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Pesticide residue exposure provides different 
responses of the microbiomes of distinct 
cultures of the stored product pest mite Acarus 
siro
Jan Hubert1,2*   , Blanka Navratilova1,3   , Bruno Sopko1   , Marta Nesvorna1    and Thomas W. Phillips4    

Abstract 

Background:  The contribution of the microbiome to pesticide breakdown in agricultural pests remains unclear. We 
analyzed the effect of pirimiphos-methyl (PM) on four geographically different cultures of the stored product pest 
mite Acarus siro (6 L, 6Tu, 6Tk and 6Z) under laboratory experiments. The effect of PM on mite mortality in the impreg-
nated filter paper test was compared.

Results:  The mite sensitivity to PM decreased in the order of 6 L, 6Tu, 6Tk, and 6Z. Then, the mites were cultured on 
PM residues (0.0125 and 1.25 µg·g−1), and population growth was compared to the control after 21 days of exposure. 
The comparison showed two situations: (i) increasing population growth for the most sensitive cultures (6 L and 6Tu), 
and (ii) no effect on mite population growth for tolerant cultures (6Z and 6Tk). The microbiome of mites was ana-
lyzed by quantification of 16S DNA copies based on quantitative polymerase chain reaction (qPCR) and by barcode 
sequencing of the V4 fragment of 16S DNA on samples of 30 individuals from the control and PM residues. The micro-
biome comprised primarily Solitalea-like organisms in all cultures, except for 6Z, followed by Bacillus, Staphylococcus, 
and Lactobacillus. The microbiomes of mite cultures did not change with increasing population density. The microbi-
ome of cultures without any differences in population density showed differences in the microbiome composition. A 
Sodalis-like symbiont replaced Solitalea in the 1.25 µg·g−1 PM in the 6Tk culture. Sodalis and Bacillus prevailed in the 
microbiomes of PM-treated mites of 6Z culture, while Solitalea was almost absent.

Conclusion:  The results showed that the microbiome of A. siro differs in composition and in response to PM residues 
in the diet. The results indicate that Sodalis-like symbionts can help recover mites from pesticide-induced stress.
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Background
Pests in durable stored agricultural products have been 
recognized as a serious threat to food supplies for many 
centuries. Grain stored at farms and value-added grain 
products in food processing plants share characteristics 

that put them at risk of pest infestation, including high 
relative humidity resulting in storage of damp grain, poor 
air circulation, scarification of the grain during harvest 
and storage manipulations, water seepage, and accumu-
lation of plant debris, which are all factors contributing 
to massive mite and insect infestations [1]. Even though 
stored grain mites (Sarcoptiformes: Acaridae) do not 
attack the grain when the coat is intact [2], during thresh-
ing and storage manipulations, more than 90% of the 
grain is scarified and therefore can be destroyed by the 
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mites. Grain mites contaminate stored products intro-
duced from fields with their feces, with allergens, and by 
the transfer of mycotoxin-producing fungi [3]. Acarus 
siro L. is the dominant species in stored product habi-
tats of cosmopolitan occurrence [4], feeding directly on 
grains [4, 5], various grain products, dried cheeses [6], 
and various fungi [6, 7].

The most common method for controlling stored 
product mites is the use of pesticides [8–10]. However, 
none of the pesticides is labeled against stored mites 
but for stored product insects. However, the pesticide is 
expected to control stored product mites [8, 11]. In the 
last 80  years, massive pesticide applications in cheese-
producing factories have led to the development of resist-
ance to the organophosphate insecticides etrimfos [12] 
and pirimiphos-methyl [13] and the chlorinated hydro-
carbon lindane [14] in A. siro. Resistance to pesticides in 
A. siro likely occurred via metabolic detoxification caused 
by high esterase activity, but it is probable that other 
mechanisms were also involved [13]. However, previous 
studies did not determine the origin of such enzymes 
regarding whether they are endogenous, produced by 
mites, or possibly originate from their associated gut 
microflora [15, 16]. Due to the transfer of mites with the 
commodities, the spreading of resistance was expected, 
but to date, the resistance of stored product mites has not 
been studied.

Microbiome-facilitated resistance to pesticides was 
reported more than 50 years ago, when an obligate extra-
cellular bacterial symbiont, Pseudomonas melophthora, 
of the apple maggot, Rhagoletis pomonella (Walsh), 
exhibited the capability to degrade chlorinated hydro-
carbons, organophosphates, and carbamates through 
powerful esterase activity [17]. Various approaches to 
describing microbiome-induced resistance have recently 
been developed, ranging from molecular investigation 
to testing the influence of host diet on microbial com-
munities [18]. Often, multiple bacterial species can 
degrade the same pesticide, which widens the spectrum 
of organisms that may be involved [19]. Moreover, endo-
symbionts may interfere with virus infections spread by 
insects [20], since some symbionts, such as Wolbachia, 
have shown antiviral effects in protecting their host from 
diverse viruses [21]. Intracellular symbionts commonly 
increase host susceptibility to chemical insecticides; 
however, there are reports of increased resistance [22].

Closer examination of microbial composition in A. siro 
identified Bartonella-like bacteria, intracellular symbi-
ont Cardinium bacteria, Solitalea-like symbionts based 
on cloning and Sanger sequencing and comparison to 
identified sequences in GenBank [23–25]. Based on bar-
code sequencing, the microbiome of A. siro was found 
to include Bartonella-like, Solitalea-like, Bacillus sp., 

and Kocuria sp. [26, 27]. Previous studies on the related 
species Rhizoglyphus robini showed that their microbi-
omes differ among the different cultures of the same spe-
cies [28]. Recently, we observed that pesticides influence 
the microbial profiles of different stored product mite 
Tyrophagus putrescentiae cultures; however, the effect of 
pesticides is not systemic [29].

In this study, we analyzed four different cultures of A. 
siro. We compared the microbiome profiles of mite cul-
tures under controlled conditions. Then, we compared 
the sensitivity of mite cultures to pirimiphos-methyl 
(PM) in impregnated filter paper. In the next step, the 
mites from different cultures were placed on residual 
(under the recommended dose) PM concentrations in the 
diet. The microbiome was compared among the mite cul-
tures and PM treatments after 21 days of mite exposure. 
The quantification of 16S DNA copies based on quanti-
tative polymerase chain reaction (qPCR) and by barcode 
sequencing of the V4 fragment of 16S DNA were used to 
describe the microbiome changes.

Results
The difference in microbiome composition among A. siro 
cultures under controlled conditions
The microbiome of A. siro was composed of 437 OTUs 
(operational taxonomic units at a 97% similarity level) 
(Table S2). However, a few OTUs were abundant in mite 
microbiomes, i.e., the first 10 most abundant OTUs con-
tained 90% of the total read numbers (Table S3). Two 
symbionts (Solitalea-like OTU1 and Sodalis-like OTU3) 
were identified in the mite microbiome. Identification of 
the Solitalea-like symbiont was based on previous anal-
yses of almost complete 16S DNA clones that clustered 
as a sister group of Solitalea bacteria outside members 
of the Sphingobacteriacea [30]. This Enterobacteriaceae 
symbiont had been identified previously in A. siro based 
on Sanger sequencing of cloned 16S DNA [25]. The 16S 
DNA sequences (JN236461) formed from the symbiont 
clones of the stored product mite T. putrescentiae cluster 
separately with Photorhabdus and Xenorhabdus. Thus, 
this cluster is outside the Arsenophonus, Breneria, and 
Sodalis sequences (Fig. 1).

The mite populations differed in the composi-
tion of their microbiome profiles (dbRDA: R2 = 0.656, 
population: F(3,18) = 10.425, p = 0.001, mite density: 
F(1,18) = 1.296, p = 0.268). The 6 L and 6Tk populations 
were similar but differed from the 6Z and 6Tu popula-
tions (Fig. 2). The microbiome of population 6Tu showed 
high variability caused by different read numbers of 
Solitalea-like symbionts (OTU1). The 6 L and 6Tk sam-
ples were characterized by a high proportion of Solitalea 
(OTU1). Solitalea-like (OTU1) reads accounted for more 
than 90% of the 6L and 6Tk population bacterial profiles.
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Culture 6Tu was characterized by Solitalea-like bacte-
ria (OTU1), which formed 60% of the total reads in the 
microbiome profile, followed by Bacillus (OTU2) (30% 
of reads) and Sodalis-like symbionts (OTU3) (approxi-
mately 5% of reads). Culture 6Z showed a high diversity 

of OTUs, with the most abundant being Staphylococ-
cus (OTU6), Stenotrophomonas (OTU8), an unidenti-
fied Enterobacteriaceae (OTU10), and Lactobacillus 
(OTU19); Solitalea-like (OTU1), Sodalis-like (OTU3) 
and Bacillus (OTU2) profiles were present in the 

Fig. 1  The identification of Sodalis-like symbionts of Acarus siro based on comparison of almost complete 16S DNA sequences from GenBank and 
clones from A. siro and Tyrophagus putrescentiae [25]. The figure shows a subtree including mite and insect symbionts and related clusters. Branch 
lengths correspond to mean posterior estimates of evolutionary distances (scale bar 0.05). Branch labels indicate supporting bootstrap values. The 
tree was rooted in Escherichia coli (U000096). The sequences and their descriptions are provided in Table S3, Supporting Information
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microbiome, although they showed a very low level of 
reads compared to the other numbers (Fig. S1).

The Bayes analyses (Fig.  3) revealed that culture had 
some effect on the numbers of bacterial copies in com-
parison to the effect of pesticides or pesticide x culture 
interaction. The numbers of bacterial copies ranged 
between 103 and 104 per mite based on qPCR in all con-
trol samples. In contrast, both analyzed diversity indices 
(Table S5) were marginally influenced by mite culture 
(Fig. 3). The mite culture was the prevailing factor on PM 
and culture x PM interactions to explain variability in 
Solitalea-like (OTU1) and Bacillus (OTU2).

Pirimiphos‑methyl toxicity
PM was toxic to A. siro mites in the impregnated filter 
paper test; however, mortality differed among the mite 
cultures (GLM: culture model Chi = 433, p < 0.001, con-
centration = 547.34, p < 0.001 and interaction Chi = 377). 
The sensitivity to PM increased from 6 L, 6Tu, 6Tk and 
6Z (Table 1; Fig. 4).

Population growth on pesticide residues was influ-
enced by both mite culture and PM (two-way analysis 
of variance (ANOVA): culture F(2,60) = 5.148, p = 0.006; 

pesticide F(3,60) = 85.42 p < 0.001 and interaction 
F(6,60) = 4.264 p = 0.001). Cultures 6 L and 6Tu were very 
fast-growing and had a two-fold higher growth rate than 
the slower-growing 6Z and 6Tk cultures (Fig.  4). The 
density of mites on 6Tk, and 6Z cultures was not influ-
enced by PM residues in the diets, while culture 6 L were 
influenced by PM residues. Growth of the 6 L culture was 
higher on a diet with a PM than on the control, this trend 
was observed for 6Tu, but was not significant in pos hoc 
test (Fig. 4).

The effect of pirimiphos‑methyl residues in the diet 
on changes in A. siro microbial profiles
PM residues influenced the microbiome of A. siro differ-
ently according to the mite culture and pesticide residue 
concentration. The total distance-based redundancy anal-
ysis (dbRDA) model explained 45% of the variability in 
the microbial profile using mite population and pesticide 
as environmental variables (Table  2). Based on permu-
tation tests, the mite culture showed a higher influence 
on the dataset than pesticide, but both were significant. 
The partial models resulting when mite populations were 

Fig. 2  The comparison of differences in the microbiomes of Acarus siro cultures that were not treated with pirimiphos-methyl (control). A shows 
the heatmap of standardized relative abundances of bacteria in mites from the four cultures. The lengths of triangles on the left side of the heatmap 
indicate the variability in the samples from the same culture. A similar level of variability and microbiome similarity is seen in the OTU clusters 
at the top (uncondensed intro triangles). Both clusters (samples and OTUs) were constructed using the unweighted pair group method with 
arithmetic mean (UPGMA) in Bray–Curtis distance. The red color in OTUs indicates high variability explained in SIMPER analyses. B is a triplot of a 
distance-based redundancy analysis (dbRDA) indicating the position of samples according to ax1 and ax 2. The samples from the same culture are 
organized as convex hulls, and the most important bacterial OTUs are shown. Ax1 and ax2 explained 53% and 8% of the variability in the model, 
respectively
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assessed separately showed that PM-methyl influenced 
the bacterial profile in 6Tk (1.25  µg·g−1) and 6Z (both 
concentrations), while no effect was observed for the 6L 
and 6Tu populations (Table 2).

The main changes in the microbiomes were due to 
the presence (6Tk) or absence (6Z) of Solitalea-like 
symbionts (OTU1) (Fig. S2). The 6Tk culture showed a 
replacement of the Solitalea-like symbiont (OTU1) by 
Sodalis-like symbiont (OTU3) at the 1.25 µg level of piri-
miphos-methyl residues (Fig.  5). Due to the absence of 
the Solitalea-like symbiont (OTU1) in 6Z, an increase in 
the Sodalis-like symbiont profile was observed in 3 sam-
ples of the 6Z culture (Figs. 5 and 6). The Bayes analyses 
(Fig. 3) showed that the Solitalea-like symbiont (OTU1) 
had a different response to the tested factors (mite cul-
ture, PM and their interaction) than the Sodalis-like sym-
biont (OTU3). The profile of the Sodalis-like symbiont 
(OTU3) was more influenced by PM than mite culture, 
and the opposite situation was observed for the Solitalea-
like symbiont (OTU1).

Discussion
This study showed that the microbiome of A. siro differs 
in its composition among observed mite cultures. The 
mite cultures also differed in their response to PM; the 
sensitivity to PM decreased in the order of 6L, 6Tu, 6Tk, 
and 6Z. The recommended dose of PM provided 100% 
mortality of mites in the impregnated paper test. The 
mite growth on PM residues (0.0125 and 1.25  µg·g−1) 
under the recommended dose showed two responses in 
the comparison control: (i) increasing population growth 
showed the most sensitive populations 6L and 6Tu, and 
(ii) no effect on mite population growth was observed 
on tolerant populations 6Z and 6Tk. The microbiome 
analyses showed no effect of PM residues on cultures 
with increasing population growth, but those without any 
response showed changes in microbiome composition.

The increase in the growth of sensitive cultures of A. 
siro on residual concentration PM should be explained as 
a stress agent. Stimulation of an organism is documented, 
and the organism is therefore provided with increased 
sensitivity to respond to changes in its environment and 
with increased efficiency to develop new or better mech-
anisms to fit a suboptimum environment (e.g., hormoligi-
osis [31]). Such a reaction is documented for mites. Mite 
species Panonychus ulmi and Neoseiulus californicus 

were proven to lay more eggs when they were exposed to 
sublethal doses of cypermethrin, imidacloprid, deltame-
thrin and thiacloprid, while at the same time, their lifes-
pan shortened [32]. Increased fecundity of the common 
spider mite pest Tetranychus urticae was observed after 
thiacloprid, acetamiprid, and thiamethoxam treatment 
[33]. Previously, we observed that 6L cultures of A. siro 
were tolerant to chlorpyrifos residues, and the popula-
tion growth of these mites was greater in the chlorpy-
rifos-treated diets with concentrations of 10, 100 and 
250  µg·g−1 compared to the control [34]. Our results 
indicated no connection between stress reactions and the 
microbiome in A. siro in these two cultures (6L and 6Tu).

No stress reaction caused by PM residues to two toler-
ant A. siro cultures (6Z and 6Tk) should be connected to 
microbiome changes. The results showed that the Soda-
lis-like (OTU3) symbiont replaced Solitalea (OTU1) in 
PM 1.25  µg·g−1 residues. Sodalis (OTU3) and Bacillus 
(OTU2) prevailed in the microbiome of PM residues for 
6Z mites, while Solitalea-like bacteria were absent from 
that strain. Changes in the microbiome should be either 
stochastic or PM-induced. Because we did not observe 
any stochastic effect on cultures 6L and 6Tu regarding 
their microbiome profiles remaining unchanged after PM 
treatment, we suggest that the effect of PM on 6Tk and 
6Z is caused by the treatments with pesticide residues in 
the mite diet.

The Solitalea-like symbiont was described based on 
a comparison of cloned Sanger sequences of 16S DNA 
from A. siro and T. putrescentiae [30]. The clones formed 
a distinct cluster separated from the neighboring clusters 
of the genus Solitalea and of uncultured bacteria (living 
in amoebae or in sweet water or soil habitats) [30]. The 
bacteria in that study were localized in the digestive and 
reproductive tract of A. siro using fluorescence in  situ 
hybridization (FISH) and in eggs by PCR with specific 
primers [30] and supported symbiotic association. In the 
current study, we found that Solitalea-like OTUs formed 
95% of reads in the microbial profiles of 3 cultures, which 
is supported by recent results from our laboratory [26].

Sodalis bacteria can establish facultative relationships 
with insect hosts by invading a variety of cells and show 
a relationship with the bioluminescent bacterial spe-
cies Photorhabdus [35]. This earlier finding is similar to 
our classification of the Sodalis-like symbiont of cloned 
16S DNA sequences from A. siro (Fig. S1) [25]. The next 

Fig. 3  The Bayesian analyses of the contribution of pesticide and mite culture to Acarus siro microbiome composition. Using Bayesian statistics, 
we executed the full Bayesian ANOVA model and then ran the same model, omitting the factors one by one. The size of the bars at the x-axis 
(logarithmic scale) indicates how much the model fits worse when the corresponding predictor is dropped. The positive interactions are indicated 
by yellow, while negative interactions are indicated by brown

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Table 1  The results of pirimiphos methyl aplication to mortality of Acarus siro cultures in impregnated filter paper test. The reggression 
parameters are provided and back estimate of LC50 and LC95 with 95% confidence inervals. The fitted doses are µg/mL of pesticide

Factor Estimate Std. error Z value P LC50 LC95

6L -0.061 0.076 -0.804 0.421 1.31 (0.94–1.83) 1,795 (1,184–2,272)

6Tk -0.759 0.079 -9.601  < 0.001 4.25 (3.70–4.89) 38,432 (25.000–59.000)

6Tu -0.617 0.078 -7.933  < 0.001 3.24 (2.82–3.73) 20,590 (13,000–32,000)

6Z -1.231 0.088 -13.974  < 0.001 10.46 (9.04–12.11) 305,375 (191,000–487,000)

concentration 0.524 0.021 24.482  < 0.001

Fig. 4  The effect of pirimiphos-methyl on cultures of Acarus siro. A—Mortality of mites in the impregnated filter paper test. The lines are model 
fits (for parameters, see Table 1) and points of observed values; B—The comparison of mite final population density after 21 days of growth on 
control and pirimiphos-methyl residues (1.25 µg and 0.0125 µg). The data are shown as jitter box plots. The significant differences (Tukey`s pos hoc 
comparison for interaction) among the control and PM for same culture are indicated by Asterix
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related symbiont is the Sodalis symbiont found in the 
sucking plant pests Bactericera trigonica (Hemiptera: 
Psylloidea) [36] and Aphrophora quadrinotata (Hemip-
tera: Aphrophoridae) [37] and the stored grain pest wee-
vils Sitophilus zeamais and Sitophilus oryzae (Coleoptera: 
Curculionidae) [38, 39]. Candidatus Sodalis melophagi, 
an insect symbiont that inhabits the blood feeding louse 
fly (Melophagus ovinus) at approximately 50% of flies in a 
population [40], is another example of Sodalis endosym-
biosis. An ultrastructural study revealed the presence of 
Sodalis-like endosymbionts in the cells of the bacterium 
Sulcia that were inside the guts of the green leafhopper 
Cicadella viridis (Hemiptera, Cicadellidae) [41]. There-
fore, Sodalis-like endosymbionts are common in and 
perhaps crucial for the success of several plant-feeding 
insect species to improve their nutrition and/or degrade 
some harmful compounds.

The spittlebugs (Auchenorrhyncha: Cercopoidae) are 
inhabited by the Bacteroidetes symbiont Sulcia muel-
leri and the betaproteobacteria symbiont Zinderia 

insecticola, which are both restricted to their own bacte-
riocytes [42]. The ancestral Zinderia symbiont has been 
replaced with a novel symbiont related to Sodalis glossi-
nidus (Enterobacteriaceae) [42], which appears to be a 
situation analogous to the Solitalea–Sodalis replacement 
that we found in the 6Tk A. siro culture induced by pyri-
miphos methyl residues in the diet. Such replacement is 
expected to be beneficial to the host mite. The analyses 
of the genome of Sodalis symbionts showed the benefi-
cial effects of these symbionts to their host by providing 
nutrients, vitamins, and possibly nitrogen fixation. For 
example, the genome of Sodalis symbionts of the spit-
tlebug Philaenus spumarius (Insecta: Cercopoidea) 
included pathways for the production of enzyme cofac-
tors (e.g., biotin, folate, flavin, vitamin B6, ubiquinone, 
glutathione, heme, thiamine), fatty acids, phospholip-
ids, purine and pyrimidine nucleotides, terpenoids and 
components of the bacterial cell wall [37]. Similarly, the 
Candidatus Sodalis baculum symbiont of Henestaris hal-
ophilus (Hemiptera: Lygaeoidea) produces amino acids 
and cofactors for its host [43]. In addition, Sodalis is able 
to recycle 10–15% of host nitrogen [44]. The production 
of such compounds and nitrogen recycling should be 
beneficial for mite survival under stress conditions. Simi-
lar interactions are possible in the Sodalis-like symbiont 
and the A. siro host. Additional research will be necessary 
to characterize the genome of both symbionts and their 
impact on mite fitness.

The different tolerances of cultures of other species of 
mites to pesticides have been documented previously 
[45, 46]. Our data indicate that the microbiome of the A. 
siro response differs among the cultures and microbiome 
composition and is more complex.

Materials and methods
Mites
The following four cultures of A. siro, each started with 
mites from different geographic regions of Czechia, 
were used in the experiments: 6L originated from grain 
stores in Bustehrad, Czechia, collected by Eva Zdark-
ova in 1996; 6Tk originated from contaminated horse 
feed in Teplice, Czechia, collected by Marta Nesvorna 
(MN) in 2015; 6Tu originated from contaminated rab-
bit feed in Tuchomerice, Czechia, collected by MN in 

Table 2  The results of distance based redundance analyses of 
the bacterial profiles of Acarus siro microbiome. The constrained 
and unconstrained variations are showed. The analyses include 
total model for all tested cultures and partial models for every 
culture separately. In total model the popualtion and pesticide 
concetrations inlcuding control were used as the factors. In 
pratial mdoels two pesticide concentration were used as the 
factors. The effect of factors was evalauted by permutation test 
(N = 999). The significant interactions are marked as bold

dbRDA Permutation test

Model constrained Unconstrained Factor F Pr

Total 0.4518 0.5482 population 15.87 0.001
pesticide 6.7797 0.001

6L 0.2365 0.7635 PM 1.25 µg 2.639 0.052

PM 0.0125 µg 2.0074 0.097

6Tk 0.8156 0.1844 PM 1.25 µg 65.921 0.001
PM 0.0125 µg 0.428 0.566

6Tu 0.2182 0.7818 PM 1.25 µg 1.1832 0.31

PM 0.0125 µg 2.725 0.076

6Z 0.3907 0.6093 PM 1.25 µg 2.9443 0.041
PM 0.0125 µg 6.6723 0.002

Fig. 5  Comparison of the effect of pirimiphos-methyl residues on the microbiomes of Acarus siro cultures using heatmaps of standardized bacterial 
relative abundance. The lengths of triangles on the left side of the heatmap indicate the variability inside the samples from the same residues. A 
similar level of variability and microbiome similarity is seen in the OTU clusters at the top (uncondensed intro triangles). Both clusters (samples and 
OTUs) were constructed using the UPGMA method in Bray–Curtis distance. The red color in OTUs indicates high variability explained in SIMPER 
analyses, and the “*” indicates significant differences between control and 1.25 µg·g−1 pirimiphos-methyl concentration based on METASTATS (e.g., * 
P ≥ 0.01 and P < 0.05; ** P ≥ 0.001 and P < 0.01; *** P ≤ 0.001)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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2016; and 6Z originated from rape seed oil and debris in 
Zvoleneves, Czechia, collected by MN in 2011. The four 
mite cultures were kept isolated from each other in the 
laboratory to prevent cross contamination. The mites 
were reared in 100-mL filter cap cell culture flasks (Cell 
Culture Flask T25, Eppendorf cat. No. 0030710029, 
Hamburg, Germany) placed in desiccator boxes over 
a saturated solution of potassium chloride to maintain 
85% relative humidity (RH) at 25 ± 1 °C in darkness. The 
cultures were renewed monthly, and new cultures con-
tained 0.3 ± 0.1 g of diet and 500 mites. The 150 g of diet 
consisted of 15  g of instant dry baker’s yeasts (Mauri-
pan, Mauri, Balikesir, Turkiye) and 135 g of wheat germ. 
Both ingredients were mixed using a kitchen blender, 
and the mixture was then dried for 30 min at 70  °C to 
eliminate microbes in the diet. For the experiments, the 
adult mites were obtained from under the plug and the 
inside surface of the chambers using a brush under a 
dissection microscope.

Pesticide used in the experiment
Pirimiphos-methyl (PM) is the active ingredient in 
the commercial formulation Actellic 50 EC (Syngenta, 
Basel, Switzerland). The pesticide is not labeled against 
mites but against stored product insects. However, PM 
is expected to control stored product mites [11]. The 
recommended application is 8 mL (4 g of PM) of pesti-
cide (Actellic 50 EC; 500 g/L pirimiphos-methyl) per 1 t 
of grain [47] and 1–4  mL per m−2 (e.g. 0.5–2  g of PM) 
[48]. The pesticide was diluted in water to the follow-
ing concentrations: 25,000, 2500, 250, 25, 2.5, 0.25, and 
0.025 µg mL−1.

Impregnated filter paper test
The impregnated filter paper test [12, 13, 46, 49, 50] was 
modified as described previously [49]. The test was run 
in glass weighing bottles (cat. No. 264.228.01, Vitrum, 
Prague, Czechia). Two pieces of filter paper were cut into 

Fig. 6  The numbers of reads of Solitalea-like and Sodalis-like bacteria in Acarus siro microbiomes from the untreated controls and cultures treated 
with three concentrations of pirimiphos-methyl in rearing diets. The graphs are jitter boxplots, and the asterisks indicate significant differences from 
the control based on METASTATS (e.g., * P ≥ 0.01 and P < 0.05; ** P ≥ 0.001 and P < 0.01; *** P ≤ 0.001)
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round shapes to fill the bottom of a bottle, which was 
2.2  cm in diameter (3.8 cm2). Then, 50 µL of pesticide 
was applied on the paper, and the application included 
the recommended dose (e.g. 1.25*10–3—1,250  µg/mL). 
The recalculated recommended dose is 50 µg of PM per 
1cm2, e.g. 190 µg PM/vial. As a negative control, 50 µL of 
distilled water was applied. The bottles were opened for 
30  min, and 10 adult unsexed mites were placed inside 
the chamber. The flasks were then closed with a glass lid. 
After 24 h of exposure, the mites [46, 49] were counted 
and checked to determine whether they were alive or 
dead using a dissection microscope. Every mite that was 
not in motion was stimulated by a very small painting 
brush with soft bristles for a few seconds, and if they did 
not move, they were pronounced dead. The experimental 
design included 10 replicates per concentration and mite 
culture. The natural mortality was as follows: 6L 5%, 6Z 
0%, 6Tu 2%, and 6Tk 3%.

Population growth on pirimiphos‑methyl residues 
in the diet
The protocol used previously was adopted to compare 
the effect of pesticides on mite population growth [34, 
46]. The rearing diet containing pesticide residues was 
prepared by mixing 10  g of diet with 5  mL of diluted 
PM at each of the concentrations 0.0125 and 1.25 µg·g−1 
belonging to the recalculated recommended concen-
tration (4  µg·g−1). Both substances were mixed and 
lyophilized to ensure homogenous distribution of the 
active pesticide in the diet [51]. The control was the diet 
mixed with water instead of pesticide solution. The diet 
(0.01 g) was placed in a filter cap cell culture flask. Then, 
50 unsexed mites were added to each flask. The flasks 
were stored at 25 ± 0.5  °C at 85% RH in darkness. After 
three weeks (21 days), the flasks were filled with 35 mL 
of modified Oudemans fluid [52] (87  mL of 70% etha-
nol and 5  mL glycerol; the last compound, glacial ace-
tic acid (8 mL), was not used to avoid DNA extraction) 
and the contents pof the flask were transferred into a 
Falcon tube. The flask was mixed, and 1 mL of the mix-
ture was transferred into a Petri dish in three replicates 
and counted under a dissection microscope. The mean 
number of mites was recalculated per chamber. The 
mites were transferred back. The falcons were stored in 
a freezer prior to DNA extraction. We evaluated six rep-
licates of all treatments. The expected outcome was that 
mite cultures susceptible to a given pesticide concentra-
tion would have smaller populations at the end of the 
21-day incubation compared to cultures from the water-
control diet and diets with lower pesticide concentra-
tions. The generation time of closely related Acarus farris 
at 25 ± 0.5  °C at 85% RH is 18 days [53], indicating that 
the test was approximately for one generation.

DNA isolation
The DNA was isolated from the samples of mites origi-
nating from the control, and two PM 0.0125 and 1.25 µg/
g−1 residues belonged to the recommended applica-
tion dose. The mites were removed from the flask using 
a micropipette and applied to a sterile 100-µL cell 
strainer (Model 15–1100, Biologix Group Limited). The 
mites were surface-cleaned by washing them in 0.47% 
sodium chlorine solution (bleach). The bleach solu-
tion was replaced by 96% ethanol. Then, the mites were 
moved into sterile glass Petri dishes. Next, 30 adult mites 
(one sample) were moved from the Petri dish to a ster-
ile 1.5-mL tube (Eppendorf Safe-Lock Tubes, cat. No. 
0030120086, Eppendorf Quality TM). The excess alcohol 
was removed using a micropipette. To ensure that the 
mites were completely dry, the tubes were placed into a 
SpeedVac Concentrator (SPD111 V, Thermo Scientific, 
Waltham, MA, USA) for 5–6  min. Following drying, a 
NucleoSpin® Tissue XS (MACHEREY–NAGEL Inc., 
Allentown, PA, USA cat. No. 740901.250) kit was used 
for DNA extraction. First, 180 µl of T1 buffer was added 
to the tube, and mites were homogenized using sterile 
Bel-Art® Disposable Pestles (cat. No. BAF199230001, 
Merck, Kenilworth, NJ, USA). Then, 20  µl of protein-
ase K was added to the mixture, and the tubes were 
placed in a preheated orbital shaking incubator (NB-205, 
N-Biotek, Pyeongcheon-ro, South Korea) for 60  min 
(56 °C, 300 rpm). Then, according to the manufacturer’s 
instructions, the samples were diluted with 30 µL of dou-
ble distilled water and stored in a deep freezer prior to 
analysis. The experiments included six replicates for each 
treatment.

qPCR and barcode analyses of the mite microbiome
The new protocol for sampling 30 mites per sample was 
developed in comparison to previous studies [29, 54, 
55] using 1,000 of mites. The DNA was amplified with 
primers targeting the V4 variable region of the micro-
bial 16S rRNA gene CS1_515Fc and CS2_806Rc prim-
ers [56] and containing 5’ linkers Fluidigm AccessArray 
linker sequences [57] in qPCR assay at Step One™ real 
time PCR (Thermo Fisher Scientific, Waltham, MA, 
USA). The master mix included primers, PCR H2O, and 
TP SYBR 2 × Master Mix (Top Bio, Vestec, Czechia). The 
PCR conditions were as follows: initialization at 95  °C 
for 2  min, denaturation at 95  °C for 10  s, annealing at 
55 °C for 30 s, and elongation at 72 °C for 30 s repeated 
40 times. The standard originated from Melissococcus 
plutonius sequenced by universal 27F/1492R primers 
[58]. The PCR products were purified with a Wizard SV 
Gel and PCR Cleanup Kit (Promega). The PCR products 
from bacterial primers were cloned using pGEM-T Easy 
Vector (Promega, Madison, WI, USA) and sequenced 
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by the Sanger dideoxy method (Macrogen, Seoul, South 
Korea). The competent bacterial cells with plasmids were 
inoculated in LB medium (Himedia, Mumbai, India) 
with ampicillin 0.1  g/L (Cat No. A01104.0005, Duchefa 
Biochemie, Haarlem, The Netherlands) for 16 h at 37 °C. 
The plasmid was then purified with a Wizard® Plus SV 
Minipreps DNA purification system (Cat. No. A1330, 
Promega) according to the manufacturer’s protocol. Plas-
mids were linearized by SacI restriction (Cat. No. R6061, 
Promega) and cleaned with a Wizard SV gel and PCR 
Clean-Up system (Cat No. A9285). The concentration 
of the cleaned product was measured on a P330 Implen 
NanoPhotometer (Munich, Germany) and adjusted to 
10 ng of DNA for each reaction. The DNA standard was 
diluted by 1/10 [54, 59]. The resulting numbers of copies 
were calculated per individual mite. Before analyses, gene 
abundance data were log10-transformed.

The resulting amplicons were then prepared for 
sequencing with second-stage PCR. During this second 
stage, Illumina sequencing adapters and sample-specific 
barcodes were incorporated into amplicons by PCR 
amplification with a Fluidigm Access Array for Illumina 
primers as described previously [26]. The barcoding 
PCR step and amplicon sequencing were performed at 
the Genome Research Core, Research Resources Center, 
University of Illinois (Chicago, IL, USA) on a MiniSeq 
platform (Illumina, San Diego, CA, USA) employing 
paired-end 2 × 153  bp reads. Raw sequences are avail-
able at the GenBank SRA under project PRJNA774490 
(samples SAMN22566697—SAMN22566767; Table S1; 
details in Supporting Information). Forward and reverse 
sequences were processed in combination with the soft-
ware MOTHUR [60, 61] and UPARSE [62, 63] accord-
ing to previously described protocols [26, 55]. The OTUs 
(operational taxonomic units at 97% similarity identity) 
were identified using the sintax command in UPARSE 
[64] using the RPD training dataset [65]. The OTUs were 
also compared to those in GenBank [66] using blastn 
(Table S2). The unstandardized reads showed a minimum 
of 1,378, a maximum of 34,890, a mean of 16,292, and a 
median of 15,825 reads per sample (Table S3). The data 
were standardized per 5,000 reads/sample (Table S3) to 
obtain data comparable to previous analyses [55]. The 
diversity indices (inverse Simpson and Shannon) were 
calculated in PAST [67] for the standardized dataset.

The identification of Sodalis-like symbionts was based 
on two steps. First, out3 showed 95% similarity to cloned 
Sanger sequences of uncultured bacteria (JN236461) 
from A. siro [25] and 97–99% similarity to cloned Sanger 
sequences of uncultured bacteria from the mite T. 
putrescentiae. In the next step, we aligned 92 selected 
sequences of almost complete 16S RNA, including 
Sanger sequences from A. siro and T. putrescentiae (Table 

S4), using T-coffee [68, 69]. The alignment was processed 
in PhyML [70] and finalized in FigTree [71].

Statistical analyses
The analyses were conducted in R 4.1.0 [72]. The mortal-
ity of mites in the impregnated filter paper test was ana-
lyzed using generalized linear models [73] using probit 
analyses of mortality [74] and factors (mite culture and 
PM concentration). The effect of factors was compared by 
the Chi square test. The LOG + 0.00001 transformation 
was applied to the PM concentration data. The MASS 
package was used for back estimates of LC50 and LC95 
[75]. The effect of mite culture and pesticide (control, PM 
1.25 µg and PM 0.0125 µg) on final mite density was ana-
lyzed by two-way analysis of variance (ANOVA) in PAST 
[67]. The data showed normal distribution. The Tukey’s 
post hoc comparison was calculated for interactions.

The microbial community structure profiles were ana-
lyzed using the vegan package in R [76]. The effect of 
pesticide, pesticide concentration, mite culture, and mite 
density on the composition of the microbiome in the cul-
ture was analyzed using distance-based redundancy anal-
yses (dbRDA) in Bray–Curtis distance, and the effect of 
variables (pesticide, mite culture, mite density) on OTUs 
was compared by a Monte-Carlo permutation test (999 
permutations). Because all tested variables showed signif-
icant effects except mite density, we constructed models 
for mite cultures separately. The pesticide was the factor. 
Differences in the relative abundance of OTUs among 
the tested pesticide concentrations were compared 
using METASTATS (10,000 permutations) based [77] on 
MOTHUR software [60]. We also adapted similarity per-
centage (SIMPER) analyses to evaluate the contribution 
of particular OTUs to the dissimilarity among the treat-
ments using PAST [67].

The effects of tested factors (mite culture, pesticide 
concentration and their interaction) on diversity indi-
ces, abundance of selected OTUs and numbers of cop-
ies from qPCR were analyzed by a general Bayesian test 
(package “BayesFactor”) [78]. Using Bayesian statistics, 
we executed the full Bayesian ANOVA model and then 
ran the same model, omitting the factors one by one. 
The explained variability was compared on a logarithmic 
scale.
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Additional file 1: Fig. S1. Microbiome profile of the cultures of Acarus siro 
in the control conditions based on barcode sequencing.

Additional file 2: Fig. S2. Microbiome profiles of the cultures of Acarus 
siro in the control conditions and under pirimiphos-methyl residues based 
on barcode sequencing. The columns are means from 6 replicates.
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Additional file 3: Table S1. The list of samples, factors and files 
deposited at NCBI (PRJNA774490) describing the microbiome of Acarus 
siro. Table S2. Identification of OTUs based on RDP and comparison to 
GenBank using Blatstn in Acarus siro microbiome. The identified taxonomy 
levels and thresholds (Tr) are shown. The most similar hits in GenBank 
are presented (Blast hits) with their percentual similarity to compared 
sequences (ident %). Table S3. The list of samples with standardized read 
numbers of Acarus siro microbiome, the total numbers of standardized 
reads (N) and frequency in the samples (F) are provided. Table S4. The 
list of almost complete 16S DNA sequences used for the identification of 
Sodalis-like symbiont of Acarus siro. Table S5. The list of samples of Acarus 
siro microbiome, diversity indexes and numbers of reads based on qPCR 
(universal primers). The reads were recalculated per mite.
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