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Severe fever with thrombocytopenia 
syndrome virus replicates in brain tissues 
and damages neurons in newborn mice
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Abstract 

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne phlebovirus with a 
high fatality rate of 12–30%, which has an expanding endemic and caused thousands of infections every year. Central 
nervous system (CNS) manifestations are an important risk factor of SFTS outcome death. Further understanding of 
the process of how SFTSV invades the brain is critical for developing effective anti-SFTS encephalitis therapeutics. We 
obeserved changes of viral load in the brain at different time points after intraperitoneal infection of SFTSV in new-
born C57/BL6 mice. The virus invaded the brain at 3 h post-infection (hpi). Notably, the viral load increased exponen-
tially after 24 hpi. In addition, it was found that in addition to macrophages, SFTSV infected neurons and replicated 
in the brain. These findings provide insights into the CNS manifestations of severe SFTS, which may lead to drug 
development and encephalitis therapeutics.
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Introduction
Ticks are the second largest transmission vector of patho-
gens after mosquitoes [1]. Infectious diseases transmitted 
by ticks are a growing threat to global public health[2]. 
Severe fever with thrombocytopenia syndrome (SFTS) 
is an emerging tick-borne infectious disease caused by 
SFTS virus (SFTSV) with the mortality rate of 6% to 30% 
[3]. SFTS was first recorded in China in 2009, followed 
by reports in South Korea, Japan, and Vietnam [3–6]. 
At present, SFTS cases are gradually increasing in these 
countries. As of 2018, a  total of 11,995 cases had been 
reported in China alone [7]. Haemaphysalis longhorned 
tick is the main transmission vector of SFTSV, which is 

widely distributed in Asia, Oceania and North America 
[8, 9]. Epidemiological investigations showed that close 
contact with blood/bloody secretions of SFTS patients 
can also cause human-to-human transmission [10, 11]. 
In addition, SFTSV RNA was detected in sputum and 
semen, suggesting that droplets and sexual transmis-
sion may be potential transmission routes [12, 13]. Our 
previous study found that SFTSV could be transmitted 
vertically through the placental barrier in C57/BL6 mice 
[14]. All these findings suggest that there may be multiple 
transmission routes for the human-to-human transmis-
sion of SFTSV.

SFTS patients show a variety of clinical manifesta-
tions including fever, gastrointestinal manifestations 
(e.g., abdominal pain, vomiting, and nausea), central 
nervous syndromes (CNS) manifestations (e.g., dizzi-
ness, headache, encephalitis, and coma), diarrhoea, and 
haemorrhagic signs, among which CNS manifestations 
(adjusted odds ratio [OR] 30·26) are important risk fac-
tors for the fatal outcome of SFTS patients [15, 16]. The 
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blood-cerebrospinal fluid (CSF) barrier is an important 
barrier to protect the CNS from pathogens, and formed 
by a single layer of epithelial cells of the choroid plexus 
[17]. CSF provides nutrients, hormones, and signaling 
molecules to the brain, which is necessary for maintain-
ing the normal function of the brain [18]. However, many 
clinical studies detected SFTSV RNA in patients’ CSF 
samples and even successfully isolated SFTSV [19–21], 
which supported that the presence of virus in the CNS. 
All these findings suggest that  SFTSV has the ability to 
damage the CNS, but there is limited research focus on 
the mechanism of SFTSV damage to the brain. In this 
study, dynamic changes of the viral loads were observed 
in the brain and the target cells after SFTSV infection, 
which provides an advanced grasp of the CNS manifesta-
tions caused by SFTSV.

Materials and methods
Viruses and cells
The SFTSV strain JS2011-013–1(GenBank: KC505126 
to KC505128) was used in this study. TCID50 was deter-
mined using methods described previously [14].

Mouse infection experiments
C57BL/6 pregnant mice were purchased from the experi-
mental Animal Center of China Three Gorges Univer-
sity. Pregnant mice were raised under suitable conditions 
to normal delivery. One-day-old newborn mice were 
divided into 9 groups (n = 6 to 8). The newborn mice 
were injected intraperitoneally with the same amount of 
SFTSV (6 × 103TCID50) and six mock-infected mice were 
used as controls. At each time point of 1 h, 3 h, 6 h, 12 h, 
24 h, 2 days, 5 days, and 7 days after infection, the mice 
were sacrificed, their skulls were opened, and brain tis-
sues were taken out and frozen at -80℃. The viral load 
and infectious SFTSV in brain tissues were tested by 
qRT-PCR and IFA.

Viral load determination by quantitative real‑time PCR
Frozen brain tissues were homogenized with zirconia 
beads in TissueLyser II (Qiagen). The viral RNA in brain 
tissue was extracted using Total RNA Kit I (OMEGA, 
Guangzhou, China) and cDNAs were generated by RT 
First Strand cDNA Synthesis Kit (Servicebio, Wuhan, 
China). The viral load was determined by quantitative 
Real-time PCR (qRT-PCR) with an M segment-based 
SFTSV-specific primer set (SFTSV-MF: AAG​AAG​TGG​
CTG​TTC​ATC​ATT​ATT​G and SFTSV-MR: GCC​TTA​A 
GGA​CAT​TGG​TGA​GTA). The viral load was calculated 
as a multiple value and expressed as log2.

Detection of infectious SFTSV in brain tissues
Frozen brain tissues were homogenized in 150 μl DMEM, 
centrifuged at 15000  g for 10  min at 4℃, and 100  μl of 
supernatant was taken as SFTSV stock. The SFTSV 
stock was incubated with a monolayer of Vero cells for 
2 h in a 96-well plate, and then replaced with the DMEM 
medium containing 0.5% FBS (Gibco) for 72 h. The cells 
were fixed with 4% paraformaldehyde and washed three 
times with PBS for 5  min each. Then, the monolayers 
were incubated for 1 h with human anti-SFTSV nucleo-
protein (NP) mAb. After three 5-min washes with PBS, 
the monolayers were stained with FITC-conjugated goat 
anti- human IgG (H–L).

Tissue immunofluorescence
The brain tissues of newborn mice sacrificed 7  days 
post SFTSV infection were submerged for 24  h in 4% 
paraformaldehyde at 4  °C. Tissues were paraffin embed-
ded, and 4 μm-thick tissues sections were processed for 
immunofluorescence. After being blocked with 10% BSA 
in the assay buffer, the sections were sequentially incu-
bated with the primary and secondary antibodies. SFTSV 
nucleoprotein (NP) human mAb and FITC-conjugated 
goat anti-human IgG (H–L) (proteintech, Chicago, USA) 
were used to probe SFTSV. Neun Rabbit mAb(CST, 
Boston, USA) and Cy3 conjugated Donkey Anti-Rab-
bit IgG (H + L) were used to probe neurons. F4/80 
Rabbit mAb(CST, Boston, USA) and Cy3 conjugated 
Donkey Anti-Rabbit IgG (H + L) were used to probe 
macrophages. The nuclei were stained with DAPI (blue).

Results
In this study, there was no significant statistical differ-
ence in the weight changes of the newbron mice infected 
with SFTSV (Fig.  1A). In addition, it was observed that 
some newborn mice died before the time of sacrifice, 
among which 1, 1, 1, and 2 in the 24 h, 2 days, 5 day, and 
7 days groups died before sacrifice, respectively. Consid-
ering that the brain tissues of newborn mice that died 
prematurely were eaten by the mother mice and were 
not preserved in time, the viral loads were not detected. 
The qRT-PCR results showed that the viral RNA was 
detected in the brain tissues of the newbron mice after 
intraperitoneal injection of SFTSV 3 h (Fig. 1B). In addi-
tion, by detecting the viral loads at different time points 
after SFTSV infection, we found that the viral load of 
SFTSV reached the peak at 6hpi, decreased from 6 to 24 
hpi. Notably, viral load of SFTSV increased exponentially 
from 24 hpi (Fig. 1B). The increase rate of viral load index 
in brain tissues of mice at 24 hpi after SFTSV infection 
suggested that SFTSV may replicate and proliferate in 
brain tissues. Indirect immunofluorescence (IFA) showed 
that there were infectious SFTSV particles in the brain of 
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SFTSV infected newbron mice (Fig.  1C), which further 
confirmed that SFTSV could break through the blood–
brain barrier and enter the brain tissue.

In order to further determine the cell types of SFTSV 
infected brain tissues, we performed immunofluores-
cence analysis on the mouse brain tissues at 7 dpi. The 
results showed that SFTSV infected neurons in cerebel-
lum and midbrain, as well as macrophages in cerebel-
lum, midbrain, hindbrain, and thalamus (Fig. 2A and 2B). 
The local enlarged view further confirmed that neurons 
and macrophages were the target cells of SFTSV invaded 
brain tissues. These findings indicated that SFTSV 
infected macrophages and neurons and replicated in the 
brain.

Discussion
Previous studies suggest that adult mice did not show 
clinical features no matter which routes adult mice were 
infected with SFTSV, but some newborn mice will die 

after infection with high-dose SFTSV [22]. Therefore, 
in this study, we selected the more susceptible newborn 
mice as the experimental animals.

The CNS manifestations caused by viral infection 
have always been a major public health issue of concern 
around the world because of more serious clinical mani-
festations or even death [23]. It is known that a variety 
of viruses can invade the brain and cause encephalitis, 
including zika virus, Japanese encephalitis virus, tick-
borne encephalitis virus, and SARS-CoV-2, etc. [24–27]. 
A retrospective study of 214 COVID-19 patients in China 
showed that about 36.4% of patients showed nervous sys-
tem symptoms, and a higher proportion of severe infec-
tion patients had CNS symptoms [28].

Since the discovery of SFTSV, researchers have drawn 
great attention to the CNS manifestations of SFTS 
patients and found evidence of imaging and laboratory 
tests, suggesting that SFTSV is capable to infect the CNS 
[19, 29]. Ning et al. conducted a clinical investigation of 

Fig. 1  SFTSV replicates in brain tissue. A Weight changes of newborn mice after infection with SFTSV (n = 4 to 6). B Changes of viral loads in brain 
tissues of newborn mice infected with SFTSV (n = 4 to 6). qRT-PCR was used to detect the viral loads in brain tissues of newborn mice, and the 
SFTSV nucleic acid was detected at 3 hpi. The viral loads of the 3 h group were set as the benchmark, while the log2 fold changes of the other 
groups and the 3 h group were calculated. C Indirect immunofluorescence (IFA) detected the infectious virus particles in the brain tissues. Newborn 
mice were sacrificed at 3 hpi, 2 day post-infection (dpi), and 7 dpi, respectively. The brain tissues were homogenized, and the infectious SFTSV 
particles were detected by IFA. SFTSV was probed by SFTSV nucleoprotein (NP) human mAb and a FITC-conjugated goat anti-human IgG (H + L) 
secondary antibody (green); nuclei were stained with DAPI (blue). Bar = 50 μm
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538 SFTS patients and found that 19.1% of them were 
diagnosed with encephalitis. Notably, the SFTSV strain 
(HNXY-319) was successfully isolated from the CFS 
of one of the SFTS patients who developed encephali-
tis, providing direct evidence that SFTSV is capable of 
infecting the CNS [20]. However, due to the difficulty 
of collecting CNS-related clinical samples, the dynamic 
changes of viral loads and target cell types after SFTSV 
infection in the brain are currently unclear.

We found there were dynamic changes of the viral 
loads of SFTSV after the brain tissues were infected with 
SFTSV. SFTSV broke through the blood–brain barrier 
(BBB) of newborn mice within 3 hpi. Considering the 
species differences between human and newborn mice, 
assuming that  adults have fully functional BBB, it may 

take longer for SFTSV to break through the adult BBB 
[30]. After 24 hpi, the viral load increased exponentially 
in the brain, which may be closely related to the differen-
tiation of macrophages into the M2 phenotype. Previous 
studies found that SFTSV infected and replicated in mac-
rophages in vivo and in vitro and aimed at virus shedding 
and spread by driving the differentiation of macrophages 
into the M2 phenotype [31, 32]. Our study revealed that 
in addition to macrophages, SFTSV also infected neu-
rons in the brain. Then, considering the complexity and 
three-dimensional structure of the brain [33], there may 
be other cell types infected with SFTSV.

To our knowledge, multiple animal models have 
been reported to support SFTSV infection with limited 
symptoms of SFTS patients [22, 34–37]. For example, 

Fig. 2  The target cells of SFTSV in the brain tissues of newborn mice. A colocalization of SFTSV and neurons in the brain tissues of newborn mice. 
a and c indicated that SFTSV infected neurons in the cerebellum; b and d indicated that SFTSV infected neurons in the midbrain. NeuN, a marker 
protein of mature neurons, was labeled in red. B Colocalization of SFTSV, and macrophage in brain tissues of newborn mice. a-d respectively 
indicated that SFTSV infected macrophages in the cerebellum, midbrain, hindbrain, and thalamus. The marker protein F4/80 of macrophages was 
marked in red. Nuclei were stained with DAPI (blue); SFTSV NPs were marked Green. Bar = 50 μm
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interferon-knockout and rapamycin-treated mice were 
highly susceptible to SFTSV and died within 3–4  days 
[36, 37]; aged ferrets infected with SFTSV mimiced 
most of the symptoms of SFTS patients and rapidly dies 
within 6–8  days [35]. The short survival time limits the 
application of these models to the study of pathogenic 
mechanisms and drug development. Furthermore, a 
humanized mouse model was constructed by engrafting 
NCG mice with human peripheral blood mononuclear 
cells (PBMCs) [34]. This model simulates the main symp-
toms of SFTS infection and exhibits longer survival time, 
and SFTSV RNA is detected in the brain. Newborn mice 
not only could be used as animal models for encephalitis 
research as the humanized mouse model, but also have 
the advantage of being more accessible.

Our findings provide pathological evidence for the 
appearance of CNS manifestations in SFTS patient, and 
emphasize the urgency of exploring the molecular mech-
anisms underlying CNS manifestations.
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