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Abstract 

Pine wilt disease (PWD) is a worldwide forest disease caused by pine wood nematode (PWN). In this article, we 
investigated the composition, organization, correlation, and function of the endophytic microbial community in Pinus 
massoniana field with and without PWN. Samples were taken from branches, upper, middle, and lower trunks, as well 
as soil, from both healthy and infected trees. The results showed that the fungal diversity of healthy pines is around 1.1 
times that of infected pines, while the bacterial diversity is about 0.75 times that of infected pines at the OTUs level. 
An increase of the abundance of pathogenic fungus such as Saitozyma, Graphilbum, Diplodia, Candida, Pseudoxan-
thomonas, Dyella and Pantoea was witnessed in infected pines according to the result of LEfSe. Furthermore, Ophi-
ostoma and saprophytic fungus such as Entomocorticium, ganoderma, tomentella, entomocorticium were exclusively 
prominent in infected pines, which were substantially and highly connected with other species (p < 0.05), indicating 
the trees’ vulnerability and making the wood blue. In healthy pines, the top three functional guilds are parasites, plant 
pathogens, and saprotrophs. Parasites (36.52%) are primarily found in the branches, plant pathogens (29.12%) are 
primarily found in the lower trunk, and saprotrophs (67.88%) are primarily found in the upper trunk of disease trees. 
Pines’ immunity is being eroded due to an increase in the quantity and types of diseases. PICRUSt2 research revealed 
that NADH or NADPH, as well as carbon-nitrogen bonds, were more abundant in healthy pines, but acid anhydrides 
and transferring phosphorus-containing groups were more abundant in infected pines. The shift in resin secretion 
lowers the tree’s potential and encourages pine wilt and mortality. In total, PWN may have disrupted the microbiologi-
cal ecology and worked with the community to hasten the demise of pines.
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Introduction
Pine wilt disease (PWD) is a devastating forest dis-
ease that has struck east Asia and portions of Europe 
[1, 2]. The disease has expanded over China’s eastern 
and western regions in recent years, causing massive 

economic losses and environmental dangers. Bursap-
helenchus xylophilus, a pathogen, has been identified 
as one of China’s most harmful forestry organisms. 
The pathogenic mechanism of the pinewood nema-
tode (PWN) has aroused widely concern of researchers. 
There are several theories on how PWN causes disease, 
including the cellulase theory, phytotoxin hypothesis, 
and terpenoid hypothesis [3]. According to the cel-
lulase theory, PWN release cellulase to damage pine 
parenchyma cells, causing pine wilt [4–6]. The phy-
totoxin theory states that PWN invades the pine tree 
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and produces or causes a poisonous chemical that dis-
rupts the pine tree’s metabolism and causes it to wilt 
[7, 8]. The both hypotheses have limitations that they 
fail to explain why larger pines wilt earlier than smaller 
pines after being infected with PWN [9]. The terpenoid 
hypothesis illustrated that PWN affects the transfer of 
water and nutrients in pine trees, which causes nee-
dle wilt and tree mortality [10]. The aforementioned 
hypotheses are extremely important in determining 
the pathogenic mechanism of PWN. However, these 
investigations concentrate on a few visible events in the 
pathogenic process of PWN. They are unable to ade-
quately reflect the disease’s pathogenic mechanism.

Recent research has discovered that both PWN infec-
tion and host insect invasion can alter the microbial com-
munity in pines’ internal and exterior environments, and 
the changing of the microbial community is a critical 
component in the prevalence of PWD [11, 12]. It was dis-
covered that Enterobacter dominated the gut microbial 
population of Monochamus alternatus larvae. These bac-
teria may aid M. alternatus in the breakdown of cellulose 
and pinene, according to macro-genomic research [13]. 
Previous study has shown that PWN infection in Pinus 
thunbergia can alter the microbial community structure 
and nutritional composition of the rhizosphere soil [14]. 
The quantity of endophytic bacteria in P. pinaster altered 
after PWN infection [15]. In P. thunbergii, PWN infection 
altered the rhizosphere and needle microbial communi-
ties [16, 17]. In P. massoniana, PWN infection altered 
the forest soil characteristics and rhizosphere microbial 
community [18]. In addition, Sriwati et  al. discovered 
that some fungus can help P. thunbergii reproduce PWN 
[19]. The presence of PWD impacted the rhizosphere soil 
characteristics in several types of pines and modified the 
microbial community makeup of pine tissues, according 
to various studies. As a result, research into microbial 
populations in tree trunks is required.

In this study, we collected samples of branches, trunks, 
and rhizosphere soil from P. massoniana infected by 
PWN in the field. The makeup of microbial communi-
ties, structure, correlation and function in healthy and 
diseased trees was then studied. The study focuses on 
the function and correlation of the microbial commu-
nity in PWN-infested pines, particularly the relationship 
between fungus and bacteria. On this basis, the features 
of microbial diversity in each area of the pines during 
PWN invasion and the features of microbial diversity 
of each section of the pines during PWN invasion were 
discussed in further depth. On this basis, the features 
of microbial diversity of each section of the pines dur-
ing PWN invasion were discussed in further detail. It 
suggests that PWN infection hastened the mortality of 
pines by changing the endophytic community structure, 

providing a theoretical basis for developing PWN man-
agement approaches.

Materials and methods
Samples sites and collection
All samples were collected in Tianmu Mountain, Lin’an, 
Zhejiang Province, China (30°20′N, 119°25′E). The envi-
ronmental characteristics of this region are as following: 
average annual sunshine hour of 1920, a sunshine rate of 
44%, an average annual temperature of 16 °C, an average 
annual precipitation of 1613.9 mm, an average annual 
precipitation time of 158 days, an average annual frost-
free period of 237 days, and a total area 3118.77 km2. P. 
massoniana and Cunninghamia lanceolata make up the 
majority of the trees in this stand. We chose three healthy 
trees and three diseased trees infected exclusively with 
PWN as samples, following Millberg’s methodology [20]. 
Healthy trees have entirely green needles. On the con-
trary, diseased trees have reddish-brown needles that 
do not fall off owing to PWN infection, bark with longi-
corn beetle nests, the trunk turns blue, and no turpentine 
loss signs. Secondary branches, trunks (upper, middle, 
and lower), surface soil (0-5 cm), and deep soil (5-15 cm) 
(551 cm) were all sampled from healthy and sick P. mas-
soniana. After collection, all samples were immediately 
deposited in solid carbon dioxide (dry ice), then returned 
to the laboratory and stored at − 80 °C until required.

DNA extraction, ITS region amplification 
and Illumina‑MiSeq sequencing
The CTAB technique (Cetyltrimethylammonium Bro-
mide) was used to extract genomic DNA from all of the 
materials (trees and soil) [21]. First, the trees samples 
(0.3 g) and soil samples (0.1 g) were frozen with liquid 
nitrogen. Second, 500 μL DNA extraction buffer (100 mM 
Tris HCl [pH 8.0], 20 mM EDTA [C10H14N2Na2O8, 
pH 8.0], 10% SDS (C12H25SO4Na), 1.4 M NaCl and 2% 
CTAB) were added in each of samples, treated in 60 °C 
water bath for 30 mins. Then, the samples were mixed 
with 200 μL chloroform-isopentenyl liquid (24:1, v/v). 
The supernatant was precipitated with 0.9 volume isopro-
panol at room temperature for 20 minutes, centrifuged at 
20000 g for 30 minutes, washed twice with 70% cold etha-
nol, and then dissolved with 50 μL RNase-free water after 
spinning at 20000 g for 30 minutes. The NanoDrop 2000 
ultraviolet spectrophotometer was used to measure the 
concentrations of the samples (Thermo Fisher Scientific). 
All extracted DNA samples be stored at − 20 °C until the 
following step.

The ITS1 region of the fungal ITS gene was amplified 
using primer combinations ITS1F/ITS2R (ITS1F: 5′-CTT​
GGT​CAT​TTA​GAG​GAA​GTAA-3′, ITS2R: 5′-GCT​GCG​
TTC​TTC​ATC​GAT​GC-3′) [22] and 338F/806R (338F: 
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5′-ACT​CCT​ACG​GGA​GGC​AGC​AG-3′, 806R: 5′-GGA​
CTA​CHVGGG​TWT​CTAAT-3′) [23]. TransStart Fastpfu 
DNA Polymerase (TransStart) was used in all PCR exper-
iments. The PCR amplifiers were purified by AxyPrep 
DNA kit (Axygen Biosciences, Central Avenue, Union 
City, CA, USA), and the PCR products were quantita-
tively detected by QuantiFluor™ -ST blue fluorescence 
quantitative system (Promega). The DNA concentration 
was adjusted to 10 ng/L, and the extracted DNA quality 
was assessed using a NanoDrop 2000 ultraviolet spectro-
photometer and agarose gel electrophoresis. Amplicon 
library sequencing is performed on the Illumina MiSeq 
PE300 platform (Illumina, San Diego, CA, USA) using 
the Majorbio Technology, Shanghai, China, standard 
methodology. The clean reads may be obtained in the 
Sequence Read Archive (SRA) repository at the National 
Center for Biotechnology Information (https://​submit.​
ncbi.​nlm.​nih.​gov/​subs/​sra/), with the accession number 
PRJNA 768116.

Sequence data analysis, Illumina MiSeq data information, 
and statistical analysis
We screened the raw data, processed it, and quality-con-
trolled it to acquire high-quality and effective tags, which 
improved the accuracy and reliability of the findings [24]. 
To begin, the FLASH program (https://​ccb.​jhu.​edu/​softw​
are/​FLASH/) is used to splice the PE reads produced by 
the initial double-terminal sequencing [25]. Simultane-
ously, the Fastp program (https://​github.​com/​OpenG​
ene/​fastp/) is used to check the quality of the original 
sequence, differentiate samples by barcode, and eliminate 
low-quality sequences.

The operation taxon (operational taxonomic units, 
OUTs) was grouped using the UPARSE algorithm [26] 
and Usearch software (version 7.0 http://​drive5.​com/​
usear​ch/), and chimeric was removed based on a 97% 
similarity threshold [27]. The UNITE database is then 
used to compare each sequence (Release 6.0 http://​unite.​
ut.​ee/​index.​php) [28]. To obtain the species categoriza-
tion annotation results, the alignment threshold was set 
to 70% and non-fungal sequences were eliminated from 
the OTUs (operational taxonomic units). QIIME [29], 
Mothur [30] and R software were used to examine OTUs 
abundance, alpha diversity, beta diversity, and commu-
nity outcomes of species at each categorization level. The 
makeup of the microbial community structure was then 
shown in the same way [31, 32].

Microbial community composition, organization, 
correlation, and function analysis
To compare the community richness (Richness and 
Chao1), diversity (Shannon), and evenness (Shannon 
even) of diseased and healthy trees, one-way analysis of 

variance (ANOVA) tests was utilized. With InteractiVenn 
(http://​www.​inter​activ​enn.​net), Venn diagrams were 
created using subsampled data to reveal common and 
unique OTUs [33]. The microbial taxonomic and func-
tional groups differentially represented across treatments 
were identified using linear discriminant analysis (LDA) 
combined with effect size (LEfSe; http://​hutte​nhower.​
sph.​harva​rd.​edu/​galaxy/​root?​tool id = PICRUSt normal-
ize) [34]. LDA > 4.8 with p < 0.05 was used as the LEfSe 
criterion. The fungal community structure was shown 
using principal coordinates analysis (PCoA).

The top 50 genera in terms of total genus abundance 
were used to calculate the correlation between the abun-
dance of species in healthy and diseased trees using 
Spearman’s correlation algorithm (https://​cran.r-​proje​
ct.​org) with absolute value of Spearman correlation > 0.5 
and false discovery rate-corrected (p < 0.05) to better 
understand the role and correlation of important micro-
bial genera in the pathogenesis of PWN. Cytoscape 3.7.1 
was used to view the networks. The SPLS (Sparse Partial 
Least Squares) method was used to determine the rela-
tionship between fungal and bacteria in healthy and dis-
eased trees. SPLS was written in R (https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​spls/), and the R-package was available 
for download via CRAN (the Comprehensive R Archive 
Network) (https://​cran.r-​proje​ct.​org/​index.​html) [35]. 
The circus (http://​www.​circos.​ca/) displayed the microbi-
ome divergence.

The COG family information and KEGG Orthology 
(KO) information corresponding to OTUs were obtained 
by the Greengene id, corresponding to each OUTs, and 
the abundance and KO abundance of each COG were 
calculated [36]. The description information of each 
COG and its function information may be parsed from 
the eggNOG database using the COG database’s infor-
mation, and therefore the function abundance spectrum 
can be derived. The abundance of each functional cate-
gory can be determined using the information from the 
KEGG database, and the abundance of each functional 
category may be computed using the abundance of OTUs 
[37]. FUNGuild (Fungi Functional Guild) was utilized to 
forecast the probable activities of fungi by using bioinfor-
matics approaches to combine fungal species categoriza-
tion with functional guild classification [38].

Microsoft Office was used to arrange the data, and Stu-
dent’s t-tests and ANOVA in SPSS 22.0 were used to look 
for significant differences. Statistical significance was 
determined for all comparisons using a p < 0.05.

Results
Microbial composition of diseased and healthy trees
A total of 3,601,568 (fungi) and 2,240,660 (bacteria) high-
quality sequences were generated across all samples after 
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sequence de-noising and quality filtering. The number 
of fungal communities was less in diseased trees than 
in healthy trees at all classification levels, while bacteria 
communities were opposite (Fig. 1a, Table S1). The analy-
sis of the α diversity index of diseased trees and healthy 
trees at the OTUs level showed that there was no sig-
nificant difference in microbial community richness and 
evenness between diseased trees and healthy trees, but 
the fungal diversity index was a significant difference. In 
addition, the community richness of healthy and diseased 
trees was the highest, followed by branches and trunks 
(Table S2).

All sequences were classified to the fungal domain and 
assigned to 2830 OTUs across all samples, including 14 
phyla, 46 classes, 109 orders, 454 genera and 679 species. 
Ascomycota (59.80% of the sequence) was the most abun-
dant phylum, followed by Basidiomycota (29.90% of the 
sequence), Mortierellomycota (2.63% of the sequence), 
Rozellomycota (1.11% of the sequence), and others 
(< 1.0% of the sequence) include Mucoromycota, Glom-
eromycota, Chytridiomycota, Entomophthoromycota, 
Calcarisporiellomycota, Cercozoa, Kickxellomycota, 

Olpidiomycota (Fig.  1b, Table S3). All sequences were 
classified to the bacterial domain and assigned to 6720 
OTUs across all samples, including 51 phyla, 114 classes, 
315 orders, 565 families, 1280 genera and 2546 spe-
cies. Proteobacteria (52.87% of the sequence) was the 
most abundant phylum, followed by Cyanobacteria 
(17.71% of the sequence), Actinobacteria (10.57% of the 
sequence), Acidobacteria (5.31% of the sequence), Bacte-
roidetes (4.14% of the sequence), Firmicutes (2.86% of the 
sequence), Chloroflexi (2.26% of the sequence), Patesci-
bacteria (1.48% of the sequence) and others (< 1.0% of the 
sequence) include WPS-2, Verrucomicrobia, Planctomy-
cetes and so on (Fig. 1c, Table S4).

Microbial structure of diseased and healthy trees
In the analysis of the fungal community of diseased and 
healthy trees, it was found that the number of unique 
OTUs in branches, trunks and soil of healthy samples 
was more than that of diseased samples. The soil shared 
40.30% of the OTUs (surface soil 37.34% and the deep 
soil 29.96%) between healthy and diseased samples, fol-
lowed by trunks and branches. Only 1.13% of OTUs were 

Fig. 1  The relative abundance of microbial phyla (as a percentage of total reads) in healthy and sick samples of P. massoniana branches, trunks, and 
soil. Ranches are represented by HB and DB, upper trunk by HTU and DTU, middle trunk by HTM and DTM, lower trunk by HTL and DTL, surface soil 
by HTS and DTS, and deep soil by HS and DS. Others means the relative abundance of microbial phyla below 1%
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shared in branches, trunks and soil, in which the soil har-
bored the most abundant OTUs, followed by branches 
and trunks (Fig. 2a). In the analysis of the bacterial com-
munity of diseased trees and healthy trees, it was found 
that the number of unique OTUs in branches, trunks and 
soil of healthy samples was more than that of diseased 
samples. The trunks shared 63.90% of the OTUs (upper 
trunk 21.64%, middle trunk 35.51%, lower trunk 41.37%) 

between healthy and diseased samples, followed by the 
soil and branches. Only 2.32% of OTUs were shared in 
branches, trunks and soil, of which OTUs, in which the 
trunks harbored the most abundant OTUs, followed by 
soil and branches (Fig. 2b).

PCoA analysis among fungal communities was per-
formed based on Bray-Curtis distance with the first and 
second axes explaining 21.79 and 16.74% of the variance, 

Fig. 2  The unique and common OTUs between healthy and diseased trees are depicted in a Venn diagram. Branches, trunks and soil of healthy and 
diseased trees are represented by HB, HT, HS, DB, DT and DS, respectively

Fig. 3  The microbial community structure in healthy and sick samples in the branches, trunks, and soil is shown using principal coordinates analysis 
(PCoA) based on Bray-Curtis distance. Branches are represented by HB and DB, upper trunk by HTU and DTU, middle trunk by HTM and DTM, lower 
trunk by HTL and DTL, surface soil by HTS and DTS, and deep soil by HS and DS
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respectively (Fig.  3a). PCoA analysis among bacterial 
communities was performed based on Bray-Curtis dis-
tance with the first and second axes explaining 32.79 and 
21.3% of the variance, respectively (Fig.  3b). The results 
showed that the infection of PWN mainly affected the 
endophytic microbial community of branches and trunks 
of P. massoniana, but had little effect on the microbial 
community in soil.

The LEfSe analysis showed that the abundance of some 
fungal taxa differed between the healthy and diseased 
samples in the branches (HB or DB), upper trunks (HTU 
or DTU), middle trunks (HTM or DTM), lower trunks 
(HTL or DTL), surface soil (HTS or DTS) and deep soil 
(HS or DS), respectively (LDA > 4.8, p < 0.05) (Fig.  4). 
In the branches, the class Eurotiomycetes, the orders 

Capnodiales and Xylariales, the family Sporocadaceae, 
and the genus Pestalotiopsis were more abundant in the 
healthy trees, whereas the orders Ophiostomatales and 
Botryosphaeriaceae; the families Ophiostomataceae and 
Botryosphaeriaceae, the genera Graphilbum and Diplo-
dia were had a higher abundance in the diseased trees 
(Fig.  4a). In the upper trunks, the phylum Ascomycota, 
the classes Sordariomycetes and Eurotiomycetes, the 
orders Hypocreales and Eurotiales, the families Hypo-
creaceae and Nectriaceae, and the genus Trichoderma 
were more abundant in the healthy trees, whereas the 
classes Saccharomycetes and Agaricomycetes, the orders 
Saccharomycetales and Polyporales, the family Gano-
dermataceae, and the genus Candida were had a higher 
abundance in the diseased trees (Fig. 4b). In the middle 

Fig. 4  LEfSe analysis reveals substantial differences between diseased and healthy trees at fungal taxonomic levels in the branches (HB or DB), 
upper trunks (HTU or DTU), middle trunks (HTM or DTM), lower trunks (HTL or DTL), surface soil (HTS or DTS), and deep soil (HTS or DTS) (HS or DS). 
Abbreviation: p: phylum, c: class, f: family, o: order, and g: genus
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trunks, the phylum Basidiomycota, the class Tremello-
mycetes, and the order Eurotiales were more abundant in 
the healthy trees, whereas the phylum Ascomycota, the 
classes Sordariomycetes and Saccharomycetes, the orders 
Saccharomycetales, Ophiostomatales and Xylariales; 
the family Ophiostomataceae, and the genus Graphil-
bum were had a higher abundance in the diseased trees 
(Fig. 4c). In the lower trunks, the order Hypocreales, the 
families Nectriaceae, Hypocreaceae and Aspergillaceae; 
and the genera Fusarium, Trichoderma and Penicillium 
were more abundant in the healthy trees, whereas the 
class Saccharomycetes, the orders Saccharomycetales 
and Ophiostomatales; the family Ophiostomataceae, and 
the genus Graphilbum were had a higher abundance in 
the diseased trees (Fig. 4d). In the surface soil, the order 
Russulales, the family Russulaceae, and the genus Rus-
sula were more abundant in the healthy trees, whereas 
the order Cantharellales, the family Clavicipitaceae, and 
the genus Membranomyces were had a higher abundance 
in the diseased trees (Fig. 4e). In the deep soil, the phy-
lum Ascomycota, the order Russulales, the family Rus-
sulaceae, and the genus Russula were more abundant in 
the healthy trees, whereas the phylum Basidiomycota, the 
class Tremellomycetes, the order Tremellales, the family 
Trimorphomycetaceae, and the genus Saitozyma were 
had a higher abundance in the diseased trees (Fig. 4f ).

Analysis of the abundance of fungal taxa in different 
parts of healthy trees are as follows. The class Doth-
ideomycetes, the orders Xylariales, Botryosphaeriaceae 
and Chaetothyriales; the families Sporocadaceae, Ter-
atosphaeriaceae, Botryosphaeriaceae, Cladosporium and 
Mycosphaerellaceae; the genera Pestalotiopsis, Devrie-
sia, Diplodia and Cladosporium were more abundant in 
the branches. The family Hypocreaceae and the genus 
Trichoderma were more abundant in the upper trunks. 
The class Saccharomycetes, the orders Saccharomyc-
etales, Pleosporales and Cantharellales; and the genus 
Candida were more abundant in the middle trunks. 
The phylum Ascomycota, the class Sordariomycetes, the 
order Hypocreales, the family Nectriaceae, and the genus 
Fusarium were more abundant in the lower trunks. The 
phyla Basidiomycota, the class Agaricomycetes, the order 
Atheliales, the families Clavicipitaceae, Atheliaceae and 
Herpotrichiellaceae; the genera Cladophialophora and 
Tylospora were more abundant in the surface soil. The 
phyla Mortierellomycota, the classes Mortierellomyceres 
and Leotiomycetes; the orders Tremellales, Mortierellales 
and Helotiales; the families Trimorphomycetaceae and 
Mortierellaceae; the genera Saitozyma and Mortierella 
were more abundant in the deep soil (Fig. S1a).

Analysis of the abundance of fungal taxa in differ-
ent parts of disease trees are as follows. The order 
Botryosphaeriales, the families Botryosphaeriaceae, 

Bionecteiaceae and Chrysozymaceae; the genera Dip-
lodia, Capronia, Ophiostoma, Hamamotoa and Clo-
nostachys were more abundant in the branches. The 
classes Agaricomycetes and Saccharomycetes, the 
orders Saccharomycetales and Polyporales, the fami-
lies Ganodermataceae and Pichiaceae, and the genus 
Kuraishia were more abundant in the upper trunks. 
The phyla Ascomycota, the class Sordariomycetes, the 
orders Hypocreales and Xylariales; the families Nec-
triaceae, Hypocreaceae and Sporocadaceae; the genera 
Xenoacremonium, Trichoderma, Trigonosporomyces, 
Fusarium and Neopestalotiopsis were more abundant in 
the middle trunks. The orders Ophiostomatales, Russu-
lales and Eurotiales; the families Ophiostomataceae and 
Trichocomaceae, and the genus Talaromyces were more 
abundant in the lower trunks. The phyla Basidiomycota 
and Mortierellomycota; the classes Mortierellomycetes 
and Cystobasidiomycetes; the orders Mortierellales, 
Chaetothyriales and Filobasidiales; the families Mor-
tierellaceae, Aspergillaceae, Russulaceae, Clavicipita-
ceae, Herpotrichiellaceae and Teratosphaeriaceae; the 
genera Penicillium, Mortierella, Pestalotiopsis and 
Devriesia were more abundant in the surface soil. The 
classes Tremellomycetes and Leotiomycetes; the orders 
Tremellales, Helotiales and Trichosporonales; the fami-
lies Trimorphomycetaceae and Trichosporonaceae; the 
genera Saitozyma and Apiotrichum were more abun-
dant in the deep soil (Fig. S1b).

The LEfSe analysis showed that the abundance of some 
bacterial taxa differed between the healthy and diseased 
samples in the branches (HB or DB), upper trunks (HTU 
or DTU), middle trunks (HTM or DTM), lower trunks 
(HTL or DTL), surface soil (HTS or DTS) and deep soil 
(HS or DS), respectively (LDA > 4.8, p < 0.05) (Fig. 5). In 
the branches, the phylum Cyanobacteria, the class Oxy-
photobacteria and the order Chloroplast were more 
abundant in the healthy tree, whereas the phyla Proteo-
bacteria and Actinobacteria, the classes Gammapro-
teobacteria, Actinobacteria and Alphaproteobacteria; 
the orders Xanthomonadales and Enterobacteriales; the 
families Xanthomonadaceae, Rhodanobacteraceae and 
Enterobacteriaceae; the genus Pseudoxanthomonas and 
Dyella were had a higher abundance in the diseased tree 
(Fig. 5a). In the upper trunks, the phylum Cyanobacteria, 
the class Oxyphotobacteria, the order Chloroplast, and 
the genera Serratia were more abundant in the healthy 
trees, whereas the phylum Proteobacteria, the class Gam-
maproteobacteria, the order Enterobacteriales, the fam-
ily Enterobacteriaceae, and the genera Pantoea were had 
a higher abundance in the diseased trees (Fig.  5b). In 
the middle trunks, the phylum Cyanobacteria, the class 
Oxyphotobacteria, the orders Chloroplast and Entero-
bacteriales, and the family Enterobacteriaceae were 
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more abundant in the healthy trees, whereas the order 
Xanthomonadales, the family Xanthomonadaceae, and 
the genera Pseudoxanthomonas were had a higher abun-
dance in the diseased trees (Fig. 5c). In the lower trunks, 
the phylum Cyanobacteria, the class Oxyphotobacteria, 
and the order Chloroplastwere more abundant in the 
healthy trees, whereas the class Bacteroidia was had a 
higher abundance in the diseased trees (Fig. 5d).

Analysis of the abundance of bacterial taxa in differ-
ent parts of the healthy trees are as follows. The phy-
lum Cyanobacteria, the class Oxyphotobacteria, the 
order Chloroplast were more abundant in the branches. 
The genus Serratia was more abundant in the upper 
trunks. The phylum Proteobacteria, the class Gam-
maproteobacteria, the order Enterobacteriales and the 
family Enterobacteriaceae were more abundant in the 
middle trunks. The order Betaproteobacteriales, the 
family Burkholderiaceae, and the genus Burkholderia-
Caballeronia-Paraburkholderia were more abundant in 
the lower trunks. The phyla Actinobacteria, the classes 
Alphaproteobacteria and Actinobacteria were more 
abundant in the surface soil. The phyla Acidobacteria 
and the class Acidobacteriia were more abundant in the 
deep soil (Fig. S1c). Analysis of the abundance of bacte-
rial taxa in different parts of the disease trees. The order 

Xanthomonadales, the family Rhodanobacteraceae, and 
the genus Dyella were more abundant in the branches. 
The phyla Proteobacteria, the class Gammaproteobac-
teria, the order Enterobacteriales, the family Enterobac-
teriaceae, and the genus Pantoea were more abundant 
in the upper trunks. The family Xanthomonadaceae and 
the genus Pseudoxanthomonas were more abundant in 
the middle trunks. The orders Ophiostomatales, Russu-
lales and Eurotiales; the families Ophiostomataceae and 
Trichocomaceae, and the genus Talaromyces were more 
abundant in the lower trunks. The class Alphaproteobac-
teria was more abundant in the surface soil. The phyla 
Actinobacteria and the class Actinobacteria were more 
abundant in the deep soil (Fig. S1b).

Microbial correlation of diseased and healthy trees
Fungal correlation results showed there were 334 strong 
taxon–taxon correlations in healthy trees, positive cor-
relation demonstrated a double (218 vs. 116, ratio = 1.88) 
increase in the number of negative correlations among 
them. There were 707 strong taxon–taxon correlations 
in diseased trees, positive correlation demonstrated an 
equal (406 vs. 301, ratio = 1.35) number of negative cor-
relations among them. At the phylum level, Ascomy-
cota has the most correlations degrees (cd) (778) in both 

Fig. 5  LEfSe analysis showing the significant differences at bacterial taxonomic levels between diseased and healthy trees in the branches (HB or 
DB), upper trunks (HTU or DTU), middle trunks (HTM or DTM), and lower trunks (HTL or DTL). Abbreviation: p: phylum, c: class, f: family, o: order, and 
g: genus
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type of trees. At the class level, Microbotryomycetes 
had significant correlation only in healthy trees, how-
ever Geminibasidiomycetes, Umbelopsidomycetes and 
Wallemiomycetes were closed in diseased trees. Inter-
estingly, although both groups contain Agaricomycetes 
and Sordariomycetes, the degrees in healthy trees were 
an obviously increase in diseased trees, they are 381:87 
and 314:118 respectively (Fig.  6a). Among the diseased 
trees, some genera with the highest abundance were 
Membranomyces, Oidiodendron and Ganoderma. Also, 
some genera such as Membranomyces, Ganoderma, 
Tomentella, Menispora, Ophiostoma, Hamamotoa, 
Graphilbum, Xenoacremonium, Cytospora, Clonostachys 
and Entomocorticium were only exist in diseased trees. 
Among the healthy trees, some genera with the highest 
abundance were Candida (27), Geminibasidium (23) and 
Mortierella (23). Also, there were some genera such as 

Geminibasidium, Bifiguratus, Fusarium, Cladosporium, 
Lasiodiplodia, Tylospora, Phialemoniopsis, Umbelopsis, 
Paraconiothyrium, Capnobotryella, Neopestalotiopsis, 
Pestalotiopsis, Catenulostroma and Wallemia. Surpris-
ingly, although Apiotrichum, Devriesia, Kuraishia, Peni-
cillium and Trichoderma have existed both diseased and 
healthy trees, the abundance of Apiotrichum, Devriesia, 
Kuraishia and Penicillium in diseased trees were triple 
to fivefold as in healthy trees, the abundance of Tricho-
derma in healthy trees were triple as in diseased trees.

Bacterial correlation results showed there were 637 
strong taxon–taxon correlations in healthy trees, posi-
tive correlation demonstrated a fivefold (535 vs. 102, 
ratio = 5.25) increase in the number of negative correla-
tions (absolute value of Spearman correlation > 0.5 and 
false discovery rate-corrected p < 0.05) among them. 
There were 866 strong taxon–taxon correlations in 

Fig. 6  In P. massoniana, there is a correlation displaying the relative abundance of the microbial community. a shows the relationship between 
fungus in healthy and damaged plants. b show the relationship between bacteria in healthy and diseased trees. The color symbolizes classes, 
whereas the nodes represent genera. The positive correlation is shown by the red lines, while the negative correlation is represented by the green 
lines. The absolute value of correlation > 0.5 and p-value< 0.05
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diseased trees, positive correlation demonstrated equal 
(465 vs. 401, ratio = 1.01) the number of negative corre-
lation (absolute value of Spearman correlation > 0.5 and 
false discovery rate-corrected p < 0.05) among them. At 
the phylum level, Proteobacteria has the most degrees in 
both healthy (641) and diseased trees (805). At the class 
level, Ktedonobacteria exists in healthy trees, while Bac-
teroidia exists only in diseased trees. Interestingly, Oxy-
photobacteria only owned one node in the figure, but 
the size in healthy trees was tenfold (30 vs. 3, ratio = 10) 
bigger than it in diseased trees (Fig.  6b). The bacteria 
group displayed a co-occurrence network with a strong 
positive correlation among genera. Among the diseased 
trees, some genera with the highest abundance were Aci-
dothermus, Enterobacter and Pseudomonas. Also, some 
genera such as Erwinia, Fluviicola, Novosphingobium, 
Gryllotalpicola, Nocardioides, Terriglobus, Acidipila, 
Curtobacterium, Chitinophaga, Lactobacillus and Eda-
phobacter were only exist in diseased trees. Among the 
healthy trees, some genera with the highest abundance 
were Candidatus (34), Ralstonia (34) and Rhodococcus 
(34). Also, some genera such as Rhodococcus, Occallati-
bacter, Kosakonia, Brevundimonas, Massilia, Silvimonas, 
Serratia and Stenotrophomonas were only exist in dis-
eased trees. Surprisingly, although Dyella and Pantoea 
have existed between diseased and healthy trees, the 
abundance in diseased trees was twice as in healthy trees.

We constructed the correlation model of bacteria and 
fungi in healthy trees and diseased trees by SPLS. The 
results showed in healthy trees, Trichoderma and Steno-
trophomonas are positively correlated and have the 
highest correlation (the SPLS coefficient is 4.08), and 
Fusarium and Pantoea are negatively correlated and have 
the highest correlation (the SPLS coefficient is − 1.96). 
However, In the disease trees, Candida and Pantoea are 
positively correlated and have the highest correlation (the 
SPLS coefficient is 0.75), and Saitozyma and Pseudoxan-
thomonas are negatively correlated and have the highest 
correlation (the SPLS coefficient is − 0.78). In addition, 
we found that bacteria with high abundance in healthy 
trees as Kosakonia, Brevundimonas and Serratia were 
positively correlated with fungi Cutaneotrichosporon (the 
SPLS coefficients are 0.38, 0.33 and 0.27), while they were 
negatively related with fungi Russula (the SPLS coeffi-
cients are − 0.14, − 0.19 and − 0.23) (Fig. 7a). Bacteria that 
were more abundant in diseased trees as Erwinia, Flu-
viicola, Novosphingobium, Gryllotalpicola, Nocardioides, 
Lactobacillus and Dyella were positively correlated with 
fungi Graphilbum (the SPLS coefficients are 0.21, 0.04, 
0.05, 0.03, 0.05, 0.14 and 0.39), while they were negatively 
related with fungi Saitozyma (the SPLS coefficients are 
− 0.47, − 0.06, − 0.10, − 0.06, − 0.08, − 0.22 and − 0.71) 
(Fig.  7b). They are important candidate microorganisms 
involved in the pathological mechanism of PWN.

Fig. 7  In healthy and diseased trees, the microbiota differs. a projected the relationship between fungi and bacteria in healthy trees, and (b) 
projected the relationship between fungi and bacteria in diseased trees. The color symbolizes classes, whereas the nodes represent genera. The 
positive correlation is shown by the orange lines, while the negative correlation is represented by the blue lines
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Microbial function of healthy and diseased trees
There were 649 OTUs (22.9%) matched in the FUNGuild 
analysis for the predicted resource utilization function 
of fungi. These OTUs were assigned to 20 functional 
guilds. Overall, the guild animal pathogen had the high-
est abundance (24.8%), followed by endophyte (16.5%), 
plant-pathogen (14.9%), ectomycorrhizal (13.7%), fungal 
parasite (9.2%), wood saprotroph (6.5%), ericoid mycor-
rhizal (3.1%), soil saprotroph (2.2%), dung saprotroph 

(1.7%), plant saprotroph (1.5%), epiphyte (1.5%), animal 
endosymbiont (1.5%), arbuscular mycorrhizal (0.9%), 
orchid mycorrhizal (0.5%), leaf saprotroph (0.5%), bryo-
phyte parasite (0.3%), litter saprotroph (0.2%), lichenized 
(0.2%), animal parasite (0.2%) and algal parasite (0.2%) 
(Fig. 8a). In healthy trees, animal pathogen, plant patho-
gen and saprotroph are the top three functional guilds. 
Among them, animal pathogen (46.39%) is mainly con-
centrated in the lower trunk, plant pathogen (20.39%) 

Fig. 8  FUNGuild and COG for the predicted resource utilization function. Branches are represented by HB and DB, upper trunk by HTU and DTU, 
middle trunk by HTM and DTM, lower trunk by HTL and DTL, surface soil by HTS and DTS, and deep soil by HS and DS
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is mainly concentrated in the branches, and saprotroph 
(69.82%) is mainly concentrated in the upper trunk. 
However, plant pathogen, parasite and saprotroph are 
the top three functional guilds of diseased trees. Among 
them, plant pathogen (29.12%) is mainly concentrated 
in the lower trunk, parasite (36.52%) is mainly concen-
trated in the branches, and saprotroph (67.88%) is mainly 
concentrated in the upper trunk. Interestingly, parasitic 
fungus in soil of diseased trees (16.43%) is significantly 
higher than soil of healthy trees (6.49%), and the endo-
phyte in soil of diseased trees (5.08%) is significantly less 
than soil of healthy trees (0.92%).

The COG analysis was utilized for the predication of 
resource utilization function of bacteria. The functions 
of COG were assigned to 23 functional guilds. Among 
them, the guild amino acid transport and metabolism 
had the highest abundance (10.1%), followed by energy 
production and conversion (7.3%), cell wall/membrane/
envelope biogenesis (6.6%), translation, ribosomal struc-
ture and biogenesis (6.6%), inorganic ion transport and 
metabolism (6.4%), carbohydrate transport and metabo-
lism (6.0%), transcription (5.7%), replication, recombi-
nation and repair (4.5%), posttranslational modification, 
protein turnover, chaperones (4.5%), coenzyme transport 
and metabolism (4.4%), signal transduction mechanisms 
(4.1%), lipid transport and metabolism (3.7%), nucleotide 
transport and metabolism (2.9%), intracellular traffick-
ing, secretion, and vesicular transport (2.1%), second-
ary metabolites biosynthesis, transport and catabolism 
(1.9%), defense mechanisms (1.7%), cell motility (1.3%), 

cell cycle control, cell division, chromosome partitioning 
(1.0%), and others (< 1.0%) (Fig. 8b).

The results of PICRUSt2 analysis for the predicted 
function showed the OTUs were assigned to six func-
tional groups and 52 sub-groups. The top functional 
annotations among them were the group Hydrolases 
(34.72%), followed by transferases (23.35%), oxidore-
ductases (23.34%), isomerases (6.94%), ligases (6.03%) 
and lyases (5.61%). The LEfSe analysis showed that the 
abundance of some functional groups differed in abun-
dance between the diseased and healthy samples in 
the branches, trunks, and soil, respectively (LDA > 3.0, 
p < 0.05). In the branches, the abundance of Acting on 
carbon-nitrogen bonds other than peptide bonds and 
the acyltransferases were higher in healthy branches, 
whereas the glycosyltransferases had a higher abundance 
in diseased branches (Fig.  9a). In the upper trunks, the 
abundance of acting on the CH-OH group of donors, 
intramolecular oxidoreductases, acting on NADH or 
NADPH, acting on carbon-nitrogen bonds other than 
peptide bonds, carbon-oxygen lyases, forming carbon-
sulfur bonds and acting on the aldehyde or oxo group 
of donors was higher in healthy upper trunks, whereas 
the intramolecular transferases, acting on ester bonds, 
acting on acid anhydrides and transferring phosphorus-
containing groups had a higher abundance in diseased 
upper trunks (Fig.  9b). In the middle trunks, the abun-
dance of acting on the CH-OH group of donors and act-
ing on paired donors with incorporation or reduction of 
molecular oxygen was higher in healthy middle trunks, 

Fig. 9  LEfSe analysis showed the predicted functional groups significantly presented for healthy and diseased samples in the branches (a), upper 
trunks (b), middle trunks (c) and lower trunks (d). Branches are represented by HB and DB, upper trunk by HTU and DTU, middle trunk by HTM and 
DTM, lower trunk by HTL and DTL
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whereas the acting on acid anhydrides and transferring 
phosphorus-containing groups had a higher abundance 
in diseased middle trunks (Fig. 9c). In the lower trunks, 
acting on the CH-OH group of donors, acting on paired 
donors with incorporation or reduction of molecular 
oxygen, acting on NADH or NADPH, carbon-oxygen 
lyases, acting on the aldehyde or oxo group of donors 
and acting on carbon nitrogen bonds other than peptide 
bonds were higher in healthy trunks, whereas the form-
ing carbon-oxygen bonds, acting on acid anhydrides and 
transferring phosphorus-containing groups had a higher 
abundance in diseased trunks (Fig. 9d).

Discussion
Microorganisms play an important role in plants, since 
combined action of endophytes and pathogens work 
together to cause changes in plant tissues [39, 40]. Inva-
sion by external items (such as insects) can alter the 
structure of the microbial community that lives on 
plants. In this article, the microbial community compo-
sition, organization, correlation, and function of healthy 
pines and pines infected by PWN in natural settings were 
all described. Combined with previous research, it was 
shown that PWN infection had a significant influence on 
the microbial community of the host plant, as well as the 
microbial structure of the host plant.

We discovered various changes in branches, trunks, 
and soil between healthy and diseased trees in the cur-
rent study. The richness, evenness, and diversity of the 
microbial community in diseased trees were higher than 
in healthy trees, according to our findings, which are 
comparable to those on leaves [20]. We also looked at 
the microbial community composition at the phylum and 
class levels, and discovered that PWN infection might 
drastically alter the number of microbial communities 
in branches and trunks rather than soil. Microbial diver-
sity in the pine micro ecological environment has been 
linked to the distinct periods when PWN infected the 
host plant in previous research [41]. There was no signifi-
cant change in bacterial diversity between healthy trees 
and early diseased trees in the research of P. thunbergii, P. 
massoniana and P. koraiensis [16, 18, 42]. Most crucially, 
time has a higher impact on the makeup of the micro-
bial community than the developmental stage of the host 
[43]. The diseased tree samples gathered in this study, on 
the other hand, are thought to be in the middle or late 
stages of PWN infection.

The unevenness of particular taxa in distinct microbial 
communities influenced the organisms’ microbial ecol-
ogy [44]. We discovered that the principal fungal gen-
era (Trichoderma, Fusarium, Russula and Penicillium) 
and bacterial genera (Serratia and Burkholderiaceae) in 
healthy trees were located in the microbial community 

structure of branches, trunks, and soil. These genera are 
crucial in the biological control of nematodes, because 
they may create traps or metabolites that are detrimen-
tal to nematodes [45–47]. Plant pathogenic microor-
ganisms include the primary fungal genera (Saitozyma, 
Graphilbum, Diplodia and Candida) and bacterial gen-
era (Pseudoxanthomonas, Dyella and Pantoea) found 
in diseased plants. Based on these results and previous 
studies of others, we suggested that PWN reduced the 
pines’ defensive capabilities by altering the endophytic 
composition. However, the possibility of PWN directly 
reduced pines’ defensive capabilities and then acceler-
ate the alter of endophytic composition, and then work 
with the community to hasten the demise of the pines do 
exist. Constructing artificial communities under labora-
tory conditions may be a practical way to do get insights 
into these possibilities, which is worth further study in 
the future.

Through the correlation prediction, we found that 
PWN infection has a great impact between fungi 
and bacteria. Fungal genera such as Membranomy-
ces, Ganoderma, Tomentella, Menispora, Ophiostoma, 
Hamamotoa, Graphilbum, Ogataea, Geosmithia, Xenoa-
cremonium, Cytospora, Clonostachys, Entomocorti-
cium were highly abundant only in the diseased trees. 
Among them, Ophiostoma, Graphilbum, Cytospora and 
Clonostachys are associated with pine infected by B. 
xylophilus [48–50]. Meanwhile, fungal genera such as 
Geminibasidium, Bifiguratus, Fusarium, Cladosporium, 
Lasiodiplodia, Tylospora, Phialemoniopsis, Umbelopsis, 
Paraconiothyrium, Capnobotryella, Neopestalotiopsis, 
Pestalotiopsis, Catenulostroma, Wallemia were highly 
abundant only in the healthy trees. Among them, Gemi-
nibasidium, Cladosporium, Phialemoniopsis, Umbel-
opsis, Paraconiothyrium can promote plant growth and 
nutrient accumulation [51–55]. In this study, although 
bacteria genera Acidothermus, Enterobacter and Pseu-
domonas with the higher abundance in diseased trees; 
bacteria genera Candidatus, Ralstonia and Rhodococcus 
with the higher abundance in healthy trees; those genera 
are all common bacterial genera in the environment. We 
found Erwinia, Fluviicola, Novosphingobium, Gryllotal-
picola, Nocardioides, Terriglobus, Acidipila, Curtobac-
terium, Chitinophaga in diseased trees. Lactobacillus, 
Edaphobacter and other genera are more abundant than 
those found in healthy trees. It is interesting to note that 
extracts of Erwinia, Novosphingobium and Gryllotalpi-
cola can effectively kill nematodes [56, 57]. These bac-
terial genera may be a potential alternative to PWD by 
inducing systemic resistance in pines. Meanwhile, the 
abundance of FCPS473, Rhodococcus, Occallatibacter, 
Kosakonia, Brevundimonas, Burkholderia, Massilia, Sil-
vimonas, Serratia, Stenotrophomonas, Herbaspirillum, 
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Streptomyces, Duganella, Bacillus and other bacteria 
in healthy trees was higher than that in diseased trees. 
Among them, Rhodococcus, Kosakonia, Massilia, Steno-
trophomonas and Bacillus are plant probiotics [58–61]. 
These endophytic bacteria affect improving plant adapt-
ability and PWD tolerance.

Invasion of PWN has a stronger influence on fungi 
than bacteria, according to the function study [62]. 
After the invasion of PWN, the metabolic function of 
the fungal population in trunks altered. In diseased 
trees, the function of DNA-directed DNA & RNA poly-
merase, as well as its ability to act on acid anhydrides 
to limit transmembrane transport of chemicals, altered 
dramatically. We hypothesized that PWN infection 
influenced resin secretion in pine trunks, resulting in 
a failure to close wounds in a timely manner, impede 
microorganism development, and lower the palatabil-
ity of wood-boring insects. As a result, the likelihood 
of insects carrying PWN invaded trees has increased 
significantly, the tree potential has decreased, and the 
withering and mortality of pines will be exacerbated. 
These findings confirm the theory that microorganisms 
play a substantial role in the incidence of PWD when 
PWN infects pines. This set of observations lends cre-
dence to the idea that enzyme theory and toxin theory 
have a role in the pathophysiology of PWN. As a result, 
follow-up research with a stronger focus on PWN is 
recommended.

Finally, the species and population of microbial com-
munities in the branches and trunks of P. massoniana, 
but not in the soil, altered dramatically. This might 
be linked to infection mode of PWN. Interestingly, 
microorganisms such as Trichoderma, Fusarium, Rus-
sula, Penicillium, Serratia and Burkholderiaceae were 
mainly found in healthy trees, and the pathogens such 
as Saitozyma, Graphilbum, Diplodia, Candida, Pseu-
doxanthomonas, Dyella and Pantoea were mainly found 
in diseased trees. We speculate that the infection of 
PWN destroys the microbial defense barrier of pines. It 
improved the infection ability of pathogenic microorgan-
isms to pines and accelerated the death of pines. Spear-
man’s correlation analysis revealed that the infection of 
PWN changed Apiotrichum, Devriesia, Kuraishia, Peni-
cillium, Trichoderma, Dyella and Pantoea in pine. PWN 
greatly changed the microbial environment of P. masso-
niana and disrupted the homeostasis of pines. Turpen-
tine is high in anhydrides and acid, both of which are 
beneficial for the tree’s disease resistance. We discovered 
that the microbial community increased the degradation 
of turpentine in diseased trees as a functional predic-
tion. The rise in glycosyltransferases also revealed that 
the microbial community aided the PWN in speeding up 
the pine invasion. Following that, we hypothesized that 

PWN infiltrated pine and disrupted the composition and 
organization of the endophytic microbial community, 
resulting in a drop in probiotics and an increase in patho-
genic bacteria, based on the results of functional analysis. 
The coordinated development of pine wilt disease follow-
ing PWN invasion is elucidated at the microbiological 
level in this work. This study adds to our understand-
ing of the etiology of pine wilt illness. More information 
about PWN would aid us in achieving a higher level of 
accuracy in this regard.
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