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Abstract 

Background:  Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is 
not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the suscep‑
tibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics 
commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes 
(dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary 
pathogens and from urine without culture.

Methods:  Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, cipro‑
floxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus 
saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. 
PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94).

Results:  Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an 
MIC90 > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was 
highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Kleb-
siella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) 
urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive 
urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim 
resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; 
NPV = 86.1%).

Conclusions:  This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim 
resistance without the need for culture and susceptibility testing.

Keywords:  Trimethoprim resistance, Urinary tract infection, dfrA, Rapid detection, Antimicrobial prescription

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Urinary Tract Infections (UTIs) are among the most 
common bacterial infections that occur in primary care 
[1] and the second most common reason for prescription 
of antibiotics in England [2]. Treatment of UTI is most 
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commonly empirical, based on clinical suspicion and/or a 
positive urine dipstick test. Although urine dipstick tests 
are rapid and can be used at the point of care, their value 
is primarily in their ability to rule out rather than confirm 
infection [3, 4]. Where further analysis of a urine sample 
is required, the presence of a uropathogen is established 
by microscopy, culture and subsequent antimicrobial 
susceptibility testing (AST). However, as conventional 
culture and AST may take up to 72 h, commencement of 
appropriate treatment may be delayed. This could lead 
to clinical complications as well as longer and more fre-
quent hospitalization of patients such as the elderly and 
those who are immunocompromised [5].

Trimethoprim is currently only recommended as first-
line treatment for UTIs if there is a low risk of resistance 
with nitrofurantoin, the antibiotic of choice [6]. However, 
patients prescribed nitrofurantoin frequently present 
with gastrointestinal side effects. Moreover, nitrofuran-
toin is not recommended for use in patients with poor 
renal function, defined as an estimated glomerular filtra-
tion rate < 45 ml/minute, which is common amongst the 
elderly. Therefore, trimethoprim remains the preferred 
choice for treatment of many UTIs. Gram-negative bac-
teria, particularly E. coli and Klebsiella spp., are the most 
commonly isolated uropathogens with high levels of 
trimethoprim resistance observed [7]. Resistance to tri-
methoprim was 39% in E. coli, 26.7% in Klebsiella spp. 
and 41.9% in Proteus mirabilis whereas resistance to 
nitrofurantoin was 4% in E. coli, 34.8% in Klebsiella spp. 
and 0% in Proteus mirabilis [8, 9]. In contrast, resistance 
is rare in Staphylococcus saprophyticus [10]. This study 
determined the susceptibility of urinary E. coli, Klebsiella 
spp., Proteus mirabilis and Staphylococcus saprophyticus 
isolates to a range of antibiotics commonly used in the 
treatment of UTIs. We also determined if there was an 
association between the prevalence of dfrA genes, con-
ferring resistance to trimethoprim, with phenotypic tri-
methoprim resistance in both isolates and urine. Rapid 
determination of resistance profiles to first-line antibiot-
ics would avoid unnecessary antibiotic prescription, aid 
clinical decision making and ultimately improve patient 
outcomes.

Materials and methods
Clinical bacterial isolates
E. coli (n = 91), Klebsiella spp. (n = 33), Proteus mirabi-
lis (n = 61) and Staphylococcus saprophyticus (n = 17) 
isolates were from culture-positive urine samples 
obtained from the Belfast and Northern Health and 
Social Care Trusts (BHSCT and NHSCT) routine diag-
nostic microbiology laboratories in October 2014. Iso-
lates were grown on selective agar and identified using 
the VITEK® 2 system (bioMérieux, Marcy-l’Etoile, 

France). Following transfer to our laboratory, isolates 
were re-grown on Tryptone Soy Agar to obtain pure 
cultures and the identity of the isolates was confirmed 
by 16S rRNA marker-gene sequencing using primer 
pairs 27F (5′-AGA​GTT​TGATCMTGG​CTC​AG-3′) and 
1492R (5′-TAC​GGY​TAC​CTT​GTT​ACG​ACTT-3′) [11].

Antimicrobial susceptibility testing
The antimicrobial susceptibility of E. coli and Kleb-
siella spp. isolates (n = 124) to amoxicillin, ceftazidime, 
ciprofloxacin, co-amoxiclav, nitrofurantoin and tri-
methoprim was determined by ETEST® (bioMérieux, 
Marcy-l’Etoile, France) according to the manufacturer’s 
instructions. Susceptibility of Proteus mirabilis (n = 61) 
and S. saprophyticus (n = 17) to trimethoprim was also 
determined by ETEST®. The isolates were classified as 
susceptible, intermediate or resistant to each antibiotic 
according to the European Committee on Antimicro-
bial Susceptibility Testing (EUCAST) MIC breakpoints 
[12].

Detection of trimethoprim resistance (dfrA) genes 
in clinical urinary isolates
The most common trimethoprim-resistance genes in 
Europe (dfrA1, dfrA5, dfrA7, dfrA12 and dfrA17) [13, 14], 
were detected by polymerase chain reaction (PCR) ampli-
fication using the Applied Biosystems Veriti™ 96-Well 
Thermal Cycler (Thermo Fisher Scientific, Paisley, UK), 
with primers described in Table S1 (see Supplementary 
material). Genomic DNA was extracted from bacterial 
isolates using the DNeasy Blood and Tissue Kit (Qia-
gen®, Hilden, Germany) in accordance with the manu-
facturer’s instructions and all reactions were performed 
in uniplex. Based on the high homology between dfrA7 
and dfrA17, one primer set (dfrA7/dfrA17) was designed 
to detect both genes. The final PCR reaction mixture 
(50 μL) for dfrA genes contained 0.4 μM of each forward 
and reverse primers (Eurofins MWG Operon, Ebersberg, 
Germany) and 1 μL of DNA template, with initial dena-
turation at 95 °C for 2 min; 30 cycles of denaturation at 
95 °C for 30 s, annealing at 65 °C (dfrA1, dfrA5, dfrA12) 
or 55 °C (dfrA7/17) for 30 s and extension at 72 °C for 
15 s; and a final extension at 72 °C for 5 min. DNA from 
isolates previously sequenced and confirmed to harbour 
the dfrA genes (dfrA1 – E. coli UM015; dfrA5 – E. coli 
UM176; dfrA7/17 – E. coli UM107; dfrA12 - K. pneumo-
niae UM282) were used as positive controls while DEPC-
treated water (Ambion, Warrington, UK) was used as a 
negative control. The PCR products were separated by 
size on a 1.5% (w/v) agarose (Invitrogen, Paisley, UK) gel 
at 100 V for 30 min.
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Culture‑independent detection of trimethoprim resistance 
in urine
Ninety-four (94) urine samples were collected in May 
2019 from the Routine Diagnostic Laboratory, BHSC, 
with ethical approval (ORECNI Reference: 17/SC/0302). 
These were samples submitted for routine urine cul-
ture and no patient metadata was collected. DNA was 
immediately extracted from these urine samples on the 
automated MagNA Pure 96 (Roche, Germany) platform 
using the DNA and viral NA small volume kit (Roche, 
Germany), according to the manufacturer’s instructions. 
The extracted DNA was stored at − 20 °C before use as 
template in the PCR reaction. Microbiological culture of 
urine samples was performed on Brilliance UTI Clarity 
agar (Fannin L.I.P., Galway) and susceptibility testing of 
the isolates to trimethoprim was determined by ETEST®. 
The diagnostic performance of dfrA for predicting tri-
methoprim resistance using a culture-independent PCR 
method was determined and compared with phenotypic 
trimethoprim resistance.

Statistical analysis
The Chi-square test was performed to compare the anti-
biotic susceptibility between E. coli and Klebsiella spp. 
Fisher’s exact test was used to determine the association 
between the presence of dfrA genes and trimethoprim 
resistance. Isolates were grouped into Gram-positive and 
Gram-negative bacteria for the analysis of the association 
(Fisher’s exact test) between culture-independent detec-
tion of dfrA in urine samples and phenotypic trimetho-
prim resistance. All statistical analyses were carried 
out using GraphPad Prism 6 for Windows version 6.01 
(GraphPad Software Inc., CA, USA). A P value < 0.05 was 
considered statistically significant.

Results
Antimicrobial susceptibility of E. coli and Klebsiella spp. 
isolates
Trimethoprim resistance was phenotypically detected in 
37/124 (29.8%) of the E. coli and Klebsiella spp. isolates. 
Four of these 37 (10.8%) trimethoprim-resistant isolates 
were resistant to trimethoprim only, 21/37 (56.8%) were 
resistant to an additional antibiotic, 10/37 (27%) were 
resistant to two additional antibiotics, while 2/37 (5.4%) 
were resistant to three additional antibiotics (Table  1). 
Data on susceptibility of E. coli and Klebsiella spp. iso-
lates to all antibiotics tested are summarized in Table 
S2 (see Supplementary material). Fewer Klebsiella spp. 
isolates (7/33; 21.2%) showed intermediate or resistant 
phenotypes to trimethoprim than E. coli (31/91; 34.1%) 
isolates, although this difference was not statistically 
significant (P  > 0.05; Chi-square test). Eighty-one of the 

124 (65.3%) isolates were resistant to amoxicillin while 
15/124 (12.1%) isolates were not susceptible to ciproflox-
acin (Table 1). Resistance to nitrofurantoin was observed 
in 18/124 (14.5%) isolates and was more apparent in 
Klebsiella spp. (10/33; 30.3%) than in E. coli (8/91; 8.8%) 
isolates (P < 0.01; Chi-square test), with MIC90 values of 
> 512 and 24 mg/L, respectively. Nonetheless, signifi-
cantly fewer Klebsiella spp. isolates were not susceptible 
to ciprofloxacin (6/33; 18.2%) than nitrofurantoin (10/33; 
30.3%) (P < 0.05; Chi-square test).

dfrA as a marker for phenotypic trimethoprim resistance 
in E. coli and Klebsiella spp.
Of the 124 E. coli and Klebsiella spp. isolates, the dfrA 
gene targets were detected in 31 isolates comprising 28 E. 
coli (dfrA1, n = 13; dfrA5, n = 8; dfrA7/dfrA17, n = 7) and 
3 Klebsiella spp. (dfrA1, n = 2 and dfrA12, n = 1) (Fig. 1). 
Representative gels for the detection of dfrA genes are 
shown in Fig. S1. Of the 31 trimethoprim-resistant E. 
coli isolates, dfrA was present in 27 (87.1%; dfrA1, n = 12; 
dfrA5, n = 8; dfrA7&17, n = 7); in contrast, it was only 
detected in 2/6 (33.3%; dfrA1, n = 2) trimethoprim-resist-
ant Klebsiella spp. Furthermore, dfrA was detected in 
only 2/87 (2.3%; dfrA1, n = 1 and dfrA12, n = 1) trimeth-
oprim-sensitive isolates. There was a significant asso-
ciation between the presence of dfrA and trimethoprim 
resistance among the isolates tested (P < 0.0001; Fisher’s 
exact test). The sensitivity and specificity of dfrA detec-
tion to determine phenotypic trimethoprim resistance 
compared to phenotypic susceptibility testing by ETEST® 
was 93.6 and 91.4% respectively, with a Positive Predic-
tive Value (PPV) of 78.4% and a Negative Predictive Value 
(NPV) of 97.7%.

Trimethoprim resistance and dfrA detection in other 
uropathogens
The ability of dfrA to predict phenotypic trimethoprim 
resistance in other common urinary isolates, P. mira-
bilis and S. saprophyticus, was also investigated. Thirty-
seven of 61 (60.7%) P. mirabilis isolates were resistant 
to trimethoprim (Range: 0.5 - > 32 mg/L; MIC50: 2 mg/L; 
MIC90: 6 mg/L) and dfrA was detected in 25/37 (67.6%). 
Only dfrA1 (25/25) was detected in trimethoprim-resist-
ant P. mirabilis, with no dfrA genes detected in trimeth-
oprim-sensitive P. mirabilis isolates (0/24). There was 
a significant association between the presence of dfrA 
and trimethoprim resistance among P. mirabilis isolates 
(P < 0.0001; Fisher’s exact test) [Sensitivity = 67.6%; Spec-
ificity = 100%; PPV = 100%; NPV = 66.7%]. Only 1/17 
(5.9%) S. saprophyticus isolate was resistant to trimetho-
prim (MIC: > 32 mg/L) and none of the dfrA genes tested 
in this study were detected in S. saprophyticus isolates.
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Culture‑independent PCR detection of trimethoprim 
resistance in urine samples
Of the 94 urine samples tested, 92 (97.9%) were cul-
ture-positive and two samples (2.1%) had no detectable 
bacteria. Of the culture-positive samples, 55 (59.8%) 
were monomicrobial and 37 (40.2%) were polymicro-
bial (Table S3). Twenty of the 94 samples (21.3%) were 
positive by culture for bacteria which were pheno-
typically resistant to trimethoprim. DfrA genes were 
detected in 15/20 trimethoprim-resistant bacteria. 

DfrA genes were also detected by PCR in 16/94 (17%) 
urine samples (Table  2). Of these 16 urine samples 
positive for dfrA, dfrA-positive bacteria that were phe-
notypically resistant to trimethoprim were cultured 
from 15. In one urine sample (CU0000058), dfrA was 
detected by PCR but the isolate cultured from the 
sample was dfrA-negative and susceptible to trimeth-
oprim. DfrA genes were not detected by PCR from 
two urine samples (CU0000042 and CU0000063), 
which were culture-positive for dfrA-positive isolates 

Table 1  Antimicrobial susceptibility of trimethoprim-resistant E. coli and Klebsiella spp. isolates

Green: Isolates resistant to trimethoprim only; Blue: Isolates resistant to trimethoprim and an additional antibiotic; Brown: Isolates resistant to trimethoprim and 
intermediate-resistant to ≥2 antibiotics

R Resistant, I Intermediate, S Susceptible, MIC Minimum Inhibitory Concentration
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demonstrating phenotypic resistance to trimetho-
prim. Three additional urine samples (CU0000025, 
CU0000027 and CU0000078) with no detectable dfrA 
genes were culture-positive for isolates phenotypically 
not susceptible to trimethoprim. There was a significant 

association (P < 0.0001; Fisher’s exact test) between the 
presence of dfrA and phenotypic trimethoprim resist-
ance in urine samples containing Gram-negative bacte-
ria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; 
NPV = 86.1%).

Fig. 1  Prevalence of dfrA genes in urinary Escherichia coli (n = 91), Klebsiella spp. (n = 33) and Proteus mirabilis (n = 61) isolates

Table 2  Detection of trimethoprim resistance in urine

Abbreviations: R Resistant, I Intermediate, S Susceptible
a Predominant organism tested for trimethoprim susceptibility

ND Not detected

Sample ID Culture-independent 
detection of dfrA gene(s)

Organisms isolated from urine dfrA gene(s) detected in 
isolates

Susceptibility

CU0000025 ND Proteus spp. ND R

CU0000027 ND Proteus spp. ND I

CU0000031 dfrA7&17 E. coli dfrA7/17 R

CU0000032 dfrA5 E. coli dfrA5 R

CU0000036 dfrA1 Proteus spp.a and Klebsiella spp. dfrA1 R

CU0000042 ND E. coli dfrA5 R

CU0000058 dfrA1 E. colia; Klebsiella spp. and Staphylococcus spp. ND S

CU0000059 dfrA1; dfrA7&17 E. coli dfrA1 and dfrA7&17 R

CU0000063 ND E. colia and Enterococcus spp. dfrA5 R

CU0000069 dfrA1 E. colia and Enterococcus spp. dfrA1 R

CU0000073 dfrA5 E. coli dfrA5 R

CU0000077 dfrA7/17 E. colia and Enterococcus spp. dfrA7/17 R

CU0000078 ND E. coli ND R

CU0000079 dfrA5 E. colia and Enterococcus spp. dfrA5 R

CU0000080 dfrA1 E. colia and Enterococcus spp. dfrA1 R

CU0000081 dfrA1 E. colia and Enterococcus spp. dfrA1 R

CU0000089 dfrA1 E. colia and Proteus spp. dfrA1 R

CU0000094 dfrA1 E. colia and Enterococcus spp. dfrA1 R

CU0000101 dfrA7&17 E. colia and Enterococcus spp. dfrA7/17 R

CU0000105 dfrA1 Proteus spp.a and Enterococcus spp. dfrA1 R

CU0000111 dfrA7&17 E. colia and Enterococcus spp. dfrA7/17 R
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Discussion
This study demonstrates that phenotypic trimethoprim 
resistance can be rapidly and reliably predicted by molec-
ular detection of dfrA genes in isolates and urine sam-
ples. Timely and appropriate initiation of antimicrobial 
therapy is key to effective antimicrobial stewardship poli-
cies. Rapid detection of trimethoprim resistance, prior to 
prescription of an antibiotic, could help avoid the risk of 
treatment failure [15], longer hospitalizations and UTI 
recurrence [16, 17]. Ongoing work by our group is focus-
ing on the development of a point of care assay which 
will combine molecular detection of both uropathogens 
and trimethoprim resistance directly from urine. Such an 
assay could potentially be used in a range of primary and 
secondary care settings and may help determine poten-
tial resistance to antibiotics in a more clinically relevant 
timeframe which will guide appropriate antibiotic choice, 
particularly in patients for whom nitrofurantoin is not 
recommended.

The prevalence of trimethoprim resistance in E. coli 
reported in this study (34.1%) is similar to data reported 
for England in 2016 (34%) [18]; however, more recent 
data demonstrates that resistance in E. coli has decreased 
slightly in England (35.1%, 2015 vs. 31.2%, 2018) [19], 
Scotland (34.3%, 2015 vs. 33.8%, 2018) [20] and Wales 
(38.2%, 2015 vs. 36.6%, 2018) [21]. This reduction in tri-
methoprim resistance is associated with a decrease in 
trimethoprim use and an increase in nitrofurantoin pre-
scribing for treatment of UTIs [19]. Although there is 
evidence of reduced trimethoprim use in primary care 
in Northern Ireland [22], there is currently no data with 
respect to the impact this is having on trimethoprim 
resistance among urinary isolates.

Despite high trimethoprim resistance rates, the cur-
rent National Institute for Health and Care Excellence 
(NICE) guidelines for treatment of UTIs still recommend 
trimethoprim as first-line treatment in patient cohorts 
such as adult males ≥16 years old, non-pregnant women 
≥16 years old and children aged ≥3 months, where there 
is low risk of resistance [6]. Results from this study have 
demonstrated that a PCR-based molecular test can be 
used to identify the risk of trimethoprim resistance 
from isolates and from urine without culture. Culture-
independent detection of dfrA genes in urine results in 
a more rapid detection of trimethoprim resistance, with 
a 3–4 hour turnaround time. Furthermore, current phe-
notypic detection of trimethoprim resistance depends on 
determining susceptibility of the culture-predominant 
isolate. However, culture-independent testing of one 
urine sample in the current study demonstrated the pres-
ence of trimethoprim resistance, which was not identified 
based on phenotypic testing of the culture predominant 
organism.

In the current study, phenotypic trimethoprim resist-
ance was detected in 37/124 (29.8%) E. coli and Klebsiella 
spp. isolates and at least one dfrA gene (dfrA1, dfrA5, 
dfrA7, dfrA12 or dfrA17) was detected in 29/37 (78%) of 
trimethoprim-resistant isolates tested. This is similar to 
previous studies that investigated trimethoprim resist-
ance among E. coli isolates and detected dfrA1, dfrA5, 
dfrA7, dfrA12 and dfrA17 genes in 75–86% of isolates 
tested [13, 14]. DfrA17 was recently identified as a diag-
nostically relevant AMR biomarker for trimethoprim-
sulfamethoxazole resistance through metagenomic 
screening of over 1000 clinical E. coli isolates  [23]. The 
dfrA genes investigated in this study were not detected in 
20 Gram-negative isolates (4 E. coli, 4 Klebsiella pneumo-
niae and 12 Proteus mirabilis) which were phenotypically 
resistant to trimethoprim. It is possible that these iso-
lates harbour one or more of the > 30 different dfr genes 
which have been reported to encode trimethoprim resist-
ance [24]  and were not targeted by the PCR assay used in 
this study.

Nitrofurantoin resistance among E. coli isolates in this 
study (8.8%) is higher than the 3% reported in the first 
quarter of 2017 in England [18] and 1.8% in Scotland in 
2018  [20]  but lower than reports from Wales in 2018 
(11%) [21]. Lower resistance levels of E. coli to nitrofuran-
toin has also been reported in other European countries 
[25–27], the United States [28], and Australia [29]. While 
nitrofurantoin resistance is low in the general population, 
it has been reported to be higher in specific cohorts such 
as ≥65-year-old males (22.9%) [19]. The higher resistance 
rates observed in this study may be because urine sam-
ples were submitted to the diagnostic laboratory, based 
on a clinical suspicion of infection. Similar to previous 
studies [7, 30, 31], this study observed that nitrofurantoin 
resistance was higher in Klebsiella spp. than in E. coli (see 
Table S2 in Additional file). This highlights the need for 
increased surveillance of nitrofurantoin resistance among 
urinary Klebsiella spp. isolates, especially as prescribing 
of nitrofurantoin for UTI treatment is increasing [32].

With the exception of a single isolate with an MIC 
> 32 mg/L, S. saprophyticus isolates in this study were all 
susceptible to trimethoprim. No dfrA gene was detected 
in any of the S. saprophyticus isolates tested, although 
trimethoprim-resistant isolates have been reported in a 
previous study [33]. Similarly, no dfrA gene was detected 
by PCR in urine samples containing only Gram-positive 
organisms, in single and mixed culture. While there is a 
dfrA gene, which confers trimethoprim resistance in S. 
saprophyticus and other Staphylococcus spp [33, 34], the 
gene shares limited homology with the dfrA in Gram-
negative bacteria, which may explain why dfrA genes 
could not be detected in S. saprophyticus isolates and 
urine in this study.
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This study has a number of limitations. Firstly, dfrA 
genes were used to predict trimethoprim resistance and 
as some isolates showed phenotypic resistance without 
detectable dfrA, it is possible that dfrA genes not tested 
in this study may be encoding trimethoprim resistance 
in these isolates. Furthermore, this study was limited 
to E. coli, Klebsiella spp., P. mirabilis and S. saprophyti-
cus. Therefore, further studies would be required to 
determine whether detection of dfrA genes could pre-
dict trimethoprim resistance in less frequently isolated 
Gram-negative urinary pathogens such Enterobacter 
spp., Morganella morganii and Providencia spp.

Conclusion
This study showed that the presence of dfrA genes can 
reliably predict phenotypic trimethoprim resistance 
in urinary E. coli, Klebsiella spp. and P. mirabilis iso-
lates and in urine without culture. Culture-independ-
ent PCR detection of dfrA genes in urine could enable 
more rapid determination of trimethoprim resistance 
in urine specimens and guide antibiotic prescribing 
in patients with a UTI. This could improve antibiotic 
stewardship and be particularly useful in patients with 
reduced kidney function where nitrofurantoin use is 
contra-indicated.
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Additional file 4: Figure S1. Gels showing detection of dfrA1 (a), dfrA5 (b), 
dfrA12 (c) and dfrA7&17 (d) genes.
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