, USA). 5 μL PCR products were loaded 
in each well with KAPA 10kbp Universal Ladder (Kapa 
Biosystems, MA, USA) as the molecular weight marker. 
Electrophoresis was conducted at 280 V for 45 min using 
the CBS Scientific gel electrophoresis system (Ther-
moFisher Scientific, MA, USA) containing 1× TAE solu-
tionas the running buffer. Gels were then viewed using 
the Vilber Lourmat gel documentation system (Vilber, 
France).

Data analysis
Frequencies and patterns of virulence genes across Sal-
monella isolates and serogroups were determined and 
visualized with Excel Office 365 (Microsoft) and R ver-
sion 4.0.5 in RStudio (R Foundation). UpSetR 1.4.0 was 
used to generate intersection plots for virulence gene 
patterns in RStudio [40, 41]. All statistical analyses were 
conducted in SPSS version 1.0.0.1447 (IBM). Signifi-
cant associations in pairs among virulence genes across 
Salmonella isolates were determined using Fisher’s 

exact test, a descriptive statistical analysis in place of 
Chi-Square under cross tabulations. Binary logistic 
regression was used to determine whether Salmonella 
serogroup (O:3, O:4, O:6,7, O:8, or O:9), animal source 
(pig, cow, or chicken), or location type (wet market 
or abattoir) as independent variables can predict the 
presence of virulence genes as dependent variables, 
thereby assessing their contributions to Salmonella 
virulence [42]. For Salmonella serogroup, O:3 was used 
as a reference category, the pig for animal source, and 
wet market for location type. Odds ratios and p-values 
were determined to signify predictive effects on viru-
lence genes prevalence. The statistical significance of 
all analyses was based on p-value less than 0.05. Analy-
ses excluded invA virulence gene since it was used as a 
marker for Salmonella spp. confirmation.

Results
Prevalence of virulence genes across Salmonella isolates
A total of 799 Salmonella isolates were successfully 
revived using culture-based methods and were positive 
for invA virulence gene, confirming their Salmonella 
identity. All virulence genes located in SPIs 1–5 showed 
more than 60% prevalence (Tables  2 and 3). Among 
them, the most frequently detected gene was mgtC 
(98.62%), followed by pipB (97.37%), avrA (88.24%), 
hilA (71.21%), spi4R (65.71%), and sseC (64.71%). In 
contrast, plasmid virulence genes spvC and spvR were 
only detected in one isolate (0.13%).

Table 2  Prevalence of virulence genes in Salmonella based on animal source

Virulence Genes

SPI1 SPI2 SPI3 SPI4 SPI5 Plasmid

No. of isolates avrA hilA sseC mgtC spi4R pipB spvC spvR

Total 799 705 (88.24%) 569 (71.21%) 517 (64.71%) 788 (98.62%) 525 (65.71%) 778 (97.37%) 1 (0.13%) 1 (0.13%)

Pig 524 472 (90.08%) 376 (71.76%) 322(61.45%) 514 (98.09%) 322 (61.45% 517 (98.66%) 1 (0.19%) 1 (0.19%)

Cow 151 125 (82.78%) 106 (70.2%) 103(68.21%) 150 (99.34%) 116 (76.82%) 142 (94.04%) 0 (0%) 0 (0%)

Chicken 124 108 (87.1%) 87 (70.16%) 92(74.19%) 124 (100%) 87 (70.16%) 119 (96.97%) 0 (0%) 0 (0%)

Table 3  Prevalence of virulence genes in Salmonella based on location type

Virulence Genes

SPI1 SPI2 SPI3 SPI4 SPI5 Plasmid

No. of isolates avrA hilA sseC mgtC spi4R pipB spvC spvR

Total 799 705 (88.24%) 569 (71.21%) 517 (64.71%) 788 (98.62%) 525 (65.71%) 778 (97.37%) 1 (0.13%) 1 (0.13%)

Wet market 627 545 (86.92%) 430 (68.58%) 418 (66.67%) 619 (98.72%) 444 (70.81%) 608 (96.97%) 0 (0%) 0 (0%)

Abattoir 172 160 (93.02%) 139 (80.81%) 99 (57.56%) 169 (98.26%) 81 (47.09%) 170 (98.84%) 1 (0.58%) 1 (0.58%)
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Prevalence of virulence genes among Salmonella 
serogroups
Considering the 587 Salmonella isolates that were pre-
viously subjected to molecular serogrouping [12, 19], 
serogroup-based variations in virulence gene frequen-
cies were observed. While mgtC and pipB showed a high 
prevalence (> 90%) across all serogroups, other genes, 
such as avrA, spi4R, sseC, and hilA showed drastic varia-
tions across Salmonella serogroups (Fig. 1). For avrA, the 
highest frequency was observed in O:3 (94.80%) while 
the lowest in O:4 (75.94%), and for spi4R, the highest was 
also in O:3 (72.80%) while the lowest in O:9 (58.33%). 
Interestingly, while other Salmonella serogroups showed 
more than 60% prevalence of sseC, O:6,7 only showed a 
19.19% detection rate. Similarly, O:9 only had a 33.33% 

prevalence of hilA as compared to more than 50% in 
other serogroups.

Binary logistic regression showed significant predic-
tions (p < 0.05) for the presence of some virulence genes 
among Salmonella serogroups (Table  4). avrA and sseC 
were predicted by serogroups O:4 and O:6,7, while hilA 
was predicted by serogroups O:4, O:6,7 and O:9, and 
mgtC was predicted by serogroup O:9 all relative to O:3 
reference group, while spi4R and pipB had no significant 
predictions (p  > 0.05). Odds ratio values revealed that 
serogroups O:4 and O:6,7 were less likely to carry avrA 
(p-values = < 0.001, 0.001; odds ratios = 0.173, 0.285) 
and sseC (p-values = 0.002, < 0.001; odds ratios = 0.469, 
0.061), but more likely to have hilA (p-values = 0.004, 
< 0.001; odds ratios = 2.073, 2.666) relative to O:3. 

Fig. 1  Frequencies of six (6) virulence genes across Salmonella serogroups, excluding spvC and spvR which are both not found across 587 
serogrouped Salmonella isolates

Table 4  Binary logistic regression on whether Salmonella serogroups predict virulence genes prevalence

*Significant predictor to virulence gene presence if p < 0.05, aRelative to O:3 serogroup (reference category was chosen based on their larger sample size)

Salmonella Serogroups

O:4a O:6,7a O:8a O:9a

Gene p-value odds ratio p-value odds ratio p-value odds ratio p-value odds ratio

avrA < 0.001* 0.173 0.001* 0.285 0.073 0.455 0.117 0.274

hilA 0.004* 2.073 < 0.001* 2.666 0.209 0.732 0.040* 0.276
sseC 0.002* 0.469 < 0.001* 0.061 0.513 0.827 0.999 4.140 × 108

mgtC 0.665 0.530 0.077 0.129 0.997 6.487 × 106 0.031* 0.044
spi4R 0.897 0.969 0.561 0.859 0.266 0.747 0.282 0.523

pipB 0.266 0.52 0.212 0.462 0.997 3.972 × 107 0.244 0.27
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Serogroup O:9, alternatively, was shown to be less likely 
positive for hilA (p-value = 0.040, odds ratio = 0.276) and 
mgtC (p-value = 0.031, odds ratio = 0.044) relative to O:3.

Patterns and associations of virulence genes
Among all 799 Salmonella isolates, the most frequent 
(29.16%) gene combination involved six genes which 
were avrA, hilA, sseC, mgtC, pipB, spi4R, and sseC 
(Fig. 2), which encompasses SPIs 1–5. This is immediately 
followed by three combination patterns containing five 
virulence genes wherein 13.52% with spi4R, hilA, avrA, 
pipB, and mgtC, 10.76% with sseC, spi4R, avrA, pipB, and 
mgtC, and 10.26% with sseC, spi4R, avrA, pipB, and mgtC. 
The virulence gene patterns among Salmonella isolates 
showing five or more gene combinations at higher fre-
quencies suggest their overall high pathogenic potential. 
While the single isolate with spvC and spvR also con-
tained hilA, sseC, mgtC, and pipB genes. Statistical analy-
sis using Fisher’s exact test between virulence gene pairs 
uncovered five significant associations (p < 0.05), namely, 
avrA and hilA, avrA and spi4R, hilA and spi4R, sseC and 
spi4R, and mgtC and pipB (Table 5). spvC and spvR were 
excluded in all statistical analyses as they only occurred 
in one isolate.

Fig. 2  Virulence gene patterns across 799 Salmonella isolates

Table 5  Associations between virulence gene pairs across 
Salmonella isolates

*Significant association if p < 0.05

Virulence Genes Associations Fisher’s Exact 
Test (two-sided 
p-values)

avrAandhilA 0.011*
avrA and sseC 0.206

avrA and mgtC 0.129

avrAandspi4R 0.002*
avrA and pipB 0.728

hilA and sseC 0.102

hilA and mgtC 0.523

hilAandspi4R < 0.001*
hilA and pipB 0.220

sseC and mgtC 0.531

sseCandspi4R 0.002*
sseC and pipB 1.000

mgtC and spi4R 0.525

mgtCandpipB < 0.001*
spi4R and pipB 0.360
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External factors affecting virulence gene prevalence
Variations in virulence gene prevalence were observed 
across animal sources and location types (Tables 2 and 3). 
mgtC and pipB genes showed a high prevalence (> 90%). 
sseC and spi4R prevalence were lower among pigs than 
other animal sources and lower in abattoirs than wet 
markets. hilA were found less frequently in wet markets 
than in abattoirs but had similar frequencies across dif-
ferent animal sources. spvC and spvR were detected only 
in one isolate; which was obtained from a pig host source 
in an abattoir location type.

Using binary logistic regression, animal sources and 
location types in this study could significantly (p < 0.05) 
predict some virulence gene occurrences. sseC and pipB 
were predicted by the animal source chicken and cow 
respectively, relative to pigs. In contrast, hilA and spi4R 
were predicted by location type abattoir, relative to the 
wet market. Meanwhile, avrA and mgtC showed no 
significant predictions (p  > 0.05) (Table  6). Odds ratio 
values for animal sources relative to pigs suggest that 
Salmonella from chickens were more likely to carry sseC 
(p-value = 0.029; odds ratio = 1.663), while cows were less 
likely to carry pipB (p-value = 0.009; odds ratio = 0.227). 
For location type, Salmonella from abattoirs were more 
likely to carry hilA (p-value = 0.001; odds ratio = 2.044) 
but less likely to carry spi4R (p-value = < 0.001, odds 
ratio = 0.41) relative to wet markets.

Discussion
In this study, nine Salmonella virulence genes were 
investigated, with most genes except for spvC and spvR 
showing more than 61.45% prevalence. The occurrence 
of mgtC and pipB is similar to the findings of Fazl et al. 
[35] or at higher frequencies than some studies. Joaquim 
et al. [43] reported a similar prevalence of mgtC (98.31%) 
and avrA (93.22%) among Salmonella from slaughtered 

pigs, and from intensive or backyard farms with also low 
incidence of spvC (5.08%). Meanwhile, less than 50% of 
Salmonella from feces, organs, and transrectal swabs of 
healthy swine in farms of Tuscany, Central Italy, carried 
mgtC and pipB [44]. Similarly, a study on poultry-asso-
ciated Salmonella reported less than 60% prevalence of 
these genes, but a higher prevalence (52%) of spv (e.g., 
R, C, B) genes than the current study [45]. mgtC, found 
within SPI3, is activated under low Mg2+ concentra-
tion, low pH, or in the presence of antimicrobial pep-
tides, such as within host macrophages, which enables 
the transport of Mg2+ crucial for growth and surviv-
ability [46, 47]. mgtC complementation experiments have 
also been reported to restore wild-type phenotypes of 
SPI3 mutant Salmonella, suggesting the significance of 
mgtC within SPI3 [48]. pipB, found in SPI5 and trans-
located by T3SS [28], also promotes intramacrophage 
survival [37] and is involved in the accumulation of lipid 
rafts [23]. avrA, the third most detected virulence gene 
among Salmonella isolates in this study and within SPI1, 
has been demonstrated to mediate intracellular survival 
[49] through reduction of Beclin-1 protein, suppression 
of autophagy [50], and activation of STAT3 pathway 
involved in carcinogenesis [51]. The hilA, also in SPI1, is 
a central transcriptional regulator for other genes within 
the SPI [52]. In contrast to this study, others showed a 
100% avrA or hilA gene occurrence among Salmonella 
from poultry, such as chicken and pigeons [34, 53, 54] 
and tested on specific serovars, such as Enteritidis and 
Typhimurium. Comparatively, 80% of Salmonella iso-
lated from retail beefs in Malaysia and South Africa also 
possessed hilA which interestingly showed variations 
among serovar Agona and Enteritidis while none had 
spvC, albeit a low number of isolates [55, 56]. Whole-
genome sequencing of serovars, such as Infantis strain 
Sal147 revealed numerous deletions of SPI1 genes such 

Table 6  Contribution of animal source relative to pig and location type relative to market on virulence genes prevalence using binary 
logistic regression

*Significant predictor to virulence gene presence if p < 0.05, aRelative to pig animal source, bRelative to wet market location type. Reference categories were chosen 
based on their larger sample sizes

Animal Source Location Type

Cowa Chickena Abattoirb

Gene p-value odds ratio p-value odds ratio p-value odds ratio

avrA 0.077 0.616 0.647 0.865 0.118 1.709

hilA 0.527 1.143 0.561 1.141 0.001* 2.044
sseC 0.296 1.241 0.029* 1.663 0.201 0.785

mgtC 0.300 3.043 0.996 3.278 × 107 0.848 1.143

spi4R 0.059 1.526 0.726 1.083 < 0.001* 0.410
pipB 0.009* 0.227 0.095 0.343 0.810 1.225
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as avrA, hilA, and even invA [57]. Similarly, Salmonella 
from chickens in Egypt showed the absence of avrA in 
serovars Molade, Bargny, Inganda, and Infantis [58]. Sal-
monella serovar Heidelberg in a study of poultry abattoirs 
in Brazil showed a comparable prevalence of hilA (66.6%) 
and higher frequencies of avrA (98.4%) [59]. These stud-
ies collectively suggest serovar-dependent variations in 
virulence gene frequencies, which may explain the fre-
quencies of avrA and hilA in this study. The role of SPI4, 
containing sii genes, is still unknown [23] but encodes a 
type 1 secretion system (T1SS) [22], mediates adhesion 
[26], or may also be involved in intramacrophage survival 
and toxin production [39]. Alternately, sseC is required 
to facilitate protein translocation through insertion into 
phagosome membranes [60]. The lower occurrence of 
sseC in this study can be compared with Salmonella from 
diarrheic children in hospitals which showed only 1.7% 
occurrence [61]. However, this may be due to differences 
in hosts sources which have been shown to cause varia-
tions in Salmonella serovars present and subsequent vir-
ulence gene prevalence. Other studies involving poultry 
and humans showed a 100% occurrence of sseC [35]. This 
study’s low frequency of spv genes may be due to asso-
ciations with specific serovars [59]. On the other hand, 
Chaudhary et  al. [62] showed that while 81% of Salmo-
nella isolates (Typhimurium and Enteritidis) had spvR, 
none had spvC. An earlier study in Metro Manila, Philip-
pines, showed different occurrence rates of spvC among 
Salmonella serogroups isolated from wet markets with 
the highest frequencies among O:7 and O:4 serogroups 
[12]. In contrast, another study on Salmonella isolates 
from retail beef showed that all eight different serovars 
were negative for spvC [61].

Most of the isolates possess five or more virulence 
genes, which reflect other studies that illustrate SPIs 1–5 
as prevalent among serovars, whereas other SPIs are vari-
ably distributed across Salmonella [22]. However, Rychlik 
et al. [63] evaluated the pathogenicity of mutant Salmo-
nella Enteritidis among chickens and found that only SPIs 
1–2 were crucial for systemic infection while SPIs 3–5 
individually had little effect on colonization capacity. A 
core genome among invasive Salmonella, involving SPIs 
1–5, 9, 13, and 14 as well as other genes, was determined 
by a study using the microarray technique but phenotypi-
cally showed noninvasive strains having superior intra-
cellular replication over the invasive strains [64]. This 
study also identified significant virulence gene co-occur-
rences. The co-occurrence of spvC and spvR was not 
tested in this study due to their low occurrence, which 
may be attributed to both being within an accessory vir-
ulence locus with spvR as the transcriptional regulator 
among nontyphoidal Salmonella, while their presence 
may still enhance pathogenicity to extraintestinal levels 

[65]. Virulence gene associations between hilA with avrA 
and spi4R may be explained by its role as a major regu-
latory gene, while avrA and spi4R may be due to other 
mechanisms between interactions of SPI1 and SPI4 viru-
lence factors [66]. The siiA gene, within SPI4 and encod-
ing an effector involved in T1SS-dependent adhesion of 
Salmonella [67], has been reported in vitro and in vivo as 
a direct target of hilA binding and differential regulation, 
thereby affecting SPI4 expression and the invasion pro-
cess [68]. In contrast, sseC functions as a translocon com-
ponent chaperoned by SscA within the SPI2 T3SS [69], sii 
genes in SPI4 are designated to form the T1SS to secrete 
the SiiE effector protein [70]. However, crosstalk mecha-
nisms remain unestablished. The association between 
mgtC and pipB may be due to their similar involvement 
in Salmonella such as their induction in intramacrophage 
environments [37]. Similarly, transcriptome analysis by 
RNA-seq of Salmonella Typhimurium  under intramac-
rophage conditions showed upregulation of the mgtCBR 
operon and SPI5 genes, such as pipB [71]. Nonetheless, 
the associations between genotypic variabilities and 
pathogenicity in Salmonella remain unclear and require 
further studies [72]. Virulence gene expressions which 
contribute to Salmonella pathogenicity are affected by 
numerous factors such as signals, nutrient limitation and 
other stresses including possible relationships with anti-
microbial resistance [73–75].

In contrast with the current findings on external fac-
tors, Mthembu et al. [42] showed that the animal source 
and sample type did not significantly predict the preva-
lence of Salmonella virulence genes in their study of 
small-scale commercial farms but were instead pre-
dicted by location. Animal health conditions may also 
be a factor for the observed virulence gene predictions 
in this study. Skyberg et  al. [76] compared virulence 
gene profiles of Salmonella from healthy and clinically 
ill birds and showed that some virulence genes, such as 
sopB were more frequently detected in the latter while 
others, such as lpfC and sifA were more frequently 
detected in the former, suggesting diverse roles in patho-
genicity. The sopE was not found among prevalent sero-
vars isolated from animals in Senegal but was present in 
all serovars isolated from diarrheic children and animals 
in Gambia [77], suggesting an interplay of animal source, 
health condition, and location in Salmonella serovar 
and virulence genes prevalence. Virulence gene patterns 
may also vary across a more specific location (e.g., mar-
ket stalls), wherein a unique pattern, for example, was 
observed in chicken meat isolate from a given stall, while 
other patterns were more common in all stalls in a study 
of Salmonella recovered from wet markets in Thailand 
[78]. hilA and spi4R differed by location type in the cur-
rent study which may be due to outside influences and 
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sources such as processing, transport and environmen-
tal conditions involved in abattoirs and wet markets. A 
meta-analysis involving diverse animal sources, geo-
graphical locations, and Salmonella revealed extensive 
serovar prevalence variations across different food ani-
mals such as pork, poultry, beef, and seafood but also 
geographical locations such as America, Asia, Africa, 
and Europe [79]. Similarly, Simpson et  al. [80] showed 
variations in Salmonella serovar diversity indices in Aus-
tralia, dependent on the sample type and environment 
(i.e., from humans to different domestic or wild animals). 
Moreover, natural or retail environments are also associ-
ated with serovars, such as Paratyphi B Java in seafood, 
natural environment, and wild mammals. These studies 
imply the indirect contribution of animal source, loca-
tion, and other external variables to Salmonella serovar 
and subsequent virulence gene diversity as well as patho-
genic potential.

This study has also shown that virulence gene frequen-
cies can be related to serogroup variations. Although 
these frequencies may also be affected by differences in 
sample size, serogroup, or serovar genotypic virulence 
variations, previously documented. For instance, Salmo-
nella Enteritidis within serogroup D (O:9) isolated from 
diarrheic children in a city of China also showed lower 
frequencies for hilA (83%) than in other serogroups 
(84–100%) but also showed a lower prevalence for mgtC 
(66%) than other serogroups (80–100%) [81]. Similarly, 
Thung et al. [54] showed serovar differences in frequen-
cies of virulence genes hilA, sopB, and stn with a particu-
larly drastic difference for sopB, which was not present in 
serovars London and Stanley. Hybridization techniques 
have also demonstrated distinguishing virulence gene 
patterns affecting their host range across different Salmo-
nella serovars such as Typhimurium and Choleraesuis, 
and subsequent mutations of these regions contributed to 
decreased pathogenicity in vivo [82]. Furthermore, differ-
ences in virulence gene distributions among Salmonella 
serogroups may subsequently present varying degrees 
of pathogenicity. In a study by Rakov et  al. [83], func-
tional associations and allelic variations of virulence fac-
tors using protein sequences including sseC, avrA, pipB 
were revealed among intestinal (noninvasive) and inva-
sive Salmonella serovars. The study reported that pro-
teins, such as SiiE (SPI4) were only present in the former 
while others, such as MgtB (SPI3) and SseL (SPI2) were 
only in the latter. Similarly, Salmonella characterization 
from sand lizards showed variations in virulence gene 
prevalence among rare serovars consequently affecting 
pathogenicity; serovar Telhashomer, which had no SPI1 
genes, also showed the lowest adhesion and apoptosis 
induction in  vitro [84]. Comparisons between a clinical 
Salmonella isolate, and two other serovars of different 

pathogenic potential showed higher disease severity in 
pigs based on fecal and histopathological scores among 
the clinical isolate and serovar Typhimurium than Derby, 
which was reflected accordingly in the absence of some 
virulence factors in Derby such as lpf, stc, stj, and sodC1 
[85]. These studies corroborate with current results in 
that Salmonella serogroups and serovars contain diverse 
and complex virulence determinants, which explain their 
variations in pathogenesis programs and subsequent clin-
ical outcomes.

This study mainly focused on Salmonella SPIs 1-5 due 
to their wide distribution and documented contributions 
to pathogenicity and two plasmid-borne virulence genes, 
their associations, and statistical analyses with exter-
nal factors and Salmonella serogroups. Some isolates 
(n = 212) were not serogrouped in previous studies, how-
ever, this does not affect the validity of virulence gene 
profiles of all 799 isolates or the serogroup and virulence 
gene predictions of 587 isolates. In addition, the potential 
limitations of this study are other SPI or non-SPI viru-
lence genes, and serovar-level analysis which can provide 
more in-depth genotypic characterization of Salmonella 
and their pathogenic insights. The associations and pre-
dictions in this study may thus be underestimated due to 
these caveats as there are extensive diversities in Salmo-
nella serovars and virulence genes.

Conclusions
The high prevalence and co-occurrence of virulence 
genes mgtC, pipB, avrA, hilA, spi4R, and sseC support 
the wide distribution of SPIs 1-5 across Salmonella, their 
high pathogenic potential which present food safety and 
public health concerns and provide a wealth of viru-
lence data of Salmonella in the Philippines. Statistical 
analyses also determined the predictability of virulence 
genes namely, hilA, sseC, spi4R, and pipB based on ani-
mal sources and location types, which suggests the 
contributions of external factors to Salmonella strains 
present and their subsequent pathogenicity. Salmonella 
serogroups have also been shown in this study to pre-
dict the presence of virulence genes avrA, hilA, sseC, 
and mgtC, which suggest the diversity of virulence gene 
distributions across Salmonella and thus emphasizes 
the complexity of their pathogenesis program. Hence, 
further studies to elucidate the complex mechanisms of 
SPI crosstalk and associations of virulence determinants 
across different Salmonella serovars are needed to define 
what facilitates the extensive clinical manifestations of 
Salmonella infections. While this study detected SPIs 
1-5 virulence genes, future studies on the prevalence of 
virulence genes from other SPIs are recommended. In 
addition, more studies on abattoirs, wet markets and 
particularly farms, different food animal sources and 
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Salmonella serovars to further elucidate contributions 
of external and internal factors to Salmonella virulence 
are recommended. Associations between virulence and 
antimicrobial resistance can also be explored among 
pathogens not limited to Salmonella. The authors also 
recommend policymakers in the Philippines to reinforce 
and re-evaluate guidelines and regulations within food 
animal industries involving the entire chain and expand 
surveillance and monitoring to protect farmers, retail-
ers, and consumers alike.
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