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Abstract

Background: Neuropathic pain is an abnormally increased sensitivity to pain, especially from mechanical or thermal
stimuli. To date, the current pharmacological treatments for neuropathic pain are still unsatisfactory. The gut
microbiota reportedly plays important roles in inducing neuropathic pain, so probiotics have also been used to
treat it. However, the underlying questions around the interactions in and stability of the gut microbiota in a spared
nerve injury-induced neuropathic pain model and the key microbes (i.e., the microbes that play critical roles)
involved have not been answered. We collected 66 fecal samples over 2 weeks (three mice and 11 time points in
spared nerve injury-induced neuropathic pain and Sham groups). The 16S rRNA gene was polymerase chain
reaction amplified, sequenced on a MiSeq platform, and analyzed using a MOTHUR- UPARSE pipeline.

Results: Here we show that spared nerve injury-induced neuropathic pain alters gut microbial diversity in mice. We
successfully constructed reliable microbial interaction networks using the Metagenomic Microbial Interaction Simulator
(MetaMIS) and analyzed these networks based on 177,147 simulations. Interestingly, at a higher resolution, our results
showed that spared nerve injury-induced neuropathic pain altered both the stability of the microbial community and
the key microbes in a gut micro-ecosystem. Oscillospira, which was classified as a low-abundance and core microbe,
was identified as the key microbe in the Sham group, whereas Staphylococcus, classified as a rare and non-core
microbe, was identified as the key microbe in the spared nerve injury-induced neuropathic pain group.

Conclusions: In summary, our results provide novel experimental evidence that spared nerve injury-induced
neuropathic pain reshapes gut microbial diversity, and alters the stability and key microbes in the gut.
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Background
Neuropathic pain is an abnormal perception of pain [20]
that affects 7–10% percent of the human population
worldwide [19]. Neuropathic pain can cause increased
pain sensitivity to mechanical or thermal stimuli [20].
However, current pharmacological treatments for neuro-
pathic pain are still unsatisfactory because the causes of
chronic pain cannot always be established [9]. One of the
current treatments is probiotics (live beneficial microbes),
and this is still a growing field. For example, the De Sim-
one Formulation probiotic (i.e., Bifidobacterium breve, B.
longum, B. infantis, Lactobacillus plantarum, L. paracasei,
L. delbrueckii subsp. Bulgaricus, L. acidophilus, Streptococ-
cus thermophilus) alleviated chemotherapy-induced
neuropathic pain in an in vitro model, but has not been
tested yet in vivo [12]. A recent study attempted to use
probiotics (i.e., Lactobacillus reuteri lr06 or Bifidobacter-
ium bl5b) to alleviate SNI (spared-nerve injury; a trau-
matic peripheral nerve injury)-induced neuropathic pain,
but failed [42].
Host-associated microorganisms have been shown to

play important roles in influencing host phenotypes [21].
For example, gut microbiota can regulate visceral pain
sensation in mice [58]. An imbalance of beneficial and
harmful host-associated microbes (termed dysbiosis [59];
) is associated with Alzheimer’s disease [81], and could
influence host behaviors such as depression and anxiety
[18], and also physiological response such as visceral
(internal organ) pain [39]. A recent study showed that
the gut microbiota of a host with neuropathic pain after
traumatic peripheral nerve injury (spared-nerve injury;
SNI) could cause anhedonia (depression-like behavior)
to another host through fecal transplantation [84].
However, the underlying questions around topics such
as the interactions and stability of the gut microbiota in
a traumatic peripheral nerve injury-induced neuropathic
pain model and the key microbes involved (i.e., the
microbes that play critical roles) have not been
answered.
There are generally two types of network inference

methods: similarity-based networks and regression-based
networks. Similarity-based networks (or co-occurrence
networks) that depend on correlation-based methods are
often used to infer ecological interactions, but they are
rarely efficient for analyzing these interactions [41]. This
is because correlation methods can only infer ecological
associations [41], and cannot interpret more detailed
ecological interactions such as the influence of multiple
microbial members on a single member, and vice versa
[29]. Regression-based networks depend on generalized
Lotka–Volterra (gLV) equations to model temporal
changes in more than two taxa [29, 48]. The gLV model
is one of the most popular models for microbial commu-
nity ecology studies [34]. Microbial interaction networks

can be constructed using gLV equations to study the in-
fluence of microbial members through positive or nega-
tive interactions and determine the stability of the
microbial communities. For example, Coyte et al. [23]
constructed microbial interaction networks using gLV
equations and suggested that a higher proportion of
negative interactions between microbes indicates a stable
microbial community maintained by competitive inter-
actions between microbes. In contrast, a higher propor-
tion of positive interactions between microbes indicates
an unstable microbial community maintained by co-
operative interactions.
Currently, most disease-associated microbiota stud-

ies [13, 28, 33, 57, 85] have inferred unstable micro-
bial communities or dysbiosis from microbial
diversity. This is because microbial diversity may have
an inverse association with chronic disease and meta-
bolic dysfunction [22, 33]. Consequently, high diver-
sity is generally used to indicate a healthy gut
ecosystem [5, 28, 54]. However, some scientists ar-
gued that there are problems with using diversity to
assess health [11, 45, 70]. Shade [70], for example,
proposed that high diversity does not necessarily indi-
cate a stable or healthy microbial community. For ex-
ample, increased microbial diversity in the vagina may
have detrimental consequences such as bacterial
vaginosis and preterm birth [11, 30]. In addition, di-
versity is only an index for the number of taxa in a
community and has little ecological value, and a mi-
crobial community with high diversity does not neces-
sarily mean that it will remain stable if perturbed
[70]. Hence, comparing healthy and diseased states
using diversity often leads to contradictory results
[45]. Johnson and Burnet [45] call for further studies
to investigate these using techniques beyond conven-
tional diversity indices and tackle the issue of a lack
of analytical methods to assess microbial composition
and functioning.
Our objectives were to determine the interactions in

and stability of the gut microbiota in a spared nerve
injury-induced neuropathic pain model and the key mi-
crobes involved. The present study used conventional
methods (i.e., alpha & beta diversity and differential
abundance), but we could not determine the stability of
microbial communities or identify the key microbes in
mice with SNI or Sham. On the other hand, we success-
fully constructed reliable microbial interaction networks
using Metagenomic Microbial Interaction Simulator
(MetaMIS [72];) based on gLV equations and analyzed
the networks. Interestingly, at a higher resolution, our
results showed that neuropathic pain after traumatic
peripheral nerve injury alters both the stability of micro-
bial community and the key microbes in a gut micro-
ecosystem.
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Results
Pain withdrawal threshold decreased after spared nerve
injury (SNI)-induced neuropathic pain
We used the SNI model to investigate the influence of
traumatic peripheral nerve injury on the interactions
and stability of the gut microbiota and its key microbes.
To determine the success of surgeries (i.e., SNI and
Sham), we evaluated the pain behavior of mice before
and after SNI. The behavioral test was conducted 1 day
before surgery (− 1) as a baseline, and 1, 2, 3, 4, 5, 6, 7,
and 14 days after surgery. The timeline of the behavioral
test and fecal collection is summarized in Fig. 1a. After
the traumatic peripheral nerve injury, the paw with-
drawal thresholds were significantly lower in the SNI
group than in the Sham group on days 1 (p value:
0.033), 2 (p value: 0.003), 4 (p value: 0.020), 5 (p value:
0.003), 6 (p value: 0.049), and 7 (p value: 0.012) (Fig. 1b).

Overview of next-generation sequencing metadata
To generate time series data and determine the temporal
changes in the gut microbiota, we sequenced 66 purified
fecal DNA samples, which were collected over 11 time
points (1 day before surgery (− 1), and 1, 1.4 (1 day 4 h), 2,
3, 4, 5, 6, 7, and 14 days after surgery; Fig. 1a). In total, we

obtained 14,358,275 reads, with an average of 217,550 +
35,517 reads per sample, and around 16% differences in li-
brary size. After we filtered and processed the raw data,
we determined the number of OTUs (at the genus level;
n = 59) from each sample, and illustrated them as rarefac-
tion curves (Supplemental Figure 1). All the rarefaction
curves of each time-series sample from the SNI and Sham
groups reached an asymptote (Supplemental Figure 1).
For the differential relative abundance (based on DESeq2;
Benjamini-Hochberg adjusted p-value), 2 genera were
found significantly different between groups on days − 1-0
(Roseburia, p value: 0.001; Candidate_division_TM7, p
value: 0.01). Four genera (Roseburia, p value: 0.000; Erysi-
pelotrichaceae_Incertae_Sedis, p value: 0.009; Mollicutes_
unclassified, p value: 0.012; Peptococcaceae_unclassified, p
value: 0.013) were found significantly different between
groups on days 1–2. Three genera were found significantly
different between groups on days 3–5 (Turicibacter, p
value: 0.000; Roseburia, p value: 0.004; Mollicutes_unclas-
sified, p value: 0.005). Eight genera were found signifi-
cantly different between groups on days 6–14
(Turicibacter, p value: 0.000; Allobaculum, p value: 0.000;
Bifidobacterium, p value: 0.000; Akkermansia, p value:
0.000; Roseburia, p value: 0.000; Mollicutes_unclassified, p

Fig. 1 The timeline for fecal collection and pain behavioral test. a Day − 1 is the baseline. The SNI and Sham groups were tested on day 0. b Student’s
T test (* p < 0.05, **p < 0.01, SNI group VS Sham group; sample size (n) = 6). Data are shown as mean ± S.E.M
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value: 0.009; Lactobacillus, p value: 0.013; Actinobacteria_
unclassified, p value: 0.033). The differential relative abun-
dance of microbes between the SNI and Sham groups is
summarized in Supplemental Table 1. To classify the mi-
crobial members and track their temporal changes at
the genus level, 12 genera were classified as high-
abundance and core microbial members: Bacteroidales_
unclassified, Bacteroides, Desulfovibrio, Lachnospira-
ceae_Incertae_Sedis, Lachnospiraceae_unclassified,
Lactobacillus, Moryella, Mucispirillum, Ruminococca-
ceae_Insertae_Sedis, Ruminococcaceae_unclassified,
Ruminococcaceae_uncultured, and S24–7_unclassified
(Fig. 2a/b); 22 genera were classified as low-abundance
and core microbial members: Acetanaerobacterium,

Adlercreutzia, Akkermansia, Allobaculum, Bacteria_un-
classified, Candidate_division_TM7, Clostridiales_un-
classified, Clostridium, Coriobacteriaceae_unclassified,
Erysipelotrichaceae_unclassified, Firmicutes_unclassi-
fied, Hydrogenoanaerobacterium, Incertae_Sedis, Lach-
nospira, Lachnospiraceae_uncultured, Oscillibacter,
Oscillospira, Parabacteroides, Parasutterella, Roseburia,
Ruminococcus, and Turicibacter (Fig. 2c/d); 5 genera
were classified as rare and core microbial members:
Barnesiella, Eubacterium, Family_XIII_Incertae_Sedis,
Mollicutes_RF9_unclassified, and Peptococcaceae_un-
classified (Fig. 2e/f); and 20 genera were classified as
rare and non-core microbial members: Acinetobacter,
Actonobacteria_unclassified, Alcaligenes, Bacteroidetes_

Fig. 2 The classification and temporal change of microbial members at the genus level. Microbial members were partitioned based on: (A/B)
high-abundance & core; (C/D) low-abundance & core; (E/F) rare & core; (G/H) rare & non-core
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unclassified, Bifidobacterium, Clostridia_unclassified,
Clostridium, Coprobacillus, Enterococcus, Escherichia,
Lactobacillales_unclassified, Mollicutes_unclassified,
Olsenella, Porphyromonadaceae_unclassified, Pseudo-
monas, Robinsoniella, Staphylococcus, Streptococcus,
and Weissella (Fig. 2g/h).

Altered gut microbiota diversity and composition
For phylogenetic indices, alpha diversity (at genus level)
was evaluated based on non-parametric Shannon’s diver-
sity index, inverse Simpson’s diversity index, and Chao
richness (Fig. 3). For non-parametric Shannon’s diversity
index, the genus diversity of the SNI group on days 6–
14 was significantly lower (p value: 0.004) than that of
the Sham group on days 6–14. For the inverse Simpson’s
diversity index, the genus diversity of the SNI group on
days 6–14 was significantly lower (p value: 0.040) than
that of the Sham group on days 6–14. For both non-
parametric Shannon’s and inverse Simpson’s diversity in-
dexes, the genus diversity of the SNI group on days − 1–
0 and days 6–14 was not significantly different. For Chao
richness, the genus richnesses of the Sham group on
days 1–2, 3–5, and 6–14 were significantly lower (p
value: 0.006, 0.004, and 0.010, respectively) than those of
the Sham group on days − 1 to 0. Likewise, the genus
richness of the SNI group on days 6–14 was significantly
lower (p value: 0.024) than that of the SNI group on days
− 1 to 0. For beta-diversity (NMDS based on Bray-Curtis

dissimilarity), the composition of SNI on day − 1 was
not significantly different compared to the composition
of Sham on day − 1, so SNI and Sham on day − 1 was
grouped together. The composition of SNI and Sham on
day − 1 was significantly different compared to the com-
position of SNI on day 6 and the composition of Sham
on day 6 (p value: 0.047; Fig. 4). The composition of SNI
and Sham on days 6 and 14 were all significantly differ-
ent to each other (p value: 0.048; Fig. 4). Interestingly,
the composition of SNI on day − 1 was not significantly
different compared to the composition of SNI on day 14.

Stability of microbial interaction networks
To determine the stability of the microbial communities
in the Sham and SNI groups, we constructed complex
microbial interaction networks and analyzed the propor-
tion of negative and positive interactions in both groups.
In the Sham group, the highest proportion of positive in-
teractions was 9.4E-04 (0.0094) and the lowest propor-
tion of negative interactions was − 6.9E-04 (− 0.0069;
Fig. 5). In the Sham group, the highest proportion of
positive interactions was 7.5E-04 (0.0075), and the
lowest proportion of negative interactions was − 9.5E-04
(− 0.0095; Fig. 5). The proportion of positive interactions
in the SNI group was significantly higher than that of
the Sham group (p value = 0.008). The proportion of
negative interactions in the SNI group was significantly
lower than that of the Sham group (p value = 0.044).

Fig. 3 Boxplots of alpha diversity based on non-parametric Shannon’s diversity index, inverse Simpson’s diversity index, and Chao richness.
Permutation two sample t-test (* p < 0.05, ** p < 0.01). Days − 1–0: n = 6; Days 1–2: n = 6; Days 3–5: n = 9; Days 6–14: n = 9
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Also, the bacterial community in the SNI and Sham
groups were highly interacting as a whole (no fragmen-
tation), rather than highly interacting in subpopulations
(with fragmentation). The complex microbial interaction
networks are summarized in Fig. 5.

Identification of key microbes
According to the rank that we assigned each genus
based on the total rank of betweenness centrality, close-
ness centrality, and degree centrality, we detected Oscil-
lospira and Erysipelotrichaceae_unclassified (rank 1) as
the key microbes in the Sham group, followed by Adler-
creutzia (rank 2) and Turicibacter (rank 3) (Supplemen-
tal Table 2.1). Oscillospira was identified as the key
microbe in the Sham group based on relatively high cen-
trality score (degree: second highest; closeness: fourth
highest; betweenness: second highest), with a final rank
of 1 (Supplemental Table 2.1). For the SNI group, we de-
tected Staphylococcus (rank 1) as the key microbe,
followed by Ruminococcaceae_uncultured (rank 2) and
Turicibacter (rank 3) (Supplemental Table 2.2).
Staphylococcus was identified as the key microbe in the
SNI group based on relatively high centrality score (de-
gree: second highest; closeness: third highest; between-
ness: the highest), with a final rank of 1 (Supplemental
Table 2.2). Multiple linear regression showed that the
ranks of the betweenness centrality, closeness centrality,
and degree centrality were significantly correlated with
the final rank of microbes in both the Sham (p value <
0.001; R2 = 0.9167) and SNI groups (p value < 0.001;
R2 = 0.8877; Supplemental Figure 2).

Interactions between key microbes and other microbes
In the Sham group, Oscillospira was influenced by 6
genera through positive interactions and influenced 6

genera through positive interactions. Oscillospira was
influenced by 5 genera through negative interactions
and influenced 13 genera through negative interac-
tions (Table 1 and Supplemental Figure 3A).
In the SNI group, Staphylococcus was influenced by 7

genera through positive interactions and influenced 13
genera through positive interactions. Staphylococcus was
influenced by 7 genera through negative interactions and
influenced 3 genera through negative interactions
(Table 2 and Supplemental Figure 3B).

Interactions between potential probiotics and other
microbes
In the Sham group, potential probiotics such as Lactoba-
cillus were influenced by 6 genera through positive in-
teractions and influenced 5 genera through positive
interactions. Lactobacillus was influenced by 1 genus
through negative interactions and influenced 6 genera
through negative interactions (Table 3 and Supplemental
Figure 3C). Overall, there were two potential probiotics
(Lactobacillus and Bifidobacterium) in this network
(Table 3 and Supplemental Figure 3C).
In the Sham group, Bifidobacterium was influenced by

2 genera through positive interactions and influenced 2
genera through positive interactions. Bifidobacterium
was influenced by 7 genera through negative interactions
and influenced 1 genus through negative interactions
(Table 4 and Supplemental Figure 3E). Overall, there
were three potential probiotics (Bifidobacterium, Lacto-
bacillus, and Enterococcus) in this network (Table 4 and
Supplemental Figure 3E).
In the SNI group, Lactobacillus was influenced by 3

genera through positive interactions and influenced 5
genera through positive interactions. Lactobacillus was
influenced by 3 genera through negative interactions and

Fig. 4 2D plots of 3D NMDS data based on Bray-Curtis dissimilarity. a SNI and Sham on day − 1 are not significantly different (PERMANOVA: p value =
0.7), thus combined as a group and showed significantly different with SNI and Sham groups on day 6 (PERMANOVA: p value = 0.047; n = 12); b All SNI
and Sham groups on days 6 and 14 are significantly different (PERMANOVA: p value = 0.048; n = 12)
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did not influence any other microbes through negative in-
teractions (Table 5 and Supplemental Figure 3D). Overall,
there was only one potential probiotic (Lactobacillus) in
this network (Table 5 and Supplemental Figure 3D).
In the SNI group, Bifidobacterium was influenced by 1

genus through positive interactions and influenced 7
genera through positive interactions. Bifidobacterium
was influenced by 5 genera through negative interactions

and influenced 1 genus through negative interactions
(Table 6 and Supplemental Figure 3F). Overall, there
was only one potential probiotic (Bifidobacterium) in
this network (Table 6 and Supplemental Figure 3F).

Discussion
There is currently a discussion in the academic commu-
nity about whether microbial diversity can be used to

Fig. 5 Complex microbial interaction networks based on 177,147 simulations. Each node represents a genus. Node color represents degree, node
size represents betweenness centrality, and text size represents closeness centrality. The color of the edge represents the strength of the
interaction between two nodes. a Microbial interaction network of Sham group; n = 3. b Microbial interaction network of SNI group; n = 3
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determine the health of a gut environment [11, 45, 70].
In our study, we first analyzed microbial diversity to de-
termine the influence of neuropathic pain on the health
conditions (i.e., stability) of hosts’ gut environments.
Even though 2 genera were found significantly different
between the SNI and Sham groups on days − 1-0 (base-
lines), which might due to stochastic events, the alpha
and beta diversity between groups on days − 1-0 were
not significantly different. The changes in microbial di-
versity (i.e., Shannon and Simpson’s diversity indices;
alpha diversity) in our study were similar to those in a
previous study [84], in which the microbial diversity in
the SNI group was significantly lower than the microbial
diversity in the Sham group at the end of the experi-
ment. In contrast, another previous study showed that
the microbial diversity between the SNI group with a
normal level of vitamin D and the Sham group with a
normal level of vitamin D was not significantly different
[38]. Interestingly, the results of the alpha diversity (i.e.,
the genus diversity of the SNI group on days − 1-0 and
days 6–14 was not significantly different but the genus
diversity of SNI group on days 6–14 was significantly

lower than the genus diversity of Sham group on days
6–14) and beta-diversity (i.e., the composition of SNI on
day − 1 was not significantly different compared to the
composition of SNI on day 14) in our study made deter-
mining the stability of the microbial community compli-
cated for both groups. To overcome these impediments,
we constructed and analyzed complex microbial inter-
action networks. In accordance with Coyte et al. [23], we
found that the Sham group may have a stable gut micro-
bial community due to its high proportion of competi-
tive interactions. In contrast, the SNI group may have an
unstable gut microbial community due to its high pro-
portion of cooperative interactions. Even though co-
operative interactions may enhance metabolic efficacy, a
decrease in the abundance of certain microbes may
affect other cooperating microbes, eventually destabiliz-
ing the entire microbial community [23]. Our results are
in accordance with studies [7, 62, 79] that suggest that
the interactions in the mammalian microbiota are gener-
ally competitive and exploitative. For instance, Venturelli
et al. [79] co-cultured a 12-species community and
found that 68% of the total interactions were competitive

Table 1 Interactions between Oscillospira and other microbes in the Sham group

Oscillospira was influenced by
other microbes through positive
(+) interactions

Oscillospira was influenced by
other microbes through negative
(−) interactions

Oscillospira influenced other
microbes through positive (+)
interactions

Oscillospira influenced other
microbes through negative (−)
interactions

Barnesiella
Erysipelotrichaceae_unclassified
Lactobacillus
Mollicutes_RF9
Mollicutes_unclassified
Streptococcus

Clostridiales_unclassified
Firmicutes_unclassified
Peptococcaceae
Ruminococcus
Ruminococcaceae_unclassified

Acetanaerobacterium
Bacteroidales_unclassified
Clostridium_Candidatus_
Arthromitus
Lachnospiraceae_unclassified
Porphyromonadaceae_unclassified
Ruminococcaceae_Incertae_Sedis

Actinobacteria_unclassified
Akkermansia
Allobaculum
Bacteroidales_S24–7
Bifidobacterium
Clostridium_unclassified
Olsenella
Parabacteroides
Parasutterella
Peptococcaceae_unclassified
Ruminococcaceae_uncultured
Ruminococcus
Turicibacter

Table 2 Interactions between Staphylococcus and other microbes in the SNI group

Staphylococcus was influenced by
other microbes through positive
(+) interactions

Staphylococcus was influenced by
other microbes through negative
(−) interactions

Staphylococcus influenced
other microbes through
positive (+) interactions

Staphylococcus influenced
other microbes through
negative (−) interactions

Bacteroides
Clostridium_unclassified
Erysipelotrichaceae_Incertae_Sedis
Lachnospira
Parabacteroides
Ruminococcus
Turicibacter

Bacteroidales_unclassified
Candidate_division_TM7
Eubacterium
Lachnospiraceae_unclassified
Mollicutes_unclassified
Roseburia
Ruminococcaceae_Incertae_Sedis

Bacteria_unclassified
Clostridiales_unclassified
Desulfovibrio
Firmicutes_unclassified
Hydrogenoanaerobacterium
Lachnospiraceae_Incertae_Sedis
Lachnospiraceae_unclassified
Lachnospiraceae_uncultured
Mucispirillum
Oscillibacter
Oscillospira
Ruminococcaceae_Incertae_Sedis
Ruminococcaceae_unclassified

Akkermansia
Bacteroidales_S24–7
Lactobacillus
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and ammensal, and only 5% were cooperative and com-
mensal. Furthermore, Heinken and Thiele [40] simulated
an 11-species community and found that cooperative
and commensal interactions were rare (~ 10% of total
interactions).
Oscillospira, which was classified as a low-abundance

and core microbe, was identified as the key microbe
(rank 1) in the Sham group, followed by Adlercreutzia
(rank 2). Previous studies have shown that Oscillospira is
associated with health [26, 49, 77, 80]. For example,
Oscillospira is enriched in Christensenella minuta-al-
tered gut microbial community, which is involved in the
promotion of leanness in mice [35]. In a study con-
ducted on human adult monozygotic twins, Oscillospira
was significantly more abundant in the non-obese twin
(lower BMI [77];); another study, however, found the
relative abundance of Oscillospira to be significantly
lower in obese humans [80]. Gophna et al. [36] sug-
gested that Oscillospira is associated with leanness and
is probably involved in the promotion of leanness be-
cause Oscillospira uses host glycans as a food source and
causes the host to spend metabolic energy to resynthe-
size degraded glycoproteins (e.g., gut mucins). Along
with its association with leanness, Oscillospira can pro-
duce butyrate [36], which can protect a host against in-
fections [51] and enhances sleep [75].
Like Oscillospira, Adlercreutzia is also associated with

health. According to Euzéby [27], the genus Adlercreut-
zia contains only one species: Adlercreutzia equolifa-
ciens, an equol-producing bacterium [61]. Equol is a
secondary metabolite of daidzein with a higher anti-
carcinogenic activity than daidzein [53]. Moreover, equol
can protect macrophages from oxidative stress caused by

microbial lipopolysaccharides, and increase host antioxi-
dants and cytokines [37]. Liu et al. [53] showed that the
abundance of Adlercreutzia decreases in mice with high
fat diets. In our study, these beneficial microbes (i.e.,
Oscillospira and Adlercreutzia) were the top two key mi-
crobes in the Sham group, and this may further support
the idea that the microbial interaction network con-
structed in this study was reliable and the gut ecological
environment in the Sham group was stable and healthy.
Along with the interactions among microbes, studies

have also shown that the gut microbiota co-evolved with
a host to form a mutually beneficial relationship [2, 3,
17]. Hence, the gut microbiota can interact with the host
immune system [32]. For instance, the immune system
maintains a stable and healthy gut microbiota by pro-
moting the growth of beneficial gut microbes [52, 67],
whereas a stable and healthy gut microbiota can produce
molecular signals that contribute to the development of
immune cells and support proper immune responses
[52, 67] to defend against pathogens [17]. Hence, along
with suffering from chronic pain, the mice with SNI in
our study might also have suffered from a weakened im-
mune system due to unstable microbiota communities,
probably making them more susceptible to pathogen
infection.
Numerous studies showed that the supplementation of

probiotics is effective for combating various pathogens [4,
24, 65] and reducing anxiety and depression-related be-
havior in mice [10]. Huang et al. [42] attempted to treat
neuropathic pain in rats with oral supplementation of
probiotics (i.e., Lactobacillus reuteri LR06 or Bifidobac-
terium BL5b), but failed. Along with the reasons provided
by Huang et al. [42], we speculate that the treatment

Table 3 Interactions between Lactobacillus and other microbes in the Sham group

Lactobacillus was influenced by
other microbes through positive
(+) interactions

Lactobacillus was influenced by
other microbes through negative
(−) interactions

Lactobacillus influenced other
microbes through positive (+)
interactions

Lactobacillus influenced other
microbes through negative (−)
interactions

Clostridium_unclassified
Eubacterium
Firmicutes_unclassified
Parabacteroides
Parasutterella
Ruminococcus

Clostridia_unclassified Desulfovibrio
Lachnospiraceae_uncultured
Oscillibacter
Ruminococcaceae_Incertae_Sedis
Ruminococcaceae_unclassified

Adlercreutzia
Bifidobacterium
Coprobacillus
Porphyromonadaceae_unclassified
Ruminococcus
Turicibacter

Table 4 Interactions between Bifidobacterium and other microbes in the Sham group

Bifidobacterium was influenced by
other microbes through positive
(+) interactions

Bifidobacterium was influenced by
other microbes through negative
(−) interactions

Bifidobacterium influenced
other microbes through
positive (+) interactions

Bifidobacterium influenced
other microbes through
negative (−) interactions

Adlercreutzia
Turicibacter

Lactobacillus
Bacteroidales_S24–7
Erysipelotrichaceae_unclassified
Barnesiella
Enterococcus
Mollicutes_unclassified
Oscillospira

Acinetobacter
Ruminococcus

Coriobacteriaceae_unclassified
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failed because key microbes in the rats with neuropathic
pain were influenced by and cooperated with the probio-
tics for survival, and these attenuated the analgesic effects
of the probiotics. Interestingly, Staphylococcus, the key
microbe in the SNI group, influenced Lactobacillus
through cooperative interactions in our study.
Staphylococcus, which was classified as a rare and non-

core microbe, was identified as the key microbe (rank 1)
in the SNI group. Staphylococcus are infamous for their
inflammatory effects on hosts; for example, Staphylococ-
cus aureus can cause abscesses, cellulitis, osteomyelitis
[8, 56], and dermatitis [63]; both S. aureus and S. epider-
midis can cause septic arthritis [44, 47]; and S. saprophy-
ticus can cause pyelonephritis [15, 43]. S. haemolyticus,
S. intermedius, S. lugdunensis, S. schleiferi, and S. war-
neri, however, are infrequent pathogens [31]. Other than
inflammatory effects, S. aureus can also cause mechan-
ical and thermal hyperalgesia at the hind paw of mice
due to pore-forming toxins produced by S. aureus and
subsequently cause nociceptor neuron activation [8].
Even though Staphylococcus was rare in our study,
Staphylococcus might increase in abundance after
2 weeks because Staphylococcus is an opportunist with
fast community succession [69]. Rare microbes in certain
favorable conditions may occasionally become dominant
[71] and more important in providing certain functional
traits [16].
Every method is different and has its own limitations.

Some studies removed rare microbial taxa from their
analyses—e.g., rare OTUs that might be sequencing arti-
facts were removed before downstream analyses [60],
and rare OTUs were removed from network analyses to

reduce false positive results [82]. Rarefying data with a
big (around 10 times or 1000%) difference in the average
sequencing library size can also reduce false positive re-
sults [83]. However, rarefying data produces false nega-
tive results because part of the data is discarded [83]. To
retain the rare microbial taxa in our study, we did not
remove rare OTUs nor did we rarefy our data to
equalize sequencing depth. In fact, the differences
among average sequencing library sizes in our study
were very small (around 16%). Chen et al. [16] showed
that rare microbes might have a more important role in
driving multiple functions than do dominant microbes.
For instance, rare microbes may influence and change
the composition of gut microbiota after a diet change
[6]. Rare microbes have also been found to play import-
ant roles among host-associated microbes in both ani-
mals and plants and enhance host immune systems [46,
74, 78]. The current understanding of the ecological role
of host-associated rare key microbes in an unstable gut
microbial community is still in its infancy and should be
investigated further.

Conclusion
In summary, our results provide novel experimental evi-
dence that traumatic peripheral nerve injuries may alter
the microbial diversity and stability in the gut, as well as
the composition of its key microbes. Nevertheless, the
complex microbial interaction networks in our study
were simulated based on theoretical analyses. Hence,
more biological experiments are required to validate and
support our results.

Table 5 Interactions between Lactobacillus and other microbes in the SNI group

Lactobacillus was influenced by
other microbes through positive
(+) interactions

Lactobacillus was influenced by
other microbes through negative
(−) interactions

Lactobacillus influenced other
microbes through positive (+)
interactions

Lactobacillus influenced other
microbes through negative (−)
interactions

Hydrogenoanaerobacterium
Parasutterella
Staphylococcus

Bacteroidales_unclassified
Barnesiella
Lachnospiraceae_unclassified

Bacteria_unclassified
Clostridiales_unclassified
Desulfovibrio
Lachnospiraceae_uncultured
Parabacteroides

None

Table 6 Interactions between Bifidobacterium and other microbes in the SNI group

Bifidobacterium was influenced by
other microbes through positive
(+) interactions

Bifidobacterium was influenced by
other microbes through negative
(−) interactions

Bifidobacterium influenced
other microbes through
positive (+) interactions

Bifidobacterium influenced
other microbes through
negative (−) interactions

Acetanaerobacterium Akkermansia
Clostridium_Candidatus_Arthromitus
Lachnospiraceae_uncultured
Ruminococcus
Turicibacter

Acetanaerobacterium
Barnesiella
Candidate_division_TM7
Erysipelotrichaceae_unclassified
Eubacterium
Mollicutes_RF9
Ruminococcaceae_uncultured

Allobaculum
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Methods
Animal preparation
All animal procedures conformed to the guidelines spe-
cified by the National Institutes of Health and the Insti-
tutional Animal Care and Utilization Committee
(IACUC), Academia Sinica (Taipei, Taiwan), including
the guidelines for the Replacement, Refinement & Re-
duction of Animals in Research. IACUC approved proto-
col: 18-12-1246. C57 black 6 (C57BL/6) mice were
ordered from the National Laboratory Animal Center
(Taipei, Taiwan) and quarantined for a week before any
experiment. Six female mice 8 to 12 weeks old were used
for the experiment (3 for SNI group, 3 for Sham group).
We performed the experiments on female mice because
female mice are less aggressive to other female mice
than male mice [76]. We considered this stress as a con-
founder in our experiments that might alters the gut mi-
crobial diversity and composition. Mice were held under
a 12:12-h light-dark cycle with food and water available
ad libitum. At the end of the experiment, the mice were
anesthetized with isoflurane and a mixture of ketamine
and xylazine, and sacrificed using cervical dislocation.

Spared-nerve injury model
Surgical procedures were performed under isoflurane
anesthesia (liquid inhalation; Aerane, Baxter, USA) ac-
cording to previous studies [14, 73]. After a skin and
muscle incision on the left hind limb, the sural nerve
and peroneal nerve were tightly ligated using a gamma
sterile monofilament with a 3/8 circle taper point
(UNIK, Taiwan), then transected. The tibial nerve was
not ligated or transected. For the Sham controls, the
sural, peroneal, and tibial nerves were exposed but were
not ligated or transected. Finally, the skin and muscles
were closed using a silk suture.

Behavioral test
A double-blind randomized behavioral test was con-
ducted at room temperature (approximately 25 °C) and
only during the daytime. Before testing behavior, the
mice were habituated on an elevated wire mesh grid for
at least 20 min. The mechanical sensitivities of the mice
were tested using a Dynamic Plantar Aesthesiometer –
DPA (Ugo Basile SRL, Italy), which can automatically
detect and record paw-withdrawal thresholds. The stim-
uli were only applied when the mice were calm with four
paws on the mesh grid but not grooming, standing with
two hind legs, or sleeping. The behavioral test for mech-
anical sensitivity was repeated five times for each mouse
and the values of pain withdrawal threshold were aver-
aged. The behavioral test was conducted one day before
surgery (day − 1) as a baseline, and 1, 2, 3, 4, 5, 6, 7, and
14 days after surgery.

Sample collection and DNA extraction
Empty autoclaved containers were aseptically washed
with 70% EtOH and sterilized in a laminar flow cabinet
with UV light prior to transferring a mouse into each
container. In total, 66 fecal samples were collected over
2 weeks (three mice and 11 time points per group). Fecal
samples were collected right after the mice defecated
and kept in 2mL eppendorf tubes in a − 80 freezer prior
until DNA extraction. The genomic DNA from the fecal
samples was extracted using EasyPrep Stool Genomic
DNA Kit (TOOLS, Taiwan) and qualified using a Nano-
drop spectrophotometer (J&H Technology Co., Ltd.,
Taiwan).

16S rRNA amplicon preparation and Illumina sequencing
The third and fourth hypervariable regions (V3 and V4) of
the 16S rRNA gene were amplified using a universal pri-
mer set. The forward primer In-341F (5′- TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAG-3′) and the
reverse primer In-806R (5′- GTCTCGTGGGCTCGGA
GATGTGTATAAGAGACAG-3′) were ligated with Illu-
mina overhang adapters and sample-specific ten-
nucleotide barcodes. Each DNA sample was PCR-
amplified (Taq DNA Polymerase 2x Master Mix RED,
Ampliqon, Denmark), with three replicates, under the fol-
lowing running conditions: initial denaturation at 95 °C
for 3min; 24 cycles of 30 s min at 95 °C, 30 s at 56 °C, 30 s
at 72 °C; and a final elongation step for 10min at 72 °C.
The success of all amplicons (PCR products) were exam-
ined using 2.0% agarose gel electrophoresis. Three ampli-
cons from each sample were pooled, isolated from the gel
and purified by NucleoSpin Gel and PCR Clean-up
(Macherey-Nagel, Germany). The concentration of the
cleaned amplicons was qualified using a Nanodrop spec-
trophotometer (J&H Technology Co., Ltd., Taiwan). The
amplicons were sent to the High Throughput Genomics
Core, Biodiversity Research Center, Academia Sinica and
processed according to the Illumina standard protocol of
16S metagenomic sequencing library preparation, and se-
quenced on a MiSeq platform. The Illumina fastq files
were submitted to the NCBI SRA under accession number
PRJNA629058.

Amplicon sequencing data analyses
The Illumina fastq files were de-multiplexed, quality fil-
tered, and analyzed using MOTHUR [68]. OTUs (Oper-
ational Taxonomic Units) were clustered using UPARSE
[25] with a threshold of 97% pair-wise nucleotide se-
quence identity, and the cluster centroid for each OTU
was chosen as the OTU representative sequence. OTU
representative sequences were classified taxonomically
using MOTHUR based on the SILVA reference data-
base, with k-nearest neighbor consensus and Wang
method, using 80% confidence as the threshold for
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taxonomic assignment. OTUs were determined to the
genus level for these analyses. OTUs clustered at 97% that
could not be assigned to a genus were assigned to a family,
order, or class, and were included in the analyses. The mi-
crobial members were classified as: high-abundance (aver-
age sequencing reads more than 1% of the total
sequencing reads across all time-series samples), low-
abundance (average sequencing reads ranged from 0.1 to
1%), rare (average sequencing reads lower than 0.1%), core
(present in all time-series samples), or non-core (present
only in certain time-series samples). For alpha diversity,
non-parametric Shannon’s diversity index, Inverse Simp-
son’s diversity index, and Chao richness were calculated
using MOTHUR [68]. To increase the statistical power for
the analysis of alpha diversity, we combined the time
points into the following: days − 1 to 0 (6 samples), days
1–2 (6), days 3–5 (9), and days 6–14 (9). The beta diver-
sity was illustrated using 2-dimensional non-metric multi-
dimensional scaling (NMDS) plots of 3-dimensional data
and calculated in R (vegan package [64];). Both alpha and
beta diversities were performed at the genus level.

Parameters for inferring reliable microbial interaction
networks
In MetaMIS, using generalized Lotka Volterra equations,
each microbial interaction network was inferred based
on 177,147 (311; three fecal samples and 11 time points
per group) simulations. Positive or negative interactions
between two nodes (i.e., OTUs at the genus level) with a
permutation cutoff > 70% (124,003/177147) were consid-
ered reliable positive or negative interactions.

Topological inferences from the microbial interaction
network
Gephi was used, with each node representing an OTU
(at the genus level) and each edge representing the inter-
action between two OTUs. The key OTUs that may play
important roles in an interaction network were deter-
mined based on betweenness centrality, closeness cen-
trality, and degree, and were positioned at the center of
the network. Degree centrality measures the number of
edges connecting an OTU with other OTU in the net-
work [50]. As the number of edges connecting an OTU
with other OTU increases, the degree centrality of the
OTU increases. Degree is indicated by node color; a red-
der node corresponds to a higher value of degree. Be-
tweenness centrality measures the number of times an
OTU serves as a bridge along the shortest path between
two other OTU. As the frequency of an OTU serves as a
bridge increases, the betweenness centrality of the OTU
increases [1]. Betweenness centrality is indicated by node
size; a larger node corresponds to a higher value of be-
tweenness centrality. Closeness centrality measures the
sum of the length of the shortest path between an OTU

and other OTU in the network [50]. As the closeness
centrality of an OTU increases, the OTU will be posi-
tioned closer to the center of the network, thus closer to
other OTU [1]. Closeness centrality is indicated by text
size; larger text corresponds to a higher value of close-
ness centrality. The strength of the interaction between
two nodes is indicated by color; the redder the edge, the
more positive the interaction between its two corre-
sponding nodes, and the bluer the edge, the more nega-
tive the interaction between its two nodes.
A rank was assigned to each OTU in the SNI and

Sham groups based on the centrality score (degree,
closeness and betweenness). For example, the higher the
degree centrality score of an OTU, the higher the rank
of the OTU based on degree centrality. Total rank is the
sum of rank based on degree, closeness and betweenness
centrality. A final rank was assigned to each OTU based
on the total rank. The OTU with the highest final rank
will be the key microbe.

Statistical analyses
DESeq2 was used to analyze the differential relative abun-
dance of microbes between the SNI and Sham groups
(based on Benjamini-Hochberg adjusted p-value [55];). A
permutation two sample t-test was used to analyze alpha-
diversity. For beta-diversity, PERMANOVA (permuta-
tional multivariate analysis of variance) was used to
analyze the microbiome data. The Shapiro–Wilk test was
used to determine the normality of the proportion of posi-
tive and negative interactions in the SNI and Sham
groups. The dataset of the relative positive and negative
interactions in the SNI and Sham groups was not nor-
mally distributed. Hence, a Wilcoxon rank sum test was
used to determine the difference in the proportions of
positive or negative interactions between the SNI and
Sham groups. To confirm the final rank assigned to each
OTU, multiple linear regression analyses were conducted
to examine the correlation between the final rank of OTU
and the rank of centrality (degree, closeness, and betwee-
ness). Statistical analyses were conducted using R [66]. p
values < 0.05 were considered significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-020-01981-7.

Additional file 1: Supplemental Figure 1. Assessment of sufficient
sequencing depth by rarefaction analyses. Individual rarefaction curves
for each time-series sample from the Sham (blue) or SNI (red) group.
Supplemental Figure 2: Multiple linear regression analyses for the final
ranks of microbes and centrality. A) Sham group (p value < 0.001; R2 =
0.9167), B) SNI group (p value < 0.001; R2 = 0.8877). Supplemental Fig-
ure 3: Simplified microbial interaction networks that highlight the posi-
tive and negative interactions among key microbes or probiotics within
the networks. A) Microbial interaction network in the Sham group with
Oscillospira (26) at the center; B) Staphylococcus (53) in the SNI group; C)
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Lactobacillus (17) in the Sham group; D) Lactobacillus (17) in the SNI
group; E) Bifidobacterium (48) in the Sham group; F) Bifidobacterium (48)
in the SNI group. Supplemental Table 1. Differential relative abundance
between the SNI group and Sham group (n = 6) for each day at the
genus level using DESeq2. pvalue = the average of the normalized counts,
log2FoldChange = log2 fold change between the groups, lfcSE = standard
error of the log2FoldChange estimate, stat = Wald statistic, pvalue = Wald
test p-value, padj = Benjamini-Hochberg adjusted p-value. Supplemental
Table 2.1. The ranks and values of each genus in the Sham group based
on betweenness centrality, closeness centrality, and degree centrality.
Supplemental Table 2.2. The ranks and values of each genus in the
SNI group based on betweenness centrality, closeness centrality, and de-
gree centrality.
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