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Abstract 

Background:  Pseudomonas aeruginosa is an opportunistic pathogen that can cause a variety of infections in humans, 
such as burn wound infections and infections of the lungs, the bloodstream and surgical site infections. Nosocomial 
spread is often concurrent with high degrees of antibiotic resistance. Such resistant strains are difficult to treat, and in 
some cases, even reserved antibiotics are ineffective. A particularly promising therapy to combat infections of resist-
ant bacteria is the deployment of bacteriophages, known as phage therapy. In this work, we evaluated the in vivo 
efficacy of two Pseudomonas phages in bacteremia mice models. For this study, non-neutropenic mice (BalB/C) were 
infected with P. aeruginosa AB030 strain and treated using two bacteriophages, AP025 and AP006.

Results:  The results showed that a single dose of phages at higher concentrations, bacteria: phage at 1:10 and 1:100 
were effective in eliminating the bloodstream infection and achieving 100% mice survival.

Conclusion:  This study highlights the efficacy of using a single dose of phages to restore mice from bacteremia.
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Background
P. aeruginosa is one of the most common opportunistic 
pathogens that are known to cause nosocomial, acute 
and chronic infections [1]. P. aeruginosa is known to 
cause urinary tract infections, soft tissue infections, res-
piratory tract infections, gastrointestinal infections, bone 
and joint infections and many systemic infections. The 
diseases associated with this pathogen can lead to a high 

mortality rate, especially in patients with cystic fibrosis, 
cancer, burn wounds and immunocompromised patients 
[2, 3]. In recent years, treatment failure is mainly due to 
the increasing antibiotic resistance among clinical iso-
lates. P. aeruginosa strains have been shown to have 
acquired resistance to a range of antibiotics including 
aminoglycosides and carbapenems, one of the last-resort 
antibiotics [4–6]. A recent report shows that the majority 
of healthcare-associated infections caused by P. aerugi-
nosa are multidrug-resistant, leading to high numbers of 
deaths globally [7–9]. During the recent coronavirus pan-
demic, at least 30% of COVID-19 patients suffered from 
underlying bacterial infections, with P. aeruginosa having 
contributed to at least 12% of these infections [10, 11]. 
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Most of the prophylactic treatment failure was due to 
antibiotic resistance or resistance which developed dur-
ing the course of the prophylaxis [12, 13].

The increasing antibiotic resistance urgently calls for 
new non-antibiotic alternatives and researchers are look-
ing at bacteriophages as one of the promising alterna-
tives [14–16]. Phage therapy is the use of bacteriophages 
(phages) to treat bacterial infections. Recent studies and 
clinical outcomes suggest that phage therapy is a suit-
able alternative if antibiotic therapy fails due to drug 
resistance [17, 18]. Phages for therapy should be strictly 
virulent (also known as lytic), as studies have shown that 
prophages (genome-embedded phages with a lysogenic 
cycle) can alter the characteristics of a host and in some 
cases, increase virulence, not only in P. aeruginosa but 
also in other pathogens [19–21]. Many Pseudomonas 
phages with potential for clinical use have been reported 
[22–24], however, the majority of previously published 
studies on phage therapy focused mainly on wound infec-
tions [25, 26]. Our study describes the use of phages in 
bloodstream infections caused by the pathogen.

The two bacteriophages used in this study are Pseu-
domonas phages AP025 and AP006 which belong to the 
families, Myoviridae and Siphoviridae, respectively [27]. 
They were previously characterized for their in  vitro 
activity against MDR and XDR strains of P. aeruginosa 
[27]. Here, AP025 and AP006 were used in mouse models 
to test their therapeutic value to treat infections in vivo.

Results
Phage therapy for bacteremia infections caused by P. 
aeruginosa
When assessing the therapeutic value of phages for clini-
cal use, animal experiments are necessary. Here, we used 
non-neutropenic BalB/C mice as an animal model for 
bloodstream infections. The mice were infected with 
P. aeruginosa via the intraperitoneal route (i.p.) which 
were also treated with Pseudomonas-specific phages 
and compared to the control groups. First, mice were 
injected with a dose of 8 × 106 CFU of P. aeruginosa strain 
AB030 each via i.p. which would be lethal if untreated. 
Two hours post-infection, we administered one of the 
two phages that specifically infect AB030, phage AP025 
or AP006. In the control group, the infected mice died 
within 2 days demonstrating that the bacterial dose was 
indeed lethal (Fig.  1). To show that the phage prepara-
tion had no negative effects on the mice, another con-
trol group was included. Here, mice were injected only 
with phages at MOI values of 1, 10 or 100 as single doses 
(i.p.). In this control group, we observed a 100% survival 
rate, indicating the absence of any toxic substance in the 
phage preparation. Using the identical dosing (or less), 

the phages were then used to test their effect on bacterial 
pathogens in a bacteremia mouse model.

The infected mice were treated with two phages, either 
AP025 or AP006 (Fig.  1). When treated with the phage 
AP025 at an MOI of 1 (8 × 106 PFU/mice), five of the six 
mice survived (87.5%) with an observation time of 72 h. 
At an MOI of 10 (8 × 107 PFU/mice) and MOI of 100 
(8 × 108 PFU/mice), 100% survival was observed and the 
animals showed no signs of infection. In the case where 
treatment was conducted with the AP006 phage at MOI 
10 (8.4 × 107 PFU) and 100 (8.4 × 108 PFU), all the mice 
survived without any observable symptoms. Animals 
treated with the AP006 phage at MOI of 1 exhibited an 
84% survival rate as 2 animals died, one after day 1 and 
the second after day 2 (Fig. 1).

The effect of phage treatment on bacterial load in different 
organs
Phage therapy can be very efficient in clearing pathogens 
when the bacteria are planktonic, e.g. in the blood, while 
it can be more challenging if the bacteria are embed-
ded within tissues or in a biofilm which might require 
encapsulation for optimized delivery [28]. Thus, we 
tested for bacteria in the infected and treated animals 
to determine how efficient the phages are at clearing 
the pathogen. Here, tissues were isolated from different 
anatomical regions or organs, quantified, homogenized 
and the colony-forming units of bacteria count. A sub-
stantial reduction in the bacterial count was observed in 
the phage treated groups compared to infection groups. 
After treatment, the liver, spleen and lungs contained the 
largest amount of bacteria, with 5.1 × 105, 4.4 × 106 and 
4.1 × 106 CFU/mL respectively. The number of bacteria 
was lower in the heart at 1.0 × 105 CFU/mL, while the 
bacterial count in the blood was lowest at 1.2 × 104 CFU/
mL (Fig. 2).

Discussion
P. aeruginosa is known to cause life-threatening infec-
tions, a situation that is aggravated by the high number 
of multidrug-resistant strains. Recent developments in 
phage research have demonstrated that phage therapy 
can facilitate the full recovery of infected mice in  vivo 
studies [29–33]. Previously, we demonstrated that the 
Pseudomonas phages AP025 and AP006 were able to 
infect and lyse a wide range of multidrug-resistant P. aer-
uginosa strains [27]; however, they had not been tested in 
an in  vivo model. While it is reasonable to assume that 
the phages might also be active in mammalian tissues, 
there are a plethora of unknown factors including the 
impact of the host immune system that requires vigorous 
testing of the phages in a mammalian model. To this end, 
we choose non-neutropenic BalB/C mice which were 
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infected with P. aeruginosa via the i.p. route. Even equal 
amounts of phage to bacterial cells were able to show that 
the viruses were highly efficient in neutralizing the path-
ogen; at higher doses, treatment with either of the two 
phages allowed full recovery of the infected animals.

In our work, no phage-resistant mutants were observed 
during both, in  vitro studies or in  vivo treatments [34–
37], indicating that these two phages are extremely effi-
cient in infecting and killing the pathogen. This is even 
more astounding as a single dose of phage administra-
tion is effective. No negative effects caused by the phage 
preparations in mice clearly show that the phage prepara-
tions were free of bacterial toxins that have the potential 
to cause severe harm to the animals.

In the treatment groups, the animals were monitored 
for mortality, clinical symptoms and body weight for up 
to 72 hours post-infection. Infected mice which received 
the higher concentrations of phage, AP025 and AP006, 
were fully protected (100%) and showed no signs of 
infection. At lower concentrations of phages, i.e. with 
AP025 at a 1:1 ratio of phage: bacteria, five out of six 

mice survived (87.5%) for the duration of the experiment 
(72 h). Animals treated with AP006 phages at an MOI 
of 1 exhibited an 84% survival rate as 2 animals died. 
Previous studies on bacterial keratitis showed the dose-
dependent clearance of the bacterial load, in which the 
MOI of 100 reduced the bacterial load by 99.78%. Simi-
larly, previous studies also showed that phages at higher 
concentrations up to 107–108 PFU/mouse can substan-
tially increase the survival percentage [29, 38]. Although 
phages are auto-dosing naturally due to their replicative 
nature if a suitable host is encountered, the number of 
phages administered will decide the therapeutic outcome 
which is not necessarily correlated with a multi-dosage 
regimen.

Our work is a proof-of-concept study which has limi-
tations as the findings cannot be compared directly with 
a clinical therapy of a human patient: First, we investi-
gated the infection and the efficacy of the phages within 
a short time frame after the inoculation with the patho-
gen (2 hours), before the onset of a complete infection. 
However, the animals in the control group (infected 

Fig. 1  Pathogenicity of Pseudomonas aeruginosa AB030 in mice models and efficacy of Pseudomonas phage AP025 (A) and AP006 (B) against P. 
aeruginosa bacteremia infections. Representative survival curves of mice following infection by clinical P. aeruginosa strain AB030 and treated with 
phages 2 hours post-infection. The mice in the infected group were dead within 48 hours. In the phage control group, 100% survival was observed. 
When infected mice were treated with phage AP025 at MOI = 1, 1/6 mice were dead on the 2nd day. With phage AP006 at MOI = 1, we observed 
death in 2 of 6 mice on the 1st and the 2nd day. All the animals survived when treated with phages at MOI values of 10 and 100, respectively, with 
signs of infection. The survival curves were plotted using the Kaplan-Meier method and the log-rank test was used to analyze the difference in 
survival rates in GraphPad Prism 7.0. A statistically significant difference (p < 0.05) was observed in the treatment groups
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with bacteria, without phage) displayed several (partially 
severe) symptoms of infection 2 hours post-inoculation. 
Second, in our work, only a single dose of phage treat-
ment was administered and not compared to two or more 
courses of phage injections. In clinical phage therapy, it is 
often necessary to administer multiple doses which are 
also occasionally given at lower phage concentrations.

When the infected and treated animals were tested 
for bacterial load, the liver, spleen and lungs con-
tained the largest amount of bacteria and the number 
of bacteria was lower in the heart, while the bacterial 
count in the blood was the lowest. While it is not pos-
sible to determine where phages are most effective as 
we obtained fairly large deviations in phage numbers 
(expressed in our error bars in Fig. 2), we can observe 
tendencies where most bacteria can be found and how 
efficient our tested phages are compared to no phages. 
The efficacy of phages compared to each other is simi-
lar, showing the highest reduction in bacterial load 
in blood, compared to the absolute CFU numbers. 
Regardless of the variations in phage count, we could 
establish that the phages can reduce (48 hours) or 

abolish the bacterial infection, as after 72 hours, no via-
ble bacteria were detected in the samples from animals 
treated with either phage (data not shown).

Phages are an alternative therapy to treat MDR 
infections but many questions remain about their use 
in systemic infections. This study showed the dose-
dependent recovery from bacteremia in mice using 
a single dose of phages and the reduction of bacterial 
load after 48 hours post-treatment. This kind of study 
sheds light on the future of phage therapy and its thera-
peutic applications.

Conclusion
In our short report, we demonstrate that the recovery 
of mice infected with the pathogen P. aeruginosa AB030 
is significantly increased when two different therapeu-
tic phages are administered. The current treatment for 
bacteremia caused by P. aeruginosa is the use of differ-
ent antibiotics in varying combinations. However, for 
drug-resistant strains, phage therapy may not only be 
an alternative but possibly the only choice.

Fig. 2  Bacterial enumeration from mice post-infection with P. aeruginosa and treated with Pseudomonas phage AB025 (MOI = 10) and AB006 
(MOI = 10). Results are represented as CFU for bacteria isolated from different organs in the mice after 48 hours. Error bars represent the standard 
error of the mean (SEM) of three independent replicates. Data were analyzed using GraphPad Prism 7.0 and two-way ANOVA was used for statistical 
analysis (P < 0.05 was considered significant)
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Methods
Bacterial strains and bacteriophage
P. aeruginosa isolate used in this study was collected 
from the super-speciality and tertiary care hospital in 
south India. P. aeruginosa strain AB030 was isolated 
from a patient with bacteremia. The bacteria were cul-
tured in Luria-Bertani (LB) broth and the diluted (1:100, 
v/v) overnight culture at 106 colony-forming units/mL 
(CFU/mL) was used for the experiments. From the pre-
vious studies, the isolate was found to be multi-drug 
resistant (MDR) and cause bacteremia in mice [16]. 
For the treatment, two previously characterized bac-
teriophages were used which include Pseudomonas 
phage AP025 and Pseudomonas phage AP006 [22]. The 
characterized Pseudomonas phage AP025 (Myoviridae) 
had infectivity of 39% and Pseudomonas phage AP006 
(Siphoviridae) with 30% infectivity against 51 P. aer-
uginosa tested. Both bacteriophages AP025 and AP006 
infect P. aeruginosa AB030 in in vitro experiments [27].

Bacteriophage purification and assay
All the bacteriophages used in this study were pre-
cipitated using polyethylene glycol (PEG) and sodium 
chloride (NaCl). Briefly, 10% PEG and 1 M NaCl were 
added to phage lysate and incubated overnight at 4 °C. 
The precipitated phage particles were recovered by cen-
trifugation at 12,000×g for 30 min and the supernatant 
was discarded. To the pellet, SM buffer was added and 
incubated at room temperature for 1 hr. To remove the 
cell debris from the phage suspension, an equal volume 
of chloroform was added and vortexed for 30 sec. The 
organic and aqueous phases were separated by cen-
trifugation at 4000×g for 10 min and the aqueous phase 
containing phage particles was recovered and stored at 
− 20 °C. To test the infectivity of bacteriophages against 
P. aeruginosa, both spot test and double agar overlay 
methods were performed and plaque-forming units 
(PFU/mL) were calculated [27]. For the in vivo experi-
ments, both phages were prepared at different multi-
plicity of infections (MOI) or phage to bacteria ratios 
at 1, 10 and 100. MOI can be defined as the number of 
phage particles against the number of bacteria.

Phage therapy in the mouse infection model
For the in  vivo studies, six-week-old BalB/C mice 
were used. The animals were housed at four mice per 
cage and maintained in standard laboratory condi-
tions. The animals were raised and cared for by guide-
lines established by the Committee for the Purpose of 
Control and Supervision of Experiments on Animals 
(CPCSEA) in India. All procedures, care and han-
dling of the animals were reviewed and approved by 

the Institutional Animal Ethical Committee (IAEC) of 
Anthem Bioscience.

Bacteremia model
To evaluate the efficacy of Pseudomonas phages in 
reducing the blood-stream infection, a total of 54 non-
neutropenic mice (BalB/C) were chosen (Fig. S1). The 
clinical P. aeruginosa AB030 strain was used for bactere-
mia infection and two bacteriophages, AP025 and AP006 
were used for treatment. Briefly, in the infection control 
group three mice were infected with P. aeruginosa AB030 
(8 × 106 CFU/mice) via the intraperitoneal (i.p.) route. 
In another infection control group, three mice received 
100 μL of PBS. For the phage control group (n = 12), four 
groups of mice (3 per group) were injected with a sin-
gle dose of AP025, AP006 (MOI = 10, 100) via i.p. In the 
treatment group or challenge studies (n = 6 mice/group), 
after 2 h of Pseudomonas infection a single dose of AP025 
and AP006 (separately) phages were injected at MOIs 
of 1 (8 × 106 PFU/mice), 10 (8 × 107 PFU/mice) or 100 
(8 × 108 PFU/mice) (100 μL) via i.p. The mice were sacri-
ficed (n = 3) immediately after death in the case of infec-
tion groups and after 48 hours in a treatment group (MOI 
of 10) and major organs i.e. blood, heart, liver, spleen and 
lungs were collected, homogenized, diluted, and evalu-
ated for the bacterial load. Bacterial load was recorded 
as CFU/mL and the values were represented as standard 
errors of the mean (SEM).

Statistical analysis
All the experiments were performed in duplicates and 
error bars were plotted using the standard errors of the 
mean (SEM). Significant differences were determined 
using two-way ANOVA with a p-value < 0.05. Survival 
curves were plotted using the Kaplan-Meier method, 
and the log-rank test was used to calculate the differ-
ence in survival rates using GraphPad Prism 9.0. Based 
on the log-rank test p < 0.05 was considered statistically 
significant.
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Additional file 1: Figure S1. Outline of the study groups used to evaluate 
the efficacy of two Pseudomonas phages in reducing the bacteremia in 
mice models.
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