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Impact of long-term industrial
contamination on the bacterial
communities in urban river sediments
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Abstract

Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected
the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments.
However, most current research about microorganism in urban aquatic environments has focused on indicator
bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms.
To deeply understand the impact of industrial contamination on microbial community, we study the bacterial
community structure and diversity in river sediments under the influence of different types of industrial pollution by
Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial
community structure through co-occurrence networks.

Results: The overall community composition and abundance of individual bacterial groups differed between
samples. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments
was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most
important driving factors that determined the bacterial community in urban river sediments (P < 0.01). According to
PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth
noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most
abundant in the same location. The non-random assembly patterns of bacterial composition in different types of
industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting
from different industrial pollutants may play an important role in determining their co-occurrence patterns of these
bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively
abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.

Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution
and taxa collectively affect the structure of the bacterial community in urban river sediments.
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Background
Urban rivers are a vitally important foundation for
reclaimed water utilization and the development of urban
environments [1]. However, rivers flowing through cities
often receive treated and untreated urban wastewater [2].
Among them, industrial wastewater has become one of
the important sources of urban river aquatic environment
pollution [3]. Exceeding a certain content of organic and
inorganic contaminants in industrial wastewater will not
only have negative consequences for aquatic ecosystems
[4–6] but also pose significant health risks for water users
[2]. The discharge of improperly treated wastewater into
rivers or reservoirs used for agricultural irrigation may
also have indirect adverse impacts on human health [7]. In
addition, refractory organics and heavy metals released
from industrial wastewater can cause long-term problems.
As an important part of the river system, sediments

are complex habitats densely settled by various microor-
ganisms [3]. Microorganisms are considered to be the
most diverse and abundant biogroup in the world,
regulating global biogeochemical cycles and affecting the
functions of almost all ecosystems [8–10]. When differ-
ent types of industrial wastewater are continuously
discharged into the water environment, contaminants in
the water can be diluted or purified. Conversely, con-
taminants in sediments can exist for longer periods of
time [11]. Meanwhile, microbial communities in freshwater
sediments are highly sensitive to changes in physicochemi-
cal status [12]. This inevitably affects the microbial commu-
nity and its function in the sediments [13]. To adapt to
different survival environments, microorganisms usually
form a specific community structure to address various
adverse effects [14]. Hence, analysis of the microbial
communities in polluted river sediments can better identify
potential biological indicator species as well as biomarker
communities that respond to specific pollutants [15].
Many previous studies have analyzed the diversity and

composition of microbial communities in rivers and deter-
mined the microbial indicators under local environmental
impacts. For example, different bacterial indicators in river
sediments under different environmental conditions were
determined by linear discriminant analysis effect size
(LEfSe) analysis [16, 17]. In addition, indicator species ana-
lysis methods were used to determine bacterial indicators
in rivers under different land use types and human activity
gradients [18]. However, most of these studies focused only
on the interaction between river microorganisms and envir-
onmental pressure and ignored the interactions among mi-
croorganisms. In fact, microbe-microbe interactions have a
crucial impact on community assembly and ecosystem
function [19, 20]. In addition, the dynamics and compos-
ition of microbial communities are also greatly influenced
by abiotic environmental factors [21, 22]. Therefore,
understanding the interactions between microorganisms

can provide new insights for further studying the structure
of microbial communities in sediments under different
environmental conditions.
Microbial co-occurrence networks can not only analyze

microbe-microbe interactions and keystone species in the
ecosystem but also explain potential intra or interspecific
interactions in the water environment [23]. At present,
co-occurrence networks have been applied to study com-
plex ecosystems, such as marine bacterioplankton [24]
and soil bacterial [25] or fungal communities [26]. Co-
occurrence networks have intrinsic power and are useful
in revealing information about community organizations,
interactions among members, keystone species and their
responses to different environmental conditions [27]. At
the same time, the application of functional prediction
technology can provide a glimpse of the overview of the
functional spectrum of the microbiome, making the study
of bacterial communities more detailed [28].
In fact, despite our advances in freshwater microbial

ecology, most microbial research in urban aquatic envi-
ronments has focused on indicator bacteria associated
with feces and organic pollution [29–31]. Research on
the effects of different types of industrial pollution on
microorganisms in the aquatic environment of urban
rivers is even more limited. Here, we study the bacterial
community structure and diversity in river sediments
under the influence of different types of industrial pollu-
tion by Illumina MiSeq high-throughput sequencing
technology and conduct a more detailed analysis of
microbial community structure through co-occurrence
networks. We hypothesized that the sediment bacterial
community is influenced by the river environment, in-
cluding nutritional factors and heavy metals. Industrial
pollution influences the bacterial community structure
in river sediment by changing the river environment.
Our specific goals are (1) to explore the causes for the
differences in the composition of bacterial communities
in river sediments affected by different types of industrial
pollution; (2) to explore the relationship between bacter-
ial community function and habitat in river sediments
under different industrial pollution conditions.

Results
Physicochemical characteristics of sediment samples
Table S1 shows the 12 physicochemical properties of
different types of industrial contaminated surface water
and sediments from the four sample sites (Fig. 1). The
temperature and pH values of all samples were between
21.1 ~ 22.7 °C and 7.19 ~ 10.01, respectively. The TN
(total nitrogen), TP (total phosphorus), and TOC (total
organic carbon) contents of GGS (steel plant) were
higher than those of other samples (Table S1). Addition-
ally, the heavy metal concentrations in the four sites
were compared. The results showed that Cu and Zn
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levels in GGS were the highest (Table S1). The highest
contents of Pb and Cr were observed in ZMS (lighting
factory), and the highest content of Cd was observed in
FZS (Table S1). Based on the Chinese Soil Environmen-
tal Quality Standard (GB15618–1995), the concentration
of heavy metals is divided into five classes (I, II, III, IV,
V), corresponding to clean, relatively clean, normal,
polluted, and moderately to heavily polluted, respectively
[32]. The Cd concentration reached the class IV stand-
ard in ZMS and SPS and the class V standard in FZS
(Table S2).

Diversity and richness analysis of bacterial communities
In this work, we analyzed microbial community diversity
and phylogenetic structure in samples from different
types of industrially polluted sediments by Illumina
MiSeq high-throughput sequencing. After trimming,
screening, and removing chimeras and single pieces,
505,911 valid 16S rRNA sequences were obtained.
Among them, at least 31,412 valid sequences were ob-
tained for each sample, with an average length of 417 bp.
OTUs (operational taxonomic units) were grouped at
the 97% cutoff, and diversity indexes and richness
estimates were calculated for each sediment sample
(Table S3). The Chao and ACE indexes of different
sediment samples were compared, and the results were
consistent with the above results (Fig. 2 (a); Table S3).

Simpson and Shannon index analysis results showed
that FZS and ZMS had the highest diversity, followed by
SPS, whereas GGS displayed significantly lower diversity
(Table S3; Fig. 2 (b)). All rarefaction curves approached
saturation, indicating sufficient sequencing depth (Fig. 2
(c)). Similarly, the coverage of each sample was higher
than 0.99 (Table S3), which indicates that the sequen-
cing depth was sufficient and some rare species were
included.

Composition of bacterial communities
The overall characteristics of bacterial communities in
different types of industrially polluted sediment samples
were observed by principal coordinate analysis (PCoA)
(Fig. 3 (a)). PC1 and PC2 accounted for 45.18 and
42.88%, respectively. In general, spatially adjacent sam-
ples were more closely distributed. Therefore, we found
that SPS and ZMS samples had similar features. ANO-
SIM analysis (analysis of similarities) confirmed signifi-
cant differences in bacterial community structure in
different types of industrially polluted sediment samples
(R = 1, p = 0.001) (Table S4).
A total of 16 major bacterial phyla were detected in

sediment samples collected at different locations. Among
them, Proteobacteria, Actinobacteria, Chloroflexi, Acido-
bacteria, Firmicutes and Bacteroidetes together
accounted for 77.62 to 94.49% of OTUs in all samples,

Fig. 1 Location of sampling sites in Qingliu River, Anhui, China
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and their relative abundance in each sample was higher
than 1% (Fig. 3 (b)). These dominant bacterial phyla
exhibited significant differences in different types of in-
dustrially polluted sediment (Fig. 3 (c)). Further analysis
revealed that there was no significant difference in the
relative abundance of the dominant bacterial phyla in
both SPS and ZMS sediments (Fig. S1). Proteobacteria
had the highest average relative abundance in sediment
samples from SPS and ZMS, accounting for 45.22 and
45.04%, respectively. The average relative abundance of
Firmicutes was highest in GGS (26.59%), while the
phylum with the highest average relative abundance in
FZS was Actinobacteria (28.41%).
To better explain the structure of the microbial commu-

nity in different types of industrial polluted sediments, the
relative abundance and classification of OTUs were ana-
lyzed at the family level (Fig. 3 (d)). It is worth noting that
some species had a large proportion in some samples and
were the dominant bacteria, while in other samples, its
proportion was small, or even nonexistent. Family Propio-
nibacteriaceae (9.51%) and family Synergistaceae (8.96%)
were the dominant family in GGS samples. However, they
were almost undetectable in the other three groups of
samples. In FZS samples to norank_c_Acidobacteria

(13.81%) are the most common, other dominant families
including norank_o_JG30 KF-CM45 (4.04%), norank_
CKD4–96 (3.81%) and family Nocardioidaceae (3.77%).
Among them, the family Nocardioidaceae was found to be
much more abundant in the FZS samples than in the
other samples. The most abundant families in SPS and
ZMS were family Rhodocyclaceae (9.99%) and family
Xanthomonadales_Incertae_Sedis (6.99%).

Significant differences in microbial communities
Biomarker analysis with linear discriminant analysis
(LDA) effect size (LEfSe) was used to identify species with
significant abundance differences in different types of in-
dustrially polluted sediment samples. As showed in Fig. 4,
176 bacterial clades present statistically significant differ-
ences with a LDA threshold of 3.5 (Fig. S2). The degree of
enrichment was greatest in FZS for most bacteria, and a
total of 54 clades showed an abundance advantage. In
contrast, the degree of enrichment was smallest in the SPS
samples, with only 30 clades. It is worth noting that the
family Rhodocyclaceae (LDA = 4.92) and genus Dechloro-
monas (LDA= 4.91) in SPS not only have high relative
abundance but also have significant effects on differences
among groups. In contrast, although the relative

Fig. 2 Alpha diversity of sediment samples from different types of industrial pollutions. (a) Richness, indicated by Ace, Ace species richness
estimator: higher values represent higher diversity. (b) Diversity, indicated by Shannon, the Shannon index: higher values represent higher
diversity. * P < 0.05, ** P < 0.01, *** P < 0.001. (c) Rarefaction curves of OTUs clustered at 97% sequence identity across the twelve samples
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abundance of the family Sphingomonadaceae (LDA=
4.51) and genus Sphingomonas (LDA= 4.51) in FZS was
low, they also had significant effects on differences among
groups.

Environmental factor analysis
The correlation between environmental parameters and
bacterial community composition was determined by
RDA (redundancy analysis) (Fig. 5). TN, TP, TOC, pH,
Cu, Zn and Cd were environmental variables that had a
significant effect on the relationship between the bacter-
ial community and the environment (all P < 0.01).
Among them, Cu and Zn were positively correlated with
samples from GGS, and Cd was also positively correlated
with the FZS samples. Moreover, Firmicutes was posi-
tively correlated with TN, TP, TOC, Cu and Zn. pH and
Cd were also positively correlated with Actinobacteria
and Acidobacteria. However, Proteobacteria and Chloro-
flexi were significantly negatively correlated with TN,
TP, and TOC.

Co-occurrence network analysis
Considering the non-random aggregation pattern of
microbial communities in river sediments under differ-
ent types of industrial pollution, a network interface was

established to better show the topological and taxonomic
characteristics of microbial co-occurrence patterns
(Fig. 6). According to the analysis results, 4196 edges
were captured among 257 nodes that described signifi-
cant correlations between species (ρ > 0.7, P < 0.05). At
the same time, significant topological characteristics
were derived based on calculations to determine the
complex patterns of interrelationships among nodes
[33]. The average path length (APL) was 2.825 edges,
and the diameter was 6 edges. The clustering coefficient
(CC) was 0.641, and the modularity index (MD) was
0.827, where MD > 0.4 indicates that there was a modu-
lar structure in the network [34].
The nodes in the network were divided into 6 bacterial

phyla (Fig. 6 (a)). Among them, Proteobacteria, Actino-
bacteria, and Chloroflexi accounted for 63.2% of all
nodes, and they were also dominant bacterial phyla in
the community. When the node distribution was modu-
larized, all nodes were mainly divided into six modules
(Fig. 6 (b)). Each module consisted of a set of OTU
nodes, and the interconnections among these nodes
were more frequent than the nodes in other modules.
The OTUs in module I had a higher relative abundance
in FZS, and the OTUs in module II and module VI had
a higher relative abundance in GGS. Module III and

Fig. 3 Principled coordinate analysis (PCoA) for the four groups of different industrial polluted sediment communities at the OTU level (a).
Community composition of bacteria in the phylum level (b) and the family level (d) in sediment samples. (c) Significantly different relative
abundance of dominant bacteria in four groups of different industrial polluted sediments. One-way analysis of variance (ANOVA) was used to
evaluate the importance of comparisons between indicated groups. * P < 0.05, ** P < 0.01, *** P < 0.001
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Fig. 4 (See legend on next page.)
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module V had a higher relative abundance in ZMS, and
module IV dominated in SPS. The top five keystone
genera with the highest number of connections were
Gaiella, Denitratisoma, Anaeromyxobacter, Candidatus_
Microthrix, and unclassified_p__Chloroflexi, and the
number of related genera was not less than sixty. In
addition, the betweenness centrality values of the genera
Denitratisoma, Anaeromyxobacter, and Candidatus_
Microthrix were all less than 200 (their closeness cen-
trality range from 0.379 to 0.382). This represents a high
degree and low betweenness centrality values, indicating
that they can be considered central species [20, 35].

PICRUSt functional predictive analysis
PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states) analysis was con-
ducted to predict the metabolic functions of bacterial
communities. The results indicated that the major

functional gene families were related to metabolism,
genetic information processing, environmental informa-
tion processing and cellular processes (Fig. 7(a)). Among
them, the relative abundance of metabolism was the
highest in all samples, followed by genetic information
processing. Their average proportions in different groups
were 68.94 and 10.96%, respectively. At KEGG (Kyoto
Encyclopedia of Genes and Genomes) level 2, a large
number of sequences in each sediment sample were
allocated to carbohydrate metabolism and amino acid
metabolism (Fig. 7 (a)). In addition, rivers are the
primary recipient of pollutants and xenobiotics input
from the watershed, most aquatic organisms, as well as
bacteria, are exposed to these xenobiotics [36]. There-
fore, we focused on the functional genes of xenobiotics
biodegradation and metabolism. In this category, FZS
had the highest average relative abundance (Fig. 7(a)). At
KEGG level 3, 15 individual KEGG pathways from

(See figure on previous page.)
Fig. 4 Cladogram showing the phylogenetic distribution of the bacterial lineages in river sediments under different industrial pollution. The
phylum, class, order, family, and genus levels are listed in order from the inside to the outside of the cladogram, used to determine the most
likely to explain the difference between taxa groups. Different-colored nodes correspond to different sample groups, which represent taxa with
significant enrichment in the corresponding group and significant influence on intergroup difference. Yellow circles stand for taxa with no
significant differences in the sediment

Fig. 5 Redundancy analysis (RDA) of bacterial community composition in sediments and environmental factors from different types of industrial
polluted sediments. (note that the significant environmental factors identified by the Monte-Carlo test are marked with an asterisk. An *
represents significant correlations at P < 0.01)
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xenobiotics biodegradation and metabolism were chosen
(Fig. 7 (b)), and the content of each pathway in FZS was
higher than the other three groups. Among them, the
average relative abundance of benzoate degradation was
the highest, followed by aminobenzoate degradation.

Discussion
Bacteria are important for ensuring and maintaining the
environmental and ecological processes of river ecosystems
[37]. Here, the bacterial communities in river sediments
under different types of industrial pollution were analyzed
by Illumina high-throughput sequencing technology. Over-
all, the sediment bacterial communities were dominated by
Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria,
Firmicutes and Bacteroidetes (Fig. 3 (b)). Wang et al. (2016)
studied the community structure of aquatic bacteria in
urban rivers and obtained similar results [38]. Su et al.
(2018) investigated the bacterial communities in coastal
sediments and found that Proteobacteria, Firmicutes,
Chloroflexi, Acidobacteria, Bacteroidetes, Actinobacteria,
Nitrospirae, Gemmatimonadetes and Planctomycetes pre-
dominated [39]. These results showed that these sediment
samples shared the characteristic profile of high bacterial
rank commonly found in other aquatic ecosystems.
Although there were similarly high taxonomic level

characteristics between different sampling sites, the
relative abundance was different among different sites
(Fig. 3 (c)). According to the data from this study,
Proteobacteria were the most abundant in SPS (food
factory) and ZMS (lighting factory) and were mainly
composed of Betaproteobacteria and Gammaproteobacteria

(Fig. 4). Most Proteobacteria groups play very important
roles in the decomposition of organic matter and circula-
tion [40]. Further research found that the family Rhodocy-
claceae (class Betaproteobacteria) not only dominates in
SPS but also had significant differences in abundance at
different sites (Fig. 4). This strain has extensive metabolic
capabilities and can degrade multiple carbon sources, such
as many aromatic compounds [41]. Therefore, some
members of the family are active in the degradation of
recalcitrant chemicals [42]. For example, the genus Dechlor-
omonas is capable of degrading a variety of complex
organic pollutants (Fig. 4) [43]. Therefore, the dominance
of the family Rhodocyclaceae in SPS may indicate that the
area was rich in organic wastewater compounds.
The most dominant phylum in FZS (textile mill) was

Actinobacteria. Actinobacteria have been confirmed to
play a pivotal role in the carbon cycle of freshwater eco-
systems [44]. In fact, the data from this study showed
that TOC was the lowest in FZS, and nutrition in this
sample was relatively poor (Table S1). The results were
consistent with previous studies, suggesting that Actino-
bacteria are indeed active in oligotrophic environments
[45]. In addition, the family Sphingomonadaceae was
significantly enriched in FZS, and there were significant
differences among different sites (Fig. 4). The family
Sphingomonadaceae is usually found in habitats contam-
inated by a high proportion of recalcitrant (poly) aro-
matic compounds of natural or anthropogenic origin
[46–48]. Moreover, the genus Sphingomonas in Sphingo-
monadaceae can degrade various recalcitrant com-
pounds (Fig. 4) [49]. Thus, the members of this genus

Fig. 6 Co-occurrence networks of bacterial communities in different types of industrial polluted sediments based on correlation analysis. The
nodes in network (a) are colored by phylum. The nodes in network (b) are colored by modularity class. The connections indicate strong
(spearman’s ρ≥ 0.7) and significant (P < 0.05) correlations. The size of each node is proportional to the relative abundance of specific genus
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Fig. 7 The comparison of bacterial community functions predicted by PICRUSt at level 2 and level 3 among different groups. (a) The predictive
functions at level 2 is related to metabolism, genetic information processing, environmental information processing and cellular processes. (b)
The predictive functions at level 3 is related to xenobiotics degradation and metabolism
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can grow vigorously in polluted environments [50]. It is
worth noting that the textile industry produces a large
amount of wastewater, which contains a variety of
chemical compounds, such as azo dyes, heavy metals,
and surfactants [51]. Therefore, the relative advantages
of the family Sphingomonadaceae in FZS indicated that
they are well adapted to the environment in FZS and
possibly utilize a wide variety of nutrients to resist or
withstand environmental disturbances.
Firmicutes are well known for having many members

that are able to degrade very recalcitrant organic com-
pounds [43]. Few previous studies also found a domin-
ance of Firmicutes in freshwater sediments [52].
However, the abundance of Firmicutes was highest in
GGS (steel plant). The data from this study indicated
that the content of TN, TP and TOC in GGS was the
highest, especially the TOC, which was 2 to 3 times that
of the other three groups of samples (Table. S1). Mean-
while, RDA showed that the abundance of Firmicutes
was positively correlated with TN, TP, and TOC (Fig. 5).
This is the same result as previous studies, suggesting
that as copiotrophs or fast-growing organisms, Firmi-
cutes can exist in carbon-rich environments that meet
their high energy requirements and maintain their
growth rates [53]. Moreover, Clostridiales are known as
metal-coping bacteria and thrive in environments rich in
metal contaminants such as GGS [54] (Fig. 4; Table S1).
Therefore, the enrichment of Clostridiales may also be
one of the reasons for the largest proportion of Firmi-
cutes in GGS. These results indicated that the environ-
mental conditions may select different bacterial species,
which leads to different spatial distributions of bacterial
populations.
Multiple studies have shown that environmental fac-

tors, such as temperature [38], nutrients [55], pH [56],
water turbidity [57] and sediment particle size [58], often
affect the composition and structure of bacterial com-
munities. On the one hand, RDA showed that TN, TP
and TOC were significantly related to the composition
of bacterial communities in different types of industrial
polluted sediments (P < 0.01) (Fig. 5). TN, TP, and TOC
are important factors for structuring bacterial communi-
ties in river sediments, which is consistent with other
research results. In reality, microorganisms may prefer
to use bioavailable forms of phosphorus, nitrogen, and
carbon (e.g., PO4

3−, NO2
−, NO3

−, NH4
+, etc.) and the

forms may be more closely related to bacterial commu-
nity composition [45, 59, 60]. Therefore, the relationship
between microbial communities and detailed environ-
mental factors needs to be studied in greater depth. On
the other hand, the heavy metals Cu, Zn, and Cd were
significantly correlated with the distribution of bacterial
communities in different types of industrially polluted
sediments (P < 0.01) (Fig. 5). It has been documented

that high concentrations of heavy metals can significantly
reduce bacterial biomass in sediments [61]. This was
consistent with our observations that the species rich-
ness and diversity in the GGS samples, which had the
highest heavy metal concentrations, were the lowest
(Fig. 2 (a, b); Table S1).
In summary, the differences in bacterial community

composition in different types of industrially polluted
sediments reflect the tolerance of OTUs to specific envi-
ronments. The above abiotic factors, such as TN and
TP, may directly change the composition of bacterial
communities by affecting the growth of certain bacteria
in the sediment. That is, changes in the physicochemical
properties of river sediments caused by the input of dif-
ferent types of industrial wastewater drive the formation
of different bacterial communities. Meanwhile, this also
means that microbial communities in urban river sedi-
ments have potentially evolved phylogenetic versatilities
under the long-term effects of industrial pollution.
The interrelationships among different microbial com-

munities play a pivotal role in maintaining the structure,
function and stability of microbial ecosystems [14]. In
the network analysis of this study, most nodes belonged
to three dominant phyla: Proteobacteria, Actinobacteria
and Chloroflexi (Fig. 6 (a)). The genera Gaiella, Denitra-
tisoma, Anaeromyxobacter, Candidatus_Microthrix, and
unclassified_p__Chloroflexi were the top five with the
highest number of connections. This suggested that the
other genera respond more strongly to the metabolites
produced by these five genera [62]. At the same time,
because these bacterial taxa have highly connected
nodes, they are recognized as keystone taxa here [14,
63]. Compared with other taxa in the network, keystone
taxa play an important role in maintaining the network
structure [22]. It is speculated that the disappearance of
keystone taxa may lead to disintegration of the network
[44]. Keystone taxa are by the definition the taxa
essential for ensuring and maintaining stability, so their
existence is by definition important for the stability of
ecosystem structure and function. Additionally, the aver-
age relative abundances of the genera Gaiella, Denitrati-
soma, Anaeromyxobacter, Candidatus_Microthrix, and
unclassified_p__Chloroflexi were all low (0.24% ~ 0.65%),
suggesting the significance of rare genera in bacterial
communities. Currently, rare genera are being increas-
ingly recognized as crucial components of communities
in biochemical processes and community assemblies
[63]. Although the abundance of such genera may not
have been high, more attention should be paid to them
as key nodes in the microbial community [14].
In addition, the genera Denitratisoma, Anaeromyxo-

bacter, and Candidatus_Microthrix were considered
central species due to their high degree (> 60) and low
betweenness centrality values (< 200). The genus
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Denitratisoma contains denitrifying bacteria that con-
tribute to the removal of nitrogen [64]. The genus Anae-
romyxobacter is metal-reducing bacteria, and members
of the bacteria can affect the mobility of metal contami-
nants [65, 66]. Moreover, previous studies have shown
that the genus Candidatus_Microthrix helps in the re-
moval of total nitrogen [67]. Therefore, these keystone
taxa may play a pivotal role in ecological function
processes.
Due to the modularity, the entire network was mainly di-

vided into six modules (Fig. 6 (b)). Modularity may reflect
habitat heterogeneity and divergent selection regimes [68].
Meanwhile, the habitat preference of microorganisms may
also help determine their co-occurrence patterns [19].
Therefore, it can be reasonably found that microorganisms
in different types of industrial polluted sediments tend to
form distinct modules. The main taxa in module I may be
bacteria involved in the biogeochemical C- and N-cycles.
For instance, the genus Nocardioides can utilize multiple
organic compounds as carbon source [69]. The genus
Nitrospira consists of chemically autotrophic nitrite-
oxidizing bacteria [60]. The genus Streptomyces has been
shown to participate in the nitrogen cycle [70]. Other bac-
teria in module I included Microbacteriaceae, Rhodospiril-
laceae, Bradyrhizobiaceae and Streptomycetaceae, which
are also involved in C and N cycling [71]. Apparently, these
bacteria had the highest abundance in FZS, indicating that
carbon and nitrogen cycling associated with microorgan-
isms occurs frequently in this area. Sulfate-reducing
bacteria (SRB) in module II, including the genera Clostrid-
ium_sensu_stricto_1, Defluviicoccus, and Desulfobulbus,
were significantly enriched in GGS [72]. SRB is a group of
anaerobic microorganisms that can reduce sulfate to
hydrogen sulfide, and hydrogen sulfide can quickly react
with heavy metals to form a stable precipitate [73, 74].
Therefore, SRB plays a major role in repairing the environ-
ment polluted by heavy metals (Fe, Cu, Pb, Zn, etc.) [72].
Therefore, heavy metals in GGS may be one of the import-
ant factors driving these bacteria. In conclusion, the non-
random assembly pattern of these bacteria indicates that
the complexity of bacterial community structure and func-
tional processes in river sediments under different types of
industrial pollution seems to be dominated by environ-
mental filtering and function-driven.
According to PICRUSt analysis, the overall functional

profiles of bacterial communities in different river sedi-
ment samples were similar. Carbohydrate metabolism
and amino acid metabolism were the dominant meta-
bolic genes in the bacterial community (Fig. 7(a)). As
core resources metabolism pathways, they were potential
drivers of microbial community structure and function
of microbial communities in rivers [36]. It is worth not-
ing that the xenobiotics biodegradation and metabolism
that we focus on had more advantage in FZS (Fig. 7(a)).

The possible reasons were FZS accepted more xeno-
biotic compounds from industrial wastewater, and these
compounds were used by bacteria as the sources of
carbon, nitrogen, or energy. Some previous reports
indicated that there was a correlation between the abun-
dance of xenobiotic degradation genes and the rate of
xenobiotic biodegradation [75, 76]. Therefore, biodeg-
radation genes could be proposed as indicators of the
presence of xenobiotics and their metabolites [45, 77].
Furthermore, FZS surpassed the other three groups in
the functional profiles related to the degradation of 15
chemical pollutants (Fig. 7(b)). For instance, benzoate
degradation and aminobenzoate degradation. Meanwhile,
the enrichment of many organic pollutant-degrading bac-
teria was found in FZS, such as genera Sphingomonas,
Mycobacterium, Novosphingobium, and Bacillus (Fig. 4)
[78–80]. The predicted higher enrichment of chemical
pollutant degradation pathways means that the pollution
was more severe in FZS, while such functional response of
bacterial community might accelerate the bioremediation
of contaminated zone. In general, the PICRUSt algorithm
determined the predicted functions of the microbial
community, providing a general overview of the functional
potential within the community. However, rarefaction of
pooled DNA samples fails to capture the full extent of di-
versity present within the system, which is likely reflected
in the predicted functional profile [81]. Furthermore, this
method is influenced by phylogenetic differences between
environmental samples and sequenced genomes [28].
Therefore, we propose that further studies are needed in
this system that use metagenomic sequencing and marker
gene studies, to fully assess gene categories.
In this study, because the pollutants at each sampling

point have been discharged into the water through pipes
or channels for a long time, the sampling conditions
were restricted. Therefore, we only paid attention to the
impact of long-term discharge of industrial wastewater
on the bacterial community of river sediments, and we
did not cover the research before wastewater discharge.
This may cause some limitations to our research. How-
ever, our findings represent an important step in under-
standing the impact of long-term industrial pollution on
bacterial communities in urban river sediments, and
thus contributes to the increasing knowledge of micro-
bial ecology in the urban river sediments.

Conclusion
This study revealed the composition and structure of
bacterial communities and their co-occurrence patterns in
different types of industrially polluted sediments. The
composition of the dominant bacterial phyla was similar in
each sampling location, but the relative abundance was
different, and there were significant differences among
different locations. Environmental factors, including metals
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(Cu, Zn and Cd) and nutritional factors (TN, TP and
TOC), had significant effects on the composition of bacter-
ial communities in different types of industrially polluted
sediments (all P < 0.01). Although the relative abundance
of highly connected taxa (such as the genera Denitrati-
soma, Anaeromyxobacter and Candidatus_Microthrix) in
the co-occurrence networks was low (0.24% ~ 0.65%), they
may play a pivotal role in maintaining the structure and
function of ecological communities. Non-random co-
occurrence and ecological function-driven modular
patterns occurred in the bacterial communities, provid-
ing a new perspective of microbial assembly in different
types of industrially polluted sediments. Furthermore,
the accumulation of multiple chemical pollutant-
degrading genes at the same location means that the
zone was more polluted, while such functional response
of bacterial community could contribute to the bio-
remediation of polluted river environment. Overall,
these results provide valuable information for ecological
risk assessment and management of urban rivers under
different types of industrial pollution, thereby helping
to monitor and control the level of water environmen-
tal contamination.

Methods
Sites description and sample collection
The sampling sites were located in the Qingliu River
(watershed area of 1318 km2 and mainstream length
of 84 km), which is a typical urban river in Chuzhou
city, China [82]. The river flows through the center of
the city and is surrounded by many industrial areas.
Therefore, a large amount of different types of indus-
trial wastewater is discharged along the river and is
one of the main sources of pollution that causes the
deterioration of the aquatic environment. Sampling
points were from wastewater outlets of different types
of factories near the Qingliu River (Fig. 1), which are
respectively four different types of industrial pollution
sources. The wastewater generated by these pollution
sources is discharged into river water bodies through
pipes. They are steel plant (GGS), lighting factory
(ZMS), food factory (SPS) and textile mill (FZS), re-
spectively. These factories are located on the outskirts
of the city, and there are no other pollution sources
in the surrounding areas.
Sampling was carried out in May 2019. A Peterson

sampler was used to collect surface sediment samples
(< 5 cm deep). Three parallel sediment samples were
randomly obtained at 3 m intervals for each sampling
site. The 4 sampling sites are shown in Fig. 1. The
sediment samples were stored in sterile polyethylene
zipper bags and transferred to the laboratory on ice
within four hours. A portion of the sediment samples

was collected into a 2.5 ml sterile centrifuge tubes
and stored at − 80 °C until DNA extraction was per-
formed. The other portion was immediately subjected
to physio-chemical analysis at 4 °C.

Analysis of physicochemical properties
While collecting the samples, the water temperature (T),
pH and dissolved oxygen (DO) were measured in situ
using a YSI-6600 multiparameter controller (Yellow
Springs Instruments, USA). The ammonia nitrogen
(NH4

+-N), total nitrogen (TP), total phosphorus (TN),
and total organic carbon (TOC) contents were measured
in the laboratory according to standard methods [52].
The content of metal elements copper (Cu), zinc (Zn),
lead (Pb), cadmium (Cd), chromium (Cr) in sediment
samples were determined by using the X7 inductively
coupled plasma mass spectrometer (ICP-MS) of Thermo
Corporation in the collision cell mode [83].

DNA extraction
Base on the manufacturer’s instructions, Total DNA was
extracted from an aliquot of 0.25 g of sediment from
each sample using an MP Biomedicals Fast DNATM
SPIN Kit. The extracted genomic DNA was detected by
1% agarose gel electrophoresis, and the purity and con-
centration were determined by a UV spectrophotometer
(Eppendorf, Germany). The measured DNA sample was
stored at − 20 °C for subsequent use.

PCR amplification and sequencing analysis
The V3-V4 region of the bacterial 16S rRNA gene was
amplified using primers 338 F (5′-ACTCCTACGG
GAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGG
TWTCTAAT-3′). All samples were analyzed in accord-
ance with the formal experimental conditions with three
replicates per sample. The PCR products were mixed
and detected by 2% agarose gel electrophoresis. Then,
based on the sequencing quantity requirements of each
sample, the corresponding proportions were mixed. The
samples were denatured with sodium hydroxide, and a
single-stranded DNA fragment was finally obtained. The
extracted DNA was then transported on ice to Shanghai
Marobbio Biopharmaceutical Technology Co., Ltd. for
sequencing.
Usearch (version 7.1 http://drive5.com/uparse/) was

used to merged the paired-end 16S reads, trimmed
primers and distal bases and removed quality-filtered
sequences and singletons [84]. The RDP classifier
(version 2.2, http://sourceforge.net/projects/rdp-classi
fier) Bayesian algorithm (confidence threshold of 0.7)
was used to obtain the species classification information
corresponding to each OTU, and OTU representative
sequences were classified at a similarity level of 97%
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using the QIIME platform (http:// qiime.org/scripts/as
sign_taxonomy.html) [85].

Statistical analysis
According to the OTU information, mothur (version
v.1.30.1) was used to calculate the alpha diversity index
(Chao 1, ACE, Shannon, Simpson) [86], and curves
were generated with the R language tool [87]. Beta di-
versity analysis was represented by Bray-Curtis distance
matrices generated from the OTU table, and statistical
analysis and mapping was performed with PCoA in R
language [88]. The community structure composition
of different classification levels (such as phylum, genus
and OTU) was obtained by taxonomic analysis. A simi-
larity analysis (ANOSIM) of the Bray-Curtis similarity
matrix of the initial pyrophosphate phosphate content
was performed by the R-language vegan software pack-
age. One-way analysis of variance was performed using
SPSS 19.0 and post-hoc Scheffe test was used for pair-
wise comparisons. The level of significance was set at
0.05. The relationship between microbial community
composition and environmental factors was explained
through the RDA function of the vegan package using
R language [89]. The significantly discriminant taxa in
each group were determined by the linear discriminant
analysis (LDA) effect size pipeline (LEfSe) program at
http://huttenhower.sph.harvard.edu/galaxy/root, which
employs the factorial Kruskal-Wallis rank-sum test to
identify communities or species that have significant
differences in sample partitioning between species [90].
PICRUSt software was used to predict bacterial func-
tion and metabolic pathways [28], and the bioinformat-
ics analysis images were drawn using the Origin
software. Based on the Spearman correlation, the co-
occurrence networks of microbial communities were
determined. Select OTUs with significant and robust
correlations (ρ > 0.7 and P < 0.05). All the robust corre-
lations identified from pairwise comparison of the gen-
era abundance form a correlation network where each
node represents one genus, and each edge stands for a
strong and significant correlation between the nodes.
Gephi (http://gephi.github.io/) was used for network
visualization and modularization analysis. The topo-
logical properties of the network, including degree (the
number of neighbors of a node), average path length
(the average number of steps along the shortest paths
for all possible pairs of network nodes), clustering coef-
ficient (he tendency of neighbors of a node to connect
with each other), betweenness centrality (the number of
shortest paths going through a node) and modularity (a
measure of how well a network is divided into modules)
were determined by gephi [91]. Nodes with high degree
and low betweenness centrality values were recognized
as keystone species in the co-occurrence network [35].
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