
RESEARCH ARTICLE Open Access

Dysbiosis of intestinal microbiota in early
life aggravates high-fat diet induced
dysmetabolism in adult mice
Z. H. Miao1, W. X. Zhou1, R. Y. Cheng1, H. J. Liang1, F. L. Jiang1, X. Shen1*, J. H. Lu2, M. Li1 and F. He1*

Abstract

Background: Accumulating evidence have shown that the intestinal microbiota plays an important role in
prevention of host obesity and metabolism disorders. Recent studies also demonstrate that early life is the key time
for the colonization of intestinal microbes in host. However, there are few studies focusing on possible association
between intestinal microbiota in the early life and metabolism in adulthood. Therefore the present study was
conducted to examine whether the short term antibiotic and/or probiotic exposure in early life could affect
intestinal microbes and their possible long term effects on host metabolism.

Results: A high-fat diet resulted in glucose and lipid metabolism disorders with higher levels of visceral fat rate,
insulin-resistance indices, and leptin. Exposure to ceftriaxone in early life aggravated the negative influences of a
high-fat diet on mouse physiology. Orally fed TMC3115 protected mice, especially those who had received
treatment throughout the whole study, from damage due to a high-fat diet, such as increases in levels of fasting
blood glucose and serum levels of insulin, leptin, and IR indices. Exposure to ceftriaxone during the first 2 weeks of
life was linked to dysbiosis of the fecal microbiota with a significant decrease in the species richness and diversity.
However, the influence of orally fed ceftriaxone on the fecal microbiota was limited to 12 weeks after the
termination of treatment. Of note, at week 12 there were still some differences in the composition of intestinal
microbiota between mice provided with high fat diet and antibiotic exposure and those only fed a high fat diet.

Conclusions: These results indicated that exposure to antibiotics, such as ceftriaxone, in early life may aggravate
the negative influences of a high-fat diet on the physiology of the host animal. These results also suggest that the
crosstalk between the host and their intestinal microbiota in early life may be more important than that in
adulthood, even though the same intestinal microbes are present in adulthood.
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Background
Obesity is regarded as a worldwide public health issue,
and the Global Burden of Disease study shows that the
prevalence of obesity has more than doubled since 1980
[1]. Widely published studies have identified obesity as a
major risk factor for various noncommunicable diseases
(NCD) [2, 3], including diabetes, hypertension, dyslipid-
emia, insulin resistance, and cardiovascular diseases [4,
5]. Importantly, early life, especially the first 1000 days,
is regarded as the key period for infant growth and has
long-term effects even on adulthood health and diseases
[6]. Mounting evidence has identified that the intestinal
microbiota in early life has strong correlations with
NCD during adulthood, including obesity, but the
underlying mechanisms and possible preventative treat-
ments remain unclear [7, 8].
The intestinal microbiota has been widely proven to

contribute to human health [9, 10]. Therefore, the
colonization of the intestinal microbiota during early de-
velopment is important for host health. Previous studies
have shown that there were significant differences be-
tween the intestinal microbiota of infants and adults and
that infants were more sensitive to environmental factors
than adults, suggesting that early life may be of key im-
portance to the establishment of the intestinal micro-
biota [11]. Our previous study also indicated that early
life is the key time for the formation of intestinal micro-
biota in infants [12]. Therefore, research on the associ-
ation between the formation of the intestinal microbiota
in infancy and long-term effects on adulthood health
and diseases may contribute to the prevention of obesity
in adulthood.
Antibiotics have been used to protect humans from se-

vere infections and can be beneficial to patient health
for extended periods. However, recent studies have indi-
cated that antibiotics can alter the intestinal microbiota
of patients [13]. Neonatal mice who received antibiotic
treatment had a higher ratio of Firmicutes species to
Bacteroides species–a key bacterial indicator for obesity–
and lower alpha diversity, which is considered harmful
to host health [14, 15]. Evidence also suggests that anti-
biotic use can alter the composition of the microbial
community, and patients who had been treated with
broad-spectrum antibiotics were found to be more con-
sistently associated with overweight or obesity symptoms
[16, 17]. Therefore, the dysbiosis of the intestinal micro-
biota may be an underlying mechanism whereby anti-
biotic use leads to obesity and metabolic disorders.
Probiotics are defined as “live microorganisms” that

“when administered in adequate amounts, confer a
health benefit to the host” and are regarded as functional
foods with protective effects against obesity and meta-
bolic diseases [18]. Recent studies have demonstrated
that supplementation with several probiotics may have

beneficial effects on host metabolism, regardless of
whether these are humans or animals [19, 20]. An ana-
lysis of the whole genome of Bifidobacterium bifidum
TMC3115 (TMC3115) isolated from healthy infants
revealed encoded loci for the utilization of human milk
oligosaccharides. These studies have indicated that the
abnormal intestinal microbiota induced by antibiotic
treatment in early life could impair the epithelium and
affect immunity through to adulthood and that
TMC3115 may alleviate the side effects caused by ceftri-
axone [21]. However, it remains unclear whether
TMC3115 could mitigate the metabolic disorders in-
duced by the dysbiosis of the intestinal microbiota.
Our previous study identified that short-term use of

ceftriaxone can damage the intestinal microbiota in
young mice [22]. Therefore, this study was conducted to
determine whether the short-term antibiotic and/or pro-
biotic exposure in early life could affect the construction
of the intestinal microbiota and the possible long-term
effects of these treatments on host metabolism.

Results
Body weight and visceral fat rate
Although there was no significant difference between
mouse body weights (Fig. 1), the visceral fat rate (total
visceral fat/body weight) was significantly different
among the six groups (p < 0.05). Providing mice with a
high-fat diet resulted in a higher visceral fat rate relative
to the normal diet group (p < 0.05). However, probiotic
treatment (both PE and PW groups) did not reduce the
visceral fat rate of mice compared with that of the AHF
group (p < 0.05) (Fig. 1).

Impairment of FBG and OGTT
At the end of the antibiotic treatment (week 0), the level
of FBG in mice in the test groups was not significantly
different from that in mice in the Ctrl group (Fig. 2).
Mice fed with a high-fat diet had significantly higher
FBG levels and higher AUC values compared with those
of the Ctrl group mice (p < 0.05). Additionally, at week
12, there was an increasing trend in the FBG levels of
mice in the AHF group compared with the HFD group,
whereas the PW group displayed a decreasing trend of
FBG levels compared with the AHF group (Fig. 2). How-
ever, the AUC values did not show any differences
among mice fed with a high-fat diet.

Level of serum and liver lipid metabolism
No significant differences were observed in the serum
levels of HDL-c among the six groups. However, when
compared with the Ctrl group, mice in the HFD and
AHF groups had increased levels of LDL-c and serum
total cholesterol (p < 0.05), although this was alleviated
by TMC3115 treatment (Fig. 3). In addition, a high-fat
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diet lead to higher levels of liver triglyceride and liver
total cholesterol (p < 0.05), and these were not affected
by probiotic treatment (Fig. 3).

Serum level of insulin, adiponectin, and leptin
Although mice in the HFD group did not have higher
serum insulin levels compared with those in the Ctrl
group, mice in the AHF group did have significantly

higher levels of serum insulin compared with mice in
the Ctrl group (p < 0.05) (Fig. 4). Meanwhile, there was a
decreasing trend of serum insulin levels in the PW
group compared with the HFD and AHF groups. Mice
fed a high-fat diet had higher levels of leptin and IR
compared to mice provided with normal diet (p < 0.05),
and antibiotic exposure resulted in an increasing trend
of leptin and IR levels, both in mice in the normal diet

Fig. 1 The result of body weight and visceral fat rate (n = 12/group). Values are expressed as mean ± SEM (a) The visceral fat rate of mice in
different groups. (b) The body weight of mice in different groups. There were no significant differences among groups with a common
letter P < 0.05

Fig. 2 The result of fasting blood glucose and oral glucose tolerance test (n = 12/group). Values are expressed as mean ± SEM (a) The fasting
blood glucose of mice at week 0. (b) The fasting blood glucose of mice at week 12. (c) The area under the curve values of mice in different
groups. (d) The oral glucose tolerance test of mice in different groups. There were no significant differences among groups with a common
letter P < 0.05
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group and in the high-fat diet group. Importantly, sig-
nificantly lower levels of leptin and IR (p < 0.05) and a
higher level of adiponectin were observed in the PW
group compared with the AHF group (Fig. 4).

Fecal microbiota analysis
After gavage, the Chao and Shannon indices both signifi-
cantly decrease in mice treated with an antibiotic (p <
0.05) (Fig. 5). After 12 weeks, only the Shannon indices
of the AHF group exhibited a significant decrease com-
pared with that of the Ctrl and Abx groups (Fig. 5).

PCoA analysis based on unweighted UniFrac distance
was used to reflect the construction of the intestinal
microbiota and demonstrated that the intestinal micro-
biota composition of each group formed a significant
cluster(Fig. 6). At week 0, principal component (PC)1
and PC2 explained 25.60 and 7.22% of variability, re-
spectively, and after 12 weeks, PC1 and PC2 explained
20.54 and 6.32% of variability, respectively.
At the phylum level, the relative abundance of Firmi-

cutes increased sharply, whereas that of Bacteroidetes de-
creased significantly in the Abx/AHF/PE/PW groups

Fig. 3 The lipid metabolism-related index in mice (n = 12/group). Values are expressed as mean ± SEM (a) Plasma levels of high-density
lipoprotein cholesterol. (b) Plasma levels of low-density lipoprotein cholesterol. (c) Plasma levels of total cholesterol. (d) Plasma levels of
triglyceride (e) Liver levels of total cholesterol. (f) Liver levels of triglyceride. There were no significant differences among groups with a common
letter P < 0.05
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because of antibiotic treatment at week 0 (Fig. 7). Not-
ably, the relative abundance of Actinobacteria included
Bifidobacterium TMC3115 and was observed to increase
significantly in both the PE and PW groups. After 12
weeks, the Abx group exhibited a similar species abun-
dance at the phylum level compared with that of the Ctrl
group. In addition, there was a significant increase of
Proteobacteria in mice fed with a high-fat diet. Mean-
while, the relative abundance of Proteobacteria increased
in the AHF group compared with the HFD group. At
the genus level, antibiotic treatment led to a significant
decrease of Parabacteroides, Prevotella, Ruminococcus,
Oscillospira, and Bacteroides genera after antibiotic
treatment (Fig. 7). Additionally, the PE and PW groups
had a higher abundance of Bifidobacterium species.
After 12 weeks, a high-fat diet resulted in a significant
decrease of Prevotella, Ruminococcus, Bifidobacterium,
and Ruminococcaceae species. Then, as expected, the
abundance of Bifidobacterium species in the groups
treated with TMC3115, especially in the PW group, sig-
nificantly increased.

Discussion
A high-fat diet is known to potentially result in obesity,
and long-term microbiome dysbiosis induced by

antibiotic treatment can lead to further weight gain and
higher fat mass in mice fed with HFD [23]. Female
BALB/c mice fed with a 12-week high-fat diet developed
higher visceral obesity, although there were no signifi-
cant differences in body weight among the tested mice,
which may be explained by the strain, sex, and food in-
take of mice [24]. Additionally, the mice treated with
ceftriaxone had a higher trend of visceral fat rate, and
the same trend was observed between mice fed a HFD
treated with or without ceftriaxone. These results indi-
cate that antibiotic treatment, even in early life, may pro-
mote a higher deposition of visceral fat caused by a
high-fat diet. In our previous studies, TMC3115 was
proven to help in alleviating the dysbiosis of the intes-
tinal microbiota induced by antibiotics [21]. In this
study, although there was no significant difference in the
visceral obesity of mice treated with TMC3115 and
those without TMC3115, the long-term use of
TMC3115 did show a decreased trend in visceral obesity.
Thus, our results suggest that exposure to antibiotics in
infancy may influence the accumulation of visceral fat in
the host during adulthood and that the presence of
TMC3115 may mitigate these effects.
The FBG levels and AUC values in OGTT were deter-

mined to assess the effects of HFD and antibiotic/

Fig. 4 The result of metabolism-related hormones and insulin resistance (n = 12/group). Values are expressed as mean ± SEM (a) The serum level
of insulin (b) The insulin-resistance indices of mice in different groups. (c) The serum level of adiponectin. (d) The serum level of leptin. There
were no significant differences among groups with a common letter P < 0.05
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Fig. 6 The β-diversity of of intestinal microbiota. (a) Principal coordinate analysis based on the unweighted UniFrac distance of operational taxonomic
units at week 0. (b) Principal coordinate analysis based on the unweighted UniFrac distance of operational taxonomic units at week 12

Fig. 5 The α-diversity of intestinal microbiota. (a) The Chao indices of intestinal microbiota at week 0 (b) The Chao indices of intestinal
microbiota at week 12. (c) The Shannon indices of intestinal microbiota at week 0. (d) The Shannon indices of intestinal microbiota at week 12
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probiotic treatment in the glucose metabolism of mice.
Previous studies have shown that a high-fat diet could
result in higher FBG levels and AUC values [25]. In this
study, at week 0, there were no significant differences
among the tested mice, whereas at week 12, mice fed a
high-fat diet all had higher FBG levels than mice fed a
normal diet. Additionally, recent research has shown
that probiotic treatment, especially with Bifidobacterium
species, may contribute to FBG levels and AUC values
[26, 27]. Our results also demonstrated that TMC3115
was associated with a decreased trend in FBG levels in
mice but did not improve the AUC values. Mice exposed
to antibiotics and fed with a high-fat diet had an in-
creased trend in FBG levels compared with mice ex-
posed to ceftriaxone alone, whereas those treated with
TMC3115 only had a decreasing trend in FBG levels.
Therefore, these results indicate that the dysbiosis of the
intestinal microbiota in early life can aggravate the dys-
metabolism of the host in adulthood. Meanwhile, the
long-term use of TMC3115 may partly resist the effects
induced by antibiotic treatment in early life.
Similarly to other studies, a high-fat diet significantly

increased TC and LDL-C in the tested mice without in-
fluencing the TG level [28, 29]. A high-fat diet also led
to higher levels of liver TG and liver TC than mice fed a
normal diet. Antibiotic treatment resulted in a further
elevation of liver TC levels in mice fed with a high-fat
diet. Although previous studies have reported that a
number of Bifidobacterium species can improve dyslipid-
emia caused by a high-fat diet, this was not the case with
TMC3115. However, considering that the long-term use
of TMC3115 was associated with a decreasing trend of
visceral obesity, these results may be explained by the
use of TMC3115 to inhibit the absorption of serum

lipids, further affect lipid metabolism, and alleviate the
accumulation of visceral fat. Therefore, these results
may demonstrate that exposure to antibiotics in early life
may promote lipid dysmetabolism in adulthood and that
TMC3115 may alter the lipid dysmetabolism induced by
a high-fat diet in the host.
The serum levels of insulin, leptin, and adiponectin

are known to be closely related to host metabolism [30,
31]. For instance, adiponectin can improve IR by de-
creasing the muscular lipid contents in mice, and leptin
can promote energy expenditure by increasing thyroid
hormone signaling [32, 33]. Antibiotic treatment in early
life also led to a higher trend of leptin levels compared
with those of mice fed on the same diet. The use of
TMC3115 in early life significantly decreased the levels
of leptin, and the long-term use of TMC3115 signifi-
cantly increased the levels of adiponectin. Although re-
search has reported that a high-fat diet can increase
insulin levels and decrease adiponectin levels, there were
no significant differences in adiponectin levels between
mice fed with a normal diet and those fed with a high-
fat diet [34]. Previous studies have demonstrated that
the sensitivity of adiponectin levels to a high-fat diet in
female mice was different compared with those in male
mice, which may explain the results of serum adiponec-
tin in our studies [35, 36].
A high-fat diet can also result in a higher level of insu-

lin and HOMA-IR [37, 38]. Similarly, the results from
the present study also showed that a high-fat diet led to
an increased trend in insulin and IR levels. Moreover,
antibiotic treatment in early life further impaired the in-
sulin levels and HOMA-IR in mice fed with a high-fat
diet. In contrast to the effects on mice treated with anti-
biotics, even the use of TMC3115 in early life led to a

A B

Fig. 7 Effects of antibiotic/probiotic treatment and high fat diet on intestinal microbiota. (a) Relative abundance at the phylum level at week 0
(b) Relative abundance at the phylum level at week 12. (c) Relative abundance at the genus level at week 0. (d) Relative abundance at the genus
level at week 12
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decreased trend in insulin and IR levels. In addition, the
long-term use of TMC3115 showed a further decreased
trend in serum insulin levels and a significant decrease
in IR compared with those in mice in the PE group.
These results further indicated that antibiotic treatment
in early life might aggravate the dysmetabolism of the
host with an unhealthy diet in adulthood, whereas
TMC3115 could partly alter this effect.
The intestinal microbiota is a key factor that influ-

ences host health, including immunity, metabolism, and
even neurobehavioral traits [39, 40]. One of those under-
lying mechanisms may be the metabolites of intestinal
microbiota, such as short-chain fatty acids or bile acids
that have been shown to influence host health. The
short-chain fatty acids fermented by the intestinal
microbiota can regulate energy uptake and secretion of
hormones, such as peptide YY (PYY) and glucagon-like
peptide 1 (GLP-1), by activating G protein-coupled re-
ceptor 43 (GPR 43) and G protein-coupled receptor 41
(GPR 41) [41, 42]. Meanwhile, the intestinal microbiota
can also affect bile acids that regulate host metabolic
pathways via the farnesoid X receptor (FXR) and G
protein-coupled membrane receptor 5 (TGR 5) [43, 44].
Furthermore, previous studies also indicated that the
balance of the intestinal microbiota community compos-
ition, especially that of Firmicutes and Bacteroidetes,
might play an important role in the metabolism of host
[15, 45]. In this study, it was clear that antibiotic treat-
ment dramatically altered the intestinal microbiota com-
position immediately, but the effects induced by a short-
term therapeutic dose of ceftriaxone on intestinal micro-
biota at least at the phylum level did not appear to con-
tinue to adulthood. Recently, research has explored the
relationship between obesity and antibiotic treatment,
especially in infancy or childhood, but the results lacked
consistency [46–48]. In our study, antibiotic use induced
the dysbiosis of the intestinal microbiota during early
life, although this effect did not continue to adulthood.
However, antibiotic treatment in early life increased the
sensitivity of the host animal to a high-fat diet and en-
hanced the negative effects of a high-fat diet on host me-
tabolism, although the alpha-diversity and beta-diversity
of intestinal microbiota seemed to recover in adulthood
after the termination of the antibiotic treatment. Thus,
these results indicate that exposure to antibiotics in early
life might damage or alter the physiological function and
metabolism of the host animal in a complex and incur-
able manner. Moreover, these results indicate that the
crosstalk between the host and their intestinal micro-
biota in early life might be more important than in
adulthood, even with the same intestinal microbes.
These results could also provide possible reasons for the
differences among recent epidemiological investigations
concerning the association between antibiotic treatment

and obesity as the timing of the antibiotic treatment
may be critical.
Proteobacteria have a relatively low abundance at the

phylum level in a healthy host. However, previous stud-
ies have shown that the relative abundance of Proteobac-
teria in patients with obesity was significantly higher
[49]. Further research also indicated that abnormal in-
flammation, obesity, and insulin resistance were related
to a lower relative abundance of Proteobacteria, espe-
cially that of Enterobacteriaceae and Desulfovibrionaceae
genera [50]. In this study, the relative abundance of Pro-
teobacteria in mice fed with a high-fat diet was signifi-
cantly higher than mice fed a normal diet, and treatment
with antibiotics in early life resulted in an increased
trend of Proteobacteria abundance. However, probiotic
treatment did not alter the relative abundance of Proteo-
bacteria. In addition, Parabacteroides species are known
to contribute to alleviation of obesity and obesity-related
dysfunctions in mice [51], whereas Prevotella, Rumino-
coccus, and Bacteroides species were considered to be
beneficial to host health [52]. Previous studies have dem-
onstrated that perturbations caused by short-term anti-
biotic treatment can recovery to baseline spontaneously
[53]. In our study, antibiotic exposure in early life did
lead to a significant decrease of these beneficial microbes
at week 0, but the abundance of these species returned
to their normal level after the 12 weeks normal diet. Im-
portantly, the high-fat diet did decrease the abundance
of Prevotella, Parabacteroides, and Ruminococcus genera.
Although TMC3115 did not decrease the abundance of
these genera, the abundance of Bifidobacterium species
was increased. These results suggest that the crosstalk
between the intestinal microbes and host may be timing
dependent and that several microbial genera may have
more impact on the host in early life.
Our study used the Chao indices (reflecting species

richness) and Shannon indices (reflecting species di-
versity) to assess the alpha diversity of intestinal
microbiota. Previous studies have demonstrated that
lower alpha diversity was related to various diseases
such as nonalcoholic fatty liver disease and obesity
[54, 55]. Here, antibiotic treatment significantly de-
creased the Chao and Shannon indices in early life,
whereas these influences did not last to adulthood.
After week 12, no differences were observed in the
Chao indices among the tested mice, a high-fat diet
did lead to a decreasing trend in the Shannon indices,
and antibiotic treatment resulted in a further decrease
of the Shannon indices. The results of the UniFrac-
based principal coordinate analysis showed that the
short-term use of antibiotics in early life can dramat-
ically alter the composition of the intestinal micro-
biota. After 12 weeks of antibiotic treatment, mice
that had been administered solely with antibiotic by
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gavage had the most similarity in the composition of
the intestinal microbiota compared with mice in other
groups, whereas those fed with a high-fat diet had a
significantly different composition of intestinal micro-
biota. Furthermore, mice treated with a high-fat diet
and antibiotic in early life had a varied composition
of intestinal microbiota compared with mice fed with
a high-fat diet. These results indicated that the un-
healthy composition of the intestinal microbiota in-
duced by ceftriaxone in early life could promote
intestinal microbiota disorders in the host later in-
duced by a high-fat diet. By contrast, probiotic treat-
ment with TMC3115, especially long term, could
significantly alleviate these effects.

Conclusion
In conclusion, these results demonstrated that exposure
to antibiotics in infancy can influence the long-term
health of host, for instance, in the accumulation of vis-
ceral fat, changes to the glycolipid metabolism, and
levels of several related hormones, although the dysbiosis
of the intestinal microbiota had mostly recovered in
adulthood. Therefore, the crosstalk between the intes-
tinal microbes and host animal may be timing
dependent, and the host early life may be the key time
for intestinal microbes to affect physical function and
metabolism. Furthermore, the results from our study
suggest that probiotic treatment might be used as a
complementary strategy to protect people from damage
caused by the dysbiosis of the intestinal microbiota and
unhealthy diet habits.

Methods
Mice
Two-week-old female BALB/c mice from Chengdu
Dossy Experimental Animals Co., Ltd. (Chengdu, China),
were divided into (n = 12) the control group (Ctrl), anti-
biotic exposure group (Abx), high-fat diet group (HFD),
antibiotic exposure + high-fat diet group (AHF), pro-
biotic used in early life group (PE), and probiotic used
throughout whole life group (PW). A specific pathogen-
free facility with a 12-h light/dark cycle was used at an
ambient temperature of 23 °C ± 3 °C and humidity of
40–70%. This study was approved by the Experimental
Animal Management Committee of Sichuan Govern-
ment (Approval number: SYXK2013–011).
At the end of the study, all mice were anesthetized by

intraperitoneal injection of 2,2,2- tribromoethanol (125
mg/kg, CAS:75–80-9 Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) to collect blood samples via heart
puncture. Then mice were euthanized by injection of an
overdose of 2,2,2- tribromoethanol (500 mg/kg) and
decapitated.

Experimental schedule
The mouse experimental schedule is shown in Fig. S1.
In the first 2 weeks (week − 2 to week 0), the Abx/AHF/
PE/PW groups were treated with 0.2 mL (100 mg/kg) of
ceftriaxone (Shanghai Aladdin Bio-Chem Technology
Co., Ltd., Shanghai, China) once a day, and the Ctrl/
HFD group received an equal volume of sterile saline.
Meanwhile, the PE/PW groups were treated with 0.2 mL
of 5 × 109 CFU/mL TMC3115 (Hebei Inatural Biotech
Co., Ltd., Hebei, China) after 2 h of antibiotic treatment,
whereas mice in the other groups were administered an
equal volume of sterile saline by gavage. For the next 12
weeks (week 0 to week 12), the PW group was treated
with 0.2 mL of 5 × 109 CFU/mL TMC3115 once a day,
whereas the other groups received an equal volume of
sterile saline.
All mice received a normal diet in early life (week − 2 to

week 0). Then, the Ctrl/Abx group continued received a
normal diet, and the HFD/AHF/PE/PW group received a
high-fat diet (Research Diet D12492; Research Diets, New
Brunswick, NJ, USA) for 12 weeks (week 0 to week 12).

Fasting blood glucose(FBG) and oral glucose tolerance
test (OGTT)
All mice were fasted from 9:00 p.m. to 9:00 a.m., and
blood glucose levels were determined using a portable
glucometer (ACCU-CHEK) at 0 and 12 weeks. At the
end of week 12, after a 12 h fast, all mice were orally
dosed with a glucose solution (2 g/kg). Blood glucose
levels were determined using the portable glucometer at
0, 30, 60, 90, and 120 min after oral administration, and
area under the curve (AUC) values were used to esti-
mate the extent of glucose tolerance impairment.

Serum and liver tissue supernatant analysis
Mouse blood was centrifuged at 2000×g for 20 min.
Then, the serum was collected and was centrifuged again
at 2000×g for 5 min. The serum level of insulin was de-
termined using an enzyme-linked immunoassay (ELISA)
kit (Merck Millipore, Burlington, MA, USA), and the in-
sulin resistance indices(IR) was calculated by (FBG ×
fasting insulin)/22.5. The serum levels of adiponectin
and leptin were measured using their respective ELISA
kits (R&D Systems Inc., Minneapolis, MN, USA).
An Automatic Chemistry Analyzer-Chemray240

(Shenzhen Rayto Life and Analytical Sciences Co., Ltd.)
was used to determine the serum level of triglyceride
(TG), total cholesterol (TC), high-density lipoprotein
(HDL), and low-density lipoprotein (LDL).
The levels of TG and TC in the liver were determined

using commercially available kits: tissue total cholesterol
assay kit-E1015 and tissue triglyceride assay kit-E1013
(Applygen Technologies Inc., Beijing, China).
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Fecal microbiota community determination by 16S rRNA
sequencing
According to previous methods, the 16S rRNA sequencing
was performed as follow [56]. The Qubit fluorometer (Life
Technologies) and the TapeStation (Agilent) were
used to concentrate and purify DNA and the 16S li-
brary was constructed in strict accordance recom-
mended by Illumina. The V3-V4 region of the 16S
rRNA gene was amplified using 341F and 806R fusion
primers containing identification indexes. PCR was
performed on a TaKaRa Cycler Dice Touch (TaKaRa)
with 2 × KAPA HiFi HotStart ReadyMix (Kapa Biosys-
tems Inc., USA) under the following conditions: initial
denaturation at 95 °C for 3 min, followed by 25 cycles
of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s,
and ended with an extension step at 72 °C for 5 min.
Qubit fluorometer and TapeStation were used to
analyze the DNA concentration and size. The
AMPure XP magnetic beads (Beckman Coulter Inc.,
USA) were used to purify the above PCR products
and these products were diluted and pooled. Next the
Nextera XT Index Kit (Illumina, United States) was
used to add the barcodes into the above pooled PCR
products and the MiSeq Reagent Kit v3 (600-cycle)
(Illumina) was used to purify and pool the indexed
PCR products. USEARCH (v 6.1.544) software was
used to remove the chimeric check and singleton and
the low-quality sequences were filtered by default
0.97. The QIIME (v 1.9.1) pipeline was used to iden-
tify representative sequences for each operational
taxonomic unit (OTU) and the GreenGenes 13.8
database was used to align them. Further processions
of OTU tables were completed at genus and phylum
levels.
The QIIME script core_diversity_analyses.py was used

to perform the calculation of the Alpha and beta diver-
sity of gut microbiota and the principal coordinate ana-
lysis plots (PCoA) based on unweighted UniFrac was
used to calculate Beta diversity.

Statistical analysis
All statistical analyses, except the results of the 16S
rRNA sequencing, were performed using GraphPad
Prism 7.0 software (GraphPad Software Inc., San Diego,
CA, USA). The Shapiro–Wilk normality test was used to
assess the normality. The Holm–Sidak’s multiple com-
parisons test or Kruskal–Wallis test was used for mul-
tiple comparisons. A p-value ≤0.05 was considered
statistically significant.
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