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Abstract

Phages are one of the key components in the structure, dynamics, and interactions of microbial communities in
different bins. It has a clear impact on human health and the food industry. Bacteriophage characterization using

in vitro approaches are time/cost consuming and laborious tasks. On the other hand, with the advent of new high-
throughput sequencing technology, the development of a powerful computational framework to characterize the
newly identified bacteriophages is inevitable for future research. Machine learning includes powerful techniques
that enable the analysis of complex datasets for knowledge discovery and pattern recognition. In this study, we
have conducted a comprehensive review of machine learning methods application using different types of features
were applied in various aspects of bacteriophage research including, automated curation, identification,
classification, host species recognition, virion protein identification, and life cycle prediction. Moreover, potential
limitations and advantages of the developed frameworks were discussed.
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Background

Bacteriophages (phage) are prokaryotic viruses that in-
fect and replicate into the bacteria with the host specifi-
city manner. Among the well-characterized phages, the
vast majority have a single genome [18]. It has been esti-
mated that nearly 85% of phages are double-stranded
(ds) DNA enveloped by a protein shell [1]. Hence, it has
been proposed that phages with ds DNA genome are
amongst the most plentiful entities on Earth [13].

Phages infect the particular bacterial hosts and high-
jack the host-cell machinery in the lytic (or virulent) life-
style for replicating as well as destroying the host.
Therefore, they concurrently produce progeny and kill
the hosts. Nevertheless, the existence of diverse phages
in nature, provides a valuable resource as antibacterial
agents and infection control. Moreover, researchers uti-
lized phage typing to identify the subtypes and species of
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bacteria. In addition, they are prominent drivers of bio-
geochemical cycles on Earth [36] and the major actors in
leading and raising bacterial diversity [7].

Two culture-based and in silico approaches are used
for studying the bacteriophages. The culture-based ap-
proach is costly and laborious, especially in high-
throughput sequencing experiments. To resolve this
problem, the use of insilico approaches such as intelli-
gent data mining and knowledge discovery are among
the most promising alternative [32].

Among different data mining methods, machine learn-
ing techniques have gained considerable prominence in
bacteriophage researches. Machine learning (ML) refers
to knowledge and pattern discovery in empirical data
using statistical, probabilistic, and optimization methods.
Machine learning procedures classified into three model-
ing strategies: unsupervised, supervised, and semi-
supervised learning models. Unsupervised learning is a
type of machine learning algorithm used to draw infer-
ences from unknown datasets that is neither classified
nor labeled [28, 30]. Some examples of unsupervised
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learning algorithms are K-means and K-nearest neigh-
bors (KNN) for clustering problems and Apriori algo-
rithm for association rule learning problems. Supervised
learning algorithms try to make predictions based on
evidence (labeled data) in the presence of uncertainty
[16, 29]. Support vector machine (SVM), Decision tree
(DT), Random Forest (RF), and Naive Bayes (NB) are
some popular examples of supervised algorithms. In
semi-supervised learning methods, which conceptually
situated between supervised and unsupervised learning,
a small amount of labeled data with a large amount of
unlabeled data are combined to perform certain learning
tasks [31]. Overall steps in the implementation of any
machine learning models are presented in Fig. 1. Choos-
ing the machine learning algorithm is dependent upon
the learning strategy as well as the analysis goal.

In the present study we comprehensively reviewed the
possible use of ML in several dimensions of bacterio-
phage research, in particular, prediction, classification,
host prediction, recognition of the life-cycle, and
characterization of invasive proteins.

Automated recovery, prediction and classification
of bacteriophage

Phages infecting bacteria have been proposed as the
main determinant in dynamics, interaction, and struc-
tures of the microbial communities [19]. With the devel-
opment of next-generation high-throughput sequencing,
computational identification of virus genomes from dif-
ferent bins is a critical step [32]. Metagenomics is a well-
fitted approach to provide insights into the composition,
structure, and dynamics of environmental viral commu-
nities. At present, gene-based similarity methods are
popularly used to recovery, annotation, and curation
bacteriophages from mixed metagenomic assemblies;
however, these techniques have low performance due to
higher diversity and less information of gene content
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and genomic structures of bacteriophages. Therefore,
some computational tools based on ML algorithms have
been developed to improve the automated recovery and
prediction of bacteriophages. MARVEL (Metagenomic
Analysis and Retrieval of Viral Elements) as a ML based
tools was developed to predict double-stranded DNA
bacteriophage sequences in metagenomic bins. MARV
EL leverage the information of annotation and sequence
signature from previosly identified phages for identifying
the double-stranded phages in metagenomic bins [5]. In
this tool, six genomic features including the average
gene length, the average spacing between genes, the
density of genes, frequency of strand shifts between
neighboring genes, ATG relative frequency, and fraction
of genes with significant hits against the pVOGs data-
base were extracted from the baseline dataset of RefSeq.
Then, training performs based on the random forests
model [5].

VirFinder is another tool that was developed for virus
overlap group identification without the need to se-
quence signature and the annotation databases [33]. For
prediction of phages, VirFinder employs the k-mer fea-
tures of query sequences and then generates a score be-
tween 0 and 1 based on the logistic regression model
with lasso regularization as a trained machine learning
model [33]. It has been demonstrated that VirFinder can
be periodically updated by training it on new and avail-
able sequences [33].

Another tool was developed by [37] to identify the
viral signals based on both reference dependence and in-
dependence manner. VirSorter is largely reliant on the
database searches of the anticipated proteins with the
use of probabilistic similarity and reference homology
for compiling metrics of the virus-like proteins enrich-
ment and concurrent depletion of other proteins [37].
Hence, it utilizes a virus-specific curated database Pfam
[15] for the nonvirus annotations, although it would not
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completely differentiate viral from the nonviral Pfam an-
notations. According to the study by [5], MARVEL, Vir-
Finder, and VirSorter have a comparable performance
on specificity, but MARVEL has a better recall (sensitiv-
ity) performance [5].

Kieft et al. [22] also developed VIBRABT for auto-
mated recovery, annotation and curation of microbial vi-
ruses, and evaluation of viral community function from
genomic sequences. VIBRANT was the first method to
utilize neural networks and protein similarity approach.
Based on the author’s declaration, VIBRANT recovered
an average of 94% of the viruses with higher perform-
ance than VirFinder, VirSorter, and MARVEL.

By increasing the number of identified uncertain phage
genomes [39], the development of a flexible and integra-
tive tool for fast and precise taxonomic description is inev-
itable. Conventional approaches to tackle the phage
categorization have been established based on virion
morphology characterization with the Transmission Elec-
tron Microscopy (TEM) and sequence-based strategies
[35]; however, they occasionally dealt with the genus and
characterization have been done at family and subfamily
level [38]. Additionally, the classification of the phages
based on the experimental data is a time and labor-
consuming procedure. Machine learning has been consid-
ered an attractive alternative for classifying the bacterio-
phages [20]. Successful utilization of ML methods in the
classification of a bacteriophage using ANN has been re-
ported by [10]. They developed a novel integrative tool for
classifying phages called ClassiPhage 2.0. In ClassiPhage
2.0, the authors have made Hidden Markov Models
(HMMs) profiles by scanning the available phage pro-
teomes. Created phage-derived-HMMs scoring matrix
was used to train a model using ANN algorithm to classify
phage genomes into 12 phage family [10]. According to
the authors’ declaration, their proposed model could also
be extended to include more features than HMM profile
hits. However, there are two limitations with ClassiPhage
2.0. First, as genes or proteins can be shared by different
taxa, alignment may lead to ambiguous label assignment.
Second, given the enoumerous diversity of the phages,
alignment-based methods are not able to assign taxa for
new species with novel proteins or lack quality alignments
with the references. Thus, using only sequence similarity
cannot provide ideal resolution.

Another ML-based tool to phage classification is
vConTACT 2.0 which utilizes a clustering algorithm to
leverage gene organization conservation for phage classi-
fication [21]. If the reference genomes and contigs are in
the same cluster, the labels of the reference genomes will
be assigned to those contigs. While vConTACT 2.0
present satisfactory performance on classification of
complete genomes, the classification accuracy decreases
in the contigs with short length. It has been
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demonstrated that shorter contigs do not contain many
proteins and thus do not lead to valid edges in the gene-
sharing network [41]. Therefore, the clustering algo-
rithms fail to group contigs and reference genomes in
the same cluster.

To deal with the above-mentioned issues in the bac-
teriophage calassification, PhaGCN was developed re-
cently [41]. PhaGCN utilizes the semi-supervised learning
framework that knowledge graph is constructed by com-
bining the DNA sequence features learned by convolu-
tional neural network (CNN) and protein sequence
similarity gained from gene-sharing network. Then graph
convolutional network (GCN) was applied to utilize both
the labeled and unlabeled samples in training to enhance
the learning ability. The major improvement of PhaGCN
stems from combined strength of the reference-based
model and the learning-based model using the knowledge
graph: the nodes contain automatically learned features
from nucleotide sequences and the edges are created by
protein-based alignment.

Classification performance of PhaGCN, vConTACT,
and ClassiPhage were compared using simulated and
real sequencing data. The result shows that PhaGCN al-
ways has the largest number of predicted contigs with
the highest classification accuracy. Moreover, in contrast
to the vConTACT and ClassiPhage, the classification
performance of PhaGCN is stable with the change of the
contig length, making it useful for classifying short con-
tigs [41].

Phage host prediction

Determining the host species of identified phages is an im-
portant challenge in virology. Owing to the recent devel-
opment of sequencing technology an increased amount of
newly identified viruses have been discovered within dif-
ferent ecological niches. However, the host species of the
majority of these viruses remains unknown. To address
this gap, culture-based and computational methods were
reported. In culture-based procedures, the host ranges of
phage are identified by the growth of the host bacteria
with phages over an agar plate [47]. Since viromes re-
vealed enormous diversity of viruses with no isolated rela-
tives, linking these viruses with their putative hosts by
culture-independent methods has become important to
gain insights into the ecology of viruses. Computational
approaches to virus-host prediction fall into four strat-
egies: searching for homologous sub-sequences in the
hosts [14, 38]; looking for co-abundance between virus
and host [3]; distance-based metrics of oligo-nucleotide or
k-mer composition [3]; and machine learning methods
[45]. Most of the mentioned approaches rely on reference
genomes, and the availability of the genomes is a major
drawback. However, machine learning approaches relying
on training dataset that are independent of reference
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genomes or alignment steps [49]. A majority of the
machine-learning strategies for predicting the virus-host
employed characteristics extracted from nucleotide
similarity-based k-mer biases such as CpG bias, di-codon
bias, and CG bias [27]. Aguas and Ferguson [2] successfuly
applied nucleotide or amino acid features to predict host
species using RF-based models in RNA viruses. In another
study, hosts of viruses were successfully predicted using a
dual discriminants model including SVM and Mahalano-
bis distance (MD) [43]. Moreover, successful application
of logistic regression, support vector machines, random
forest, Gaussian naive Bayes, and Bernoulli naive Bayes to
predict phage’s host on genus level using oligonucleotide
frequencies was reported [52]. One of the most important
characteristics of this tool is a plant-, vertebrate-, and
arthropod-specific virus’s identification ability. However,
poor efficacy was observed in the arthropod-specific vi-
ruses host prediction.

All of the above-mentioned methods have been
used the information of the nucleotide sequence for a
virus hosts prediction. Whereas, information of amino
acid sequences and their biochemical properties and
subsequent functional properties have not been con-
sidered. Although all of the ‘functional’ information is
present in the nucleotide sequence, it is not necessar-
ily in a form that is easy for machine learning ap-
proaches to extract. Based on this hypothesis, Young
et al. [49] developed a new computational framework
for host prediction by combining k-mer compositions
and protein domains of bacteriophage genomes [49].
They trained and tested SVM classifiers to compare
the predictive capacity of each of the genome repre-
sentations including nucleic acid sequence k-mers,
amino acid sequence k-mers, physiochemical proper-
ties of the amino acid sequence, and predicted Pfam
domain as depicted in Fig. 2.
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Their results showed that the host prediction accuracy
improved with increasing k-mer length for all k-mer
based features [49]. However, methods based on K-mers
in general have decent prediction accuracy, though the
mechanisms behind this phenomenon is not fully under-
stood. More recently, Wang et al. [46] developed a tool
known VirHostMatcher-Net using a network-based inte-
grated framework to predict bacteriophages hosts. In
this tool, CRISPR sequences, alignment-free similarity,
and co-abundance were applied as features to train the
model using SVM and RF methods [46]. The authors
showed that the VirHostMatcher-Net, comparison with
other developed tools, improves the host prediction rate
up to 6-fold. It seems that the frameworks with the com-
bining of multi-layers information improve the modeling
and prediction performance.

Bacteriophage virion proteins prediction

Binding of phage virion proteins (PVP) to the host surface
is a critical step for the injection of genetic materials into
bacteria during the infection procedure of phages. Identifi-
cation of PVPs such as endolysins, exopolysaccharides,
and holins is important for deciphering the complex dy-
namics of connection between phage and the host bacteria
to develop effective antibacterial drugs or antibiotics [26].
It has been shown that the identification of PVPs using ex-
perimental procedures including mass spectrometry, so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis,
and protein arrays is laborious and expensive [34]. Add-
itionally, sequence-based computational approaches are
needed before the in vitro experiments [40]. Although,
limited experimented data is a major drawback for trad-
itional in silico approaches, Machine learning approaches
provided a promising avenue to predict the functions of
phage proteins [26, 50, 53]. Summary of ML-based identi-
fiers for prediction of PVPs are presented in Table 1.

-

Ref Seqs

.

Fig. 2 Workflow for extracting and selection of genome features and subsequently bacteriophage hosts prediction using SVM classifiers [49]
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Table 1 Summary of ML models and features were used for training PVPs

No. Predictor Method Number dataset (TR/TS) Performance
1 ANN "ACC, protein isoelectric Points” + ANN 307 (307/NA) 85%
2 Naive Bayes "ACC, DPC" + CFS + Naive Bayes 401 (307/94) 79%
3 PVPred g-gap DPC + ANOVA+SVM 307 (307/NA) 85%
4 PhagePred g-gap DPC +ANOVA + Multinomial Naive Bayes 307 (307/NA) 98%
5 PVP-SVM "AAC, ATC, CTD, DPC, PCP" + RF-based feature selection + SVM 401 (307/94) 87%
6 SVM-based g-gap DPC + "ANOVA, mRMR" + SVYM 401 (307/94) 86%
7 Ensemble RF “CTD, bi-profile Bayes, PseAAC, PSSM” + Relief + RF 501 (253/248) 85%
8 Pred-BVP-Unb CT, SAAC, bi-PSSM+SVM 401 (307/94) 92%
9 PVPred-SCM DPC +SCM 401 (307/94) 77%
10 Meta-iPVP Probabilistic feature+SVM 626 (313/313) 82%

SCM scoring card method, SVM support vector machine, AAC amino acid composition, ATC atomic composition, bi-PSSM bi-profile position specific scoring matrix,
CTD chain-transition-distribution, CT composition and translation, DPC dipeptide composition, GDPC g-gap dipeptide composition, PCP physicochemical properties,

SAAC split amino acid composition, TR training dataset, TS testing dataset

In this regard, Seguritan et al, [40] developed an
ANN model, using amino acid composition (AAC)
and protein isoelectric points as input features for the
classification of viral structural proteins. In another
study, Feng et al. [17] employed the amino acid and
dipeptide composition features for model development
using a naive Bayesian algorithm. Ding et al. [12] also
developed a SVM-based prediction tool known as
PVPred. In this tool, the researchers utilized a one-
gap dipeptide occurrence frequency as a feature for
the model training using the SVM algorithm. Another
study dealt with the SVM discriminant to study PVPs
using the chosen optimal g-gap dipeptide composition
as a feature [42]. Furthermore, in another study, a
publicly available method was developed using a RF-
based ensemble method to identify PVPs [51]. To
improve the accuracy and transferability of the pre-
diction model that was developed by Zhang et al.
[51], a SVM-based PVP predictor called PVP-SVM
was developed by Manavalan et al., [24]. In PVP-SVM
predictor, RF and extremely randomized tree (ERT)-
based models were applied for prediction of PVPs
using AAC, atomic and dipeptide composition, and
chain-transition-distribution features [24]. Each strat-
egy considered a machine learning as one of the opti-
mal computational methods, which is affordable,
simplified, efficacious as well as reproducible in com-
parison with the conventional experimentations [48].
Recently, a machine learning model-based tool,
known Pred-BVP-Unb was developed with other fea-
tures, i.e. Bi-PSSM evolutionary information, compos-
ition & translation, and split amino acid composition
[6]. In the Pred-BVP-Unb, attribute selection is per-
fomed by a recursive feature elimination algorithm.
Then, selected features is used to train a model by
SVM using radial base kernel [6]. It has been

declared that the mentioned tool can predict PVPs
with 92.54% for the benchmark dataset [6]. In other
study, different machine learning algorithm efficiency
to predict PVPs using wide range features were com-
paratively surveyd and shown the g-gap DPC (dipep-
tide composition) is the most essential feature for
predicting of PVPs. They compared the prediction ac-
curacy of SVM, NB, RF, and ensemble methods, of
which SVM was the more effective discriminator [26].
However, the problem was far from being solved.
First, low prediction accuracy due to poor protein
motifs representation. Secondly, the class imbalance
leads to classification errors and biasness problem.
Thirdly, a robust feature selection algorithm is re-
quired to rank and select the best discrimination fea-
ture subset for the model prediction. Moreover, they
are not generalized or transferable to researchers with
informatics background who can develop in-house
prediction models [8, 9]. Motivated by the above
mentioned limitations, Meta-iPVP were proposed
which was employed the eficient feature representa-
tion approach to generate discriminative probabilistic
features using SVM algorithm [9]. Performance evalu-
ation showed that the Meta-iPVP could distinguish
PVPs and non-PVPs with 0.817 and 0.642 accuracy
and MCC, respectively, which corresponds to 6-10%
and 14-21% improvements over above-mentioned
predictors [9]. Other algorithm has proposed PVPred-
SCM and VirionFinder. In PVPred-SCM, the propen-
sities of dipeptides to be PVPs were calculated. Then,
the propensity scores of all dipeptides were optimized
using genetic algorithm. Results showed that PVPred-
SCM had higher performance, compared to SVM-
based tools with various types of protein features [8].
Regarding the VirionFinder, this predictor considers
the protein fragments rather than complete proteins
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as training data sets, which helps to extract more in-
formation and consequently predict PVPs more effect-
ively than previous methods.

Recognition of the bacteriophage life-cycle using
ML

Virulent phages which have a largely lytic lifecycle fol-
lowing bind to the host cell, and inject the nucleic acid
material for using the bacterial replication and transla-
tion machinery. Subsequently, the bacterium would be
lysed and bacteriophages would be released in the envir-
onment. On the contrary, the lysogenic cycle which is
followed by temperate phages, phage genome is embed-
ded into a bacterial genome to forms a prophage; a situ-
ation where it may take several generations. However, in
stress conditions, prophages may be shifting their life
cycle to lytic mode [23]. Bacteriophage life cycle know-
ledge i.e. population dynamics, and virulent lifestyle are
employed for phage therapy as a bio-control strategies
[4]. Commonly, phage lifestyle is specified by in vitro
culturing, isolation and characterization. With the emer-
gence and the development of new sequencing platforms
and identification of novel phages in different bins, the
development of rapid computational approaches for the
determination of lifestyle is inevitable [25]. In the early
effort, phage lifestyle has been determined using the
tetra-nucleotide frequency in phage and respective hosts
[11]. Nevertheless, the availability of the host genome is
a major drawback in this regard [25]. Machine learning-
based methods are proposed as a promising approach
for resolving this drawback with the prediction of life-
style using phage nucleotide sequences [44]. In earlier
study, Phage Classification Tool Set (PHACTS) was de-
veloped to predict the phage life style using the amino-
acid sequence characteristics as features [25]. Then, the
created a similarity matrix was trained using RF classifier
to predict that the phage is lytic or lysogenic. Although
the PHACTS are shown to have a 99% precision rate,
however, due to imperfect annotation of newly identified
phages it is not possible to make a confident life style
prediction using the PHACTS [25]. To resolve this prob-
lem, a machine learning-based tool known as PhageAl
was recently developed by Tynecki et al. [44] which re-
quires just a DNA nucleotide sequence of phages to pre-
dict that phage life style is lytic or lysogenic. In the
PhageAl, feature selection is performed using ranking
are performed using recursive feature elimination, and
cross-validated selection of the best number of features
(RFECV). Then, models are trained using supervised ML
algorithms including Multinomial NB, SVM, Support
Vector Classifier (SVC), SGD, Logistic Regression, multi-
layer perceptron (MLP), RF, K Neighbors, Gradient
Boosting, XGBoost, CatBoost, Light GBMc Classifiers.
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PhageAl are shown to have about 99% prediction accur-
acy based on SVM algorithm [44].

Conclusion

Our review summarizes and discusses the use of ma-
chine learning in the analysis of various aspects of the
bacteriophage field. The majority of studies carried out
in this field thus far have demonstrated promising re-
sults. According to the comparisons of all discrimina-
tors, we concluded that the utilization of different
feature descriptors which harbors the multi-layer infor-
mation is critical for training datasets enrichment. More-
over, in most of the studies, different features have been
linearly combined and ranking of the feature were per-
formed. However, the employment of feature descriptors
fusion may improve the prediction accuracy of models.
Additionally, the application and optimization of deep
learning techniques can improve our knowledge about
bacteriophage characteristics.
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