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Abstract

Background: Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus
Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of
aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi.
Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and
children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information
about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-
ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap.

Results: The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively.
Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and
35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2,
p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant
difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across
the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single
Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had
insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p= 0.264) than those from the post-harvest groundnut
samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and
low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241,
p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that
genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation
existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming
system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted
pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates.
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Conclusions: These findings provide evidence that genetic differentiation in A. flavus populations is independent of
geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy
of aflatoxin-producing A. flavus.
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Background
Groundnut (Arachis hypogaea L.), is a major legume
grown on approximately 25 million hectares of the semi-
arid tropical and sub-tropical regions of the world
between latitudes 40 °N and 40 °S. The global annual
production is estimated at 36 million tons [1]. Groundnut
is the second most important legume in Uganda after the
common bean (Phaseolus vulgaris) [2]. The consumption
of groundnut in Uganda is in either of the following
forms: roasted seeds, groundnut stew, groundnut paste
and sometimes raw seed cake is used as animal feed.

Despite its importance as a food and cash crop,
groundnut faces production and export constraints from
mycotoxin accumulation that results from contamin-
ation by Aspergillus species favoured by the tropical cli-
mate experienced in Uganda [3]. Mycotoxins are
secondary metabolites produced during fungal metabol-
ism in response to environmental stress. The toxins are
secreted in defence, virulence or cell signalling [4]. These
secondary metabolites are stable compounds that cannot
be degraded by any ordinary cooking temperature or
food processing procedures [5–7]. When these com-
pounds are ingested, they cause problems to both hu-
man and livestock health in the form of acute illness,
chronic illness, instant death or immunosuppression
among others [5]. In most cases, the effects of myco-
toxins are manifested much later after exposure [6].
Human and livestock exposure to mycotoxins in devel-

oping countries result from over-reliance on a single
staple food crop which is normally grown only once a
year [8]. Therefore, this food commodity is kept much
longer under storage in order to prolong its availability
awaiting new harvest in the succeeding year. Since most
storage facilities in developing countries are improvised
structures, a great proportion of the stored crop produce
get contaminated by Aspergillus species, resulting into
changes in taste, colour, odour and nutritional value of
food and feeds [9].
The economic losses due to Aspergillus contamination

may reach 100% when the presence of aflatoxins beyond
acceptable levels results in produce rejection [10]. Acute
aflatoxicosis is often as a result of subject exposure to
high doses of aflatoxins resulting into instant death,
whereas chronic aflatoxicosis is due to exposure to sub-
lethal doses over a long period of time [11]. Chronic
aflatoxicosis results in liver cancer, immune suppression

and teratogenicity among other complications [11]. This
problem is a common occurrence in developing coun-
tries like Uganda where farmers have inadequate food
storage facilities and poor food handling practices [12].
In addition, in developing countries, no strict regulatory
measures exist against high levels of aflatoxins in food
and feedstuffs, leading to frequent episodes of aflatoxico-
sis and often death in humans [13].
The ability of fungal species to produce aflatoxins is

strain-specific and it is controlled by aflatoxin biosyn-
thesis gene cluster, consisting of aflR, aflS, aflP, aflQ,
aflD, aflM and aflO genes [14]. Sequence variability in
this aflatoxin biosynthesis gene cluster has always been
useful in deducing diversity in aflatoxigenic Aspergillus
flavus species [15]. At the moment, no scientific reports
have been published about the genetic diversity of indi-
genous A. flavus population in Uganda. The objective of
the present study was therefore to assess the contamin-
ation rates of groundnut with major Aspergillus species
and to examine the genetic diversity of indigenous A.
flavus isolated from groundnut in six representative dis-
tricts within the agro-ecological zones (AEZs) of Uganda
using InDel markers located within the aflatoxin biosyn-
thesis gene cluster.

Results
The dominant fungal species contaminating groundnut
in Uganda is not well understood due to the complexity
in the underlying causes including geographical and
genotypic factors. Two hundred and forty groundnut
samples were collected from the three AEZs of Uganda
for fungal isolation and characterisation. In total, 231
Aspergillus spp. isolates were identified from the ground-
nut samples collected (Table 1). The isolates comprised
of A. flavus, A. parasiticus and Aspergillus section Nigri.
Typically, more than one Aspergillus species were found
co-existing on 70.0% (168/240) of the total groundnut
samples collected and on 61.0% (73/120) of the post-
harvest groundnut samples. Aspergillus flavus was the
most abundant, both as S- and L-strains, whereas A.
parasiticus was the least abundant species observed
(Table 1). The three Aspergillus species were distributed
throughout the AEZs surveyed with LKB having the
highest abundance of A. flavus and WN with the least
(Table 1). Aspergillus section Nigri was most abundant
in the LVB and least abundant in WN (Table 1).
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Aspergillus parasiticus was least abundant in equal pro-
portions across the three AEZs (Table 1). However, the
abundance and distribution of each species never dif-
fered significantly across AEZs (p = 0.165).
Overall, 34.6% (83/240) of the groundnut samples col-

lected had Aspergillus. The post-harvest groundnut sam-
ples were more contaminated than the pre-harvest
groundnut samples with the contamination frequencies
of 39.2 and 30.0% respectively. Generally, Lake Kyoga
basin mixed-farming system had the highest number of
groundnut samples contaminated with Aspergillus and
WN farming system had the lowest number of ground-
nut samples contaminated with Aspergillus (Table 2). At
the pre-harvest level, LKB had the highest Aspergillus
contamination frequency whereas the WN farming sys-
tem had the lowest (Table 2). The post-harvest contam-
ination frequency was highest in WN farming system
while the LVB farming system had the lowest (Table 2).
Although the contamination proportions (both pre- and
post-harvest) varied in the three AEZs (Table 2), the
Pearson’s Chi square test revealed no significant differ-
ence in Aspergillus contamination among the three
AEZs (χ2 = 6, p = 0.199).
Examination of the aflatoxin production capacity of se-

lected Aspergillus isolates showed that LKB had the
highest incidence of isolates with aflatoxin-producing
potential whereas WN had no single isolate capable of
producing aflatoxins (Table 3). The incidence of afla-
toxin production was higher among Aspergillus isolated
from the pre-harvest groundnut samples of LKB origin
and from the post-harvest groundnut samples of LVB
origin (Table 3). In general, the incidence of aflatoxin
production by Aspergillus isolates from the pre-harvest
groundnut samples was insignificantly higher (χ2 = 2.667,

p = 0.264) than that of Aspergillus isolates from the post-
harvest groundnut samples across AEZs (Table 3).
Out of the 137 Aspergillus section Flavi isolates (A. fla-

vus and A. parasiticus), 96 representative isolates were fin-
gerprinted using 25 InDel-primed PCR markers at 65 loci
of the aflatoxin biosynthesis gene cluster. After the clonal
correction, only 67 out of 96 isolates had unique allele
scores generated from 16 out of the 25 InDel markers and
at 24 loci out of the total 65 loci of the gene cluster geno-
typed. Fingerprint data of these 67 isolates were then used
in the subsequent statistical analyses. Based on the Mantel
tests of correlation between matrices of geographic and
genetic distances, there was no significant isolation by dis-
tance for the entire study area (r = 0.01, p = 0.471) (Fig. 1a).
When each AEZ was examined separately, isolation by
distance between the A. flavus populations was detected
in the LKB, with a weak positive correlation (r = 0.1241,
p = 0.045) (Fig. 1c) between the geographical distance and
genetic distance. Similarly, there was also a weak genetic
divergence of 0.0154 in the LKB due to geographic dis-
tance (Fig. 1c). The rest of the AEZs had insignificant
positive correlations between the geographic distances
and genetic distances (Fig. 1b and d).
The dendrogram generated using UPGMA algo-

rithm revealed two major clusters that corresponded
to the amplification patterns within the aflatoxin bio-
synthesis gene cluster of each isolate displayed in a
capillary electrophoregram. From this electrophore-
gram, isolates with the most amplified portions within
their aflatoxin biosynthesis gene cluster were in clus-
ter I while isolates with the least amplified portions
within the aflatoxin biosynthesis gene cluster were in
cluster II (Fig. 2). The result from total aflatoxins
analysis using an ELISA kit on the presentative

Table 1 Aspergillus species and strains identified by AEZs

Agro-ecological zone A. flavus
(S strain)
n = 88

A. flavus
(L strain)
n = 46

A. parasiticus n = 3 Aspergillus
section Nigri
n = 94

West Nile 10 (11.36%) 2 (4.35%) 1 (33.33%) 18 (19.15%)

L. Victoria basin 36 (40.91%) 14 (30.43%) 1 (33.33%) 46 (48.94%)

L. Kyoga basin 42 (47.73%) 30 (65.22%) 1 (33.33%) 30 (31.91%)

Total
(N = 231)

88 (38.10%) 46 (19.91%) 3 (1.30%) 94 (40.69%)

Table 2 Proportions of groundnut samples contaminated by Aspergillus at pre-and post-harvest

Agro-ecological zone Pre-harvest contamination
(n = 40)

Post-harvest contamination
(n = 40)

Overall contamination
(n = 80)

West Nile 1 (2.50%) 20 (50.00%) 21 (26.25%)

L. Victoria basin 13 (32.50%) 13 (32.50%) 26 (32.50%)

L. Kyoga basin 22 (55.00%) 14 (35.00%) 36 (45.00%)

Total (N = 120) 36 (30.00%) 47 (39.17%) 83 (34.58%)
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isolates picked from each AEZ confirmed that isolates
in cluster I were aflatoxigenic while those in cluster
II were non-aflatoxigenic.
Analysis of molecular variance reflected that variation

within populations and variation between regions (AEZs)
were significant and accounted for genetic variation of
92 and 8% respectively (Table 4). Therefore, most of the

observed genetic differentiation was due to variation
within populations.

Discussion
Considerable achievements have been made in control-
ling aflatoxins contamination of agricultural products
following the discovery that aflatoxins are extremely

Table 3 Aflatoxin production potential of selected Aspergillus section Flavi isolates from three agro-ecological zones at pre- and
post-harvest stages

AEZ Isolate Sample type Sample status Total aflatoxins (ppb) Incidence (%)

Lake Kyoga Basin SS-1468-LKB Pre-harvest Positive 169 83.33%

n = 6 SS-1513-LKB Pre-harvest Positive 364

SS-1607-LKB Pre-harvest Positive 121

SS-1463-LKB Pre-harvest Positive 841

SS-1485-LKB Pre-harvest Positive 1429

SS-1517-LKB Pre-harvest Negative 0 16.67%

n = 6 SS-1546-LKB Post-harvest Positive 0.42 16.67%

LS-1478-LKB Post-harvest Negative 0 83.33%

LS-1603-LKB Post-harvest Negative 0

LS 1605-LKB Post-harvest Negative 0

LS-1554-LKB Post-harvest Negative 0

SS-1473-LKB Post-harvest Negative 0

Lake Victoria Basin SS-1525-LVB Pre-harvest Positive 598 16.67%

n = 6 SS-1453-LVB Pre-harvest Negative 0 83.33%

SS-1524-LVB Pre-harvest Negative 0

SS-1520-LVB Pre-harvest Negative 0

SS-1549-LVB Pre-harvest Negative 0

SS-1458-LVB Pre-harvest Negative 0

n = 6 SS-1629-LVB Post-harvest Positive 9 50.00%

SS-1526-LVB Post-harvest Positive 648

SS-1527-LVB Post-harvest Positive 175

SS-1453-LVB Post-harvest Negative 0 50.00%

SS-1536-LVB Post-harvest Negative 0

SS-1626-LVB Post-harvest Negative 0

West Nile
n = 6

LS-1509-WN Pre-harvest Negative 0 100%

LS-1454-WN Pre-harvest Negative 0

SS-1511-WN Pre-harvest Negative 0

SS-1486-WN Pre-harvest Negative 0

SS-1496-WN Pre-harvest Negative 0

SS-1627-WN Pre-harvest Negative 0

n = 6 SS-1568-WN Post-harvest Negative 0 100%

SS-1536-WN Post-harvest Negative 0

SS-1456-WN Post-harvest Negative 0

SS-1493-WN Post-harvest Negative 0

SS-1457-WN Post-harvest Negative 0

SS-1487-WN Post-harvest Negative 0

N = 36
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toxic secondary metabolites to both humans and live-
stock [16, 17]. This study sought to elucidate the diver-
sity of Aspergillus species contaminating groundnuts
collected at pre- and post-harvest stages from three dif-
ferent agroecologies of Uganda. Due to seasonal varia-
tions in the different agroecologies, it was impossible to
collect all samples from the study areas at the same time.
In addition to sample collection constraints, we identi-
fied Aspergillus species and strains using stereoscopic
microscopy, which is still considered a standard practice
for microbial identification, but were unable to confirm
the species identities using molecular tools.
In this study, Aspergillus section Flavi and Aspergillus

section Nigri were the most abundant Aspergillus species
encountered in groundnut samples. This finding concurs
with that from a study done by Rathod & Naikade [18].
Most of the Aspergillus species in section Nigri are of
great importance in the industrial manufacture of amy-
lases, lipases, citric acid and gluconic acid [19]. However,
they cause food deterioration with subsequent produc-
tion of mycotoxins; ochratoxin A (OTA), ochratoxin B,
fumonisin B2, fumonisin B4, and secalonic acids, A, D, F
as the major natural products toxic to humans and animals
[20]. Ochratoxin A has been reported to be a nephrotoxic
compound causing renal cancer [21]. Groundnut contam-
ination with A. flavus and some species from Aspergillus

section Nigri is also known for lowering the germination
ability of groundnut seeds under storage [22], and the
longer the storage duration, the higher the frequency of
contamination by Aspergillus species [23]. Thus, reduction
in seed quality due to Aspergillus contamination results in
poor seed germination ability, low productivity and hence
food insecurity.
In general, presence of A. flavus as the most abundant

and distributed fungal contaminant of groundnut is con-
sistent with previous reports by Klich [12]; Bhatnagar
et al. [10]; and Cotty & Jaime [24] . Groundnut contamin-
ation by Aspergillus species originates at the pre-harvest
stage as was previously noted by Ligia et al. [25] in their
study. This is because Aspergillus species are well adapted
in the soil as conidia, hyphae and sclerotia, which are in
direct contact with groundnut pods [26, 27]. Other abiotic
factors like drought stress, a common experience in the
LKB mixed farming system could be responsible for high
susceptibility of groundnut at pre-harvest stage [17, 18,
28].
One of the interesting findings from this study was the

lower Aspergillus contamination rates in WN farming
system. This observation could be due to a higher altitude
in WN farming system that is associated with relatively
lower temperatures and relative humidity compared to the
other AEZs. Cropping system and climate could be

Fig. 1 Isolation by distance plots. Genetic distance plotted as a function of geographic distance for the entire study area (p = 0.471, r = 0.01) (a),
the Lake Victoria basin farming system (p = 0.412, r = 0.0141) (b), the Lake Kyoga basin farming system (p = 0.045, r = 0.1241) (c) and the West Nile
farming system (p = 0.474, r = 0.02) (d). The bold line represents the line of best fit to the plotted data and r values represent the correlation
between geographic and genetic distances matrices assessed using the Mantel test
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responsible for Aspergillus species distribution pattern and
abundance within these AEZs that are far apart and with
different climatic conditions as was noted by Horn &
Dorner [29]. No significant statistical difference existed
between pre-harvest and post-harvest contamination
levels of groundnut with Aspergillus species across
AEZs. This could be due to common pre- and post-
harvest handling methods employed as previously noted
by Dube & Maphosa [30].
When A. flavus isolates from the pre- and post-harvest

groundnut samples were tested and incidences for afla-
toxins production compared, no significant difference in
aflatoxin-production ability was observed across AEZs.

Fig. 2 Dendrogram of genetic relationships among 67 Aspergillus isolates. The result from a fingerprint data based on InDel markers used in
genotyping 67 isolates collected from three agro-ecological zones using the UPGMA algorithm and the genetic distances at 1000 replications.
The initials SS and LS represent S and L strains of A. flavus respectively while AP represents A. parasiticus. Clusters I and II comprise of aflatoxigenic
and non-aflatoxigenic isolates respectively

Table 4 AMOVA summary that describes the proportion of
genetic variance in Aspergillus section Flavi isolates at different
hierarchical levels

Source of variation df SS MS Est. var % P-value

Among regions 2 3.418 1.709 0.089 8% 0.05

Among populations 1 0.17 0.17 0 0% 0.927

Within populations 63 65.487 1.039 1.039 92% 0.02

Total 66 69.075 1.128 100%
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This is in agreement with Torres et al. [31], confirming
that both the pre- and post-harvest groundnut can
habour aflatoxin-producing Aspergillus provided there
are suitable environmental conditions for Aspergillus
growth and aflatoxins production.
Analysis of molecular variance (AMOVA) revealed

that variation within populations was most responsible
for genetic differentiation as compared to variation
among populations and variation among regions (AEZs).
Genetic variations in A. flavus within populations could
be due to different cropping practices employed in each
field from which samples were taken [30–32]. Further-
more, the AMOVA results suggest the existence of low
genetic differentiation among regions (AEZs). This could
be evidence of gene flow between the different AEZs as
a result of human activities like trade and transportation
of Aspergillus-contaminated groundnuts between AEZs.
Another reason could be based on differential competi-
tion strategies employed by different genotypes of Asper-
gillus section Flavi to survive in diverse environments.
For example, an isolate which is highly competitive dur-
ing sporulation may exhibit dominance over a wide geo-
graphical region during multiple reproductive cycles
although it is a poor competitor during crop infection.
All these are likely to have important impacts on the A.
flavus population structure.
On the other hand, genotypes that are dominant

within the host tissues are better adapted to surviving in
an AEZ having harsh environmental conditions that do
not favour mechanisms for sporulation, dispersal and
secondary infections [33]. Insignificant isolation by dis-
tance in the entire study area implies that there was gene
flow leading to low genetic differentiation among AEZs
while significant isolation by distance observed in the
Lake Kyoga basin farming system is an indication that
nearby populations in this AEZ were genetically more
similar than expected by chance, and genetic differences
increases linearly with geographic distances. This par-
ticular AEZ is semi-arid and therefore most strains of A.
flavus in this region are adapted to living within the
plant host tissues as a means of adapting to unfavourable
environmental conditions. They, therefore, tend to re-
main localized in particular geographical locations
within the AEZ since sporulation and dispersal that
could have limited genetic isolation by distance are lim-
ited by harsh environmental conditions [34].
The variations between regions (AEZs) shown by the

AMOVA results could have been as a result of differences
in the period that Aspergillus was in association with
groundnut in each AEZ. Temporal differences in the
stages at which Aspergillus is in association with ground-
nuts, either at pre- or post-harvest could also be respon-
sible for the observed population differentiation among
regions. Each AEZ has its unique colonization stages for

groundnut-associated Aspergillus and genetic adaptations
undergone by the Aspergillus for its host plant differ with
the stage of growth of the plant. This means AEZs may
also differ in temporal stages of association of Aspergillus
with groundnuts right from the initial colonization till the
development of correlated spatial genetic structure over
time. Two major clades are due to the insertion/deletion
in the aflatoxin biosynthesis gene cluster of the finger-
printed A. flavus isolates. Since this gene cluster has a set
of conserved genes that regulate the biosynthesis and se-
cretion of aflatoxins by the fungus, any alteration in their
sequences either by insertion or deletion can lead to non-
aflatoxigenicity [35, 36].

Conclusion
Aspergillus section Flavi and Aspergillus section Nigri
are the most abundant species contaminating ground-
nuts in Uganda. They co-exist in groundnuts posing ser-
ious health risks to both humans and animals. Since
contamination starts at the pre-harvest stage due to
drought stress, early planting should be emphasized so
that there is enough rain to take the plants through their
growth and development. In case of unexpected drought,
simple irrigation technologies should be adopted to meet
the water demands of the plants, especially during pod
development stage.
The genetic diversity of A. flavus in various AEZs pro-

vides a gene pool of potential value for application in
biocontrol. This can be exploited to reduce the preva-
lence of aflatoxigenic fungi in the environment through
competitive exclusion mechanism. From the results of
genetic diversity analyses of A. flavus populations in the
three selected AEZs, any non-aflatoxigenic strain of A.
flavus can be selected as a biocontrol strain since there
is no significant population differentiation by geograph-
ical distance. This strategy has been proven to be suc-
cessful and it is already being applied in many countries
that intensively produce groundnut, like the US [17]. Fur-
thermore, the identified aflatoxigenic strains of A. flavus
can be used to screen for resistance to Aspergillus
colonization and subsequent aflatoxins production in dif-
ferent crop cultivars during a crop breeding programme.
Future studies could investigate the role of spatial and

temporal variations on the genetic structure of A.flavus
populations associated with groundnuts and also validate
recently reported molecular markers by Hussain et al.
[36] for detecting afltoxigenic strains of A. flavus on
groundnuts collected from various environments.

Methods
Sample collection
There were three levels to the sampling design: (i) AEZs,
(ii) districts within AEZ, and (iii) individual fields within
the districts (Fig. 3). Not all sites were sampled during
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the same cropping season. Agro-ecological zones were
selected to represent a range of agro-ecologies in
Uganda known for groundnut production according to
the Uganda Bureau of Statistics report, 2014. Two dis-
tricts from each groundnut-growing AEZ were randomly
selected and surveyed. The selected major groundnut-
growing AEZs of Uganda included: West Nile farming
system (WN), high altitude districts (districts of Arua
and Koboko), Lake Kyoga basin mixed farming system
(LKB), low altitude districts (districts of Soroti and
Ngora) and Lake Victoria basin farming system (LVB),
mid-altitude districts (districts of Tororo and Kamuli)
(Fig. 3).
Households and groundnut fields in selected AEZs

were surveyed for sample collection. Forty groundnut
samples, consisting of 20 field samples and 20 storage

samples, were collected from each selected district. For
field collection, a quadrat measuring 1 m × 1m was
thrown randomly at five different sampling points and
any distance ≥10 m between sampling points was consid-
ered. Three groundnut stands were pulled from each
sampling point and handpicked on the same day of sam-
pling. Extra care was taken to sort out pods that were
damaged by soil fauna and later clean pods packed in a
paper bag. The groundnut pods were sun-dried for a
week, disinfected using a 0.5% (v/v) sodium hypochlorite
solution, hand shelled and stored at 4 °C until fungal iso-
lation according to Mutegi et al. [38].
Sub-samples of storage shelled groundnuts were col-

lected randomly from each bag or container from the
top, middle and bottom using a sampling probe and
later mixed to form a composite sample. About 250 g of

Fig. 3 Location and zonal context of selected agro-ecological zones. Six districts were sampled from the entire study area, two districts from each
agro-ecological zone to obtain groundnuts for Aspergillus isolation. Source: Uganda Bureau of Statistics [37]

Acur et al. BMC Microbiology          (2020) 20:252 Page 8 of 12



the composite sample were drawn and packed in a ster-
ile paper bag for fungal isolation. Unshelled groundnuts
were taken only once from each storage bag or container
and packed for laboratory analysis following the method
of Ndungu et al. [39].

Isolation of Aspergillus species from groundnut seeds
Aspergillus species were isolated at National Peanut Re-
search Laboratory, Dawson, Georgia, USA. A selective
growth medium, modified dichloran Rose Bengal (MDRB)
was used for isolation of Aspergillus section Flavi [29].
The MDRB medium is composed of 10 g/L dextrose, 2.5
g/L peptone, 1.0 g/L di-potassium phosphate (KH2PO4),
0.5 g/L magnesium sulphate heptahydrate (MgSO4.7H2O),
0.5 g/L yeast extract, 20 g/L agar, 0.5 mL of 0.05% (w/v)
Rose Bengal stock solution in acetone, adjusted to 1 L with
distilled water and later modified with 0.8 mg/L dichloran.
After sterilization, 30mg/L streptomycin and 0.15mg/L
tetracycline were added to the medium. Twenty seeds per
sample were put into separate sterile 50mL falcon tubes
and 15mL sterile distilled water added to each. The seeds
were washed by shaking in a pulverizing machine, KLECO
(Visalia, California, USA) for 2min [40]. Thereafter, 50 μL
of each of the suspensions was separately spread plated
onto MDRB medium [41], followed by incubation at 37 °C
for 3 days. Colonies of Aspergillus present per sample were
counted, and contamination incidence (%) for each AEZ
was deduced by counting the number of sample plates
having ≥ 25 colonies of aflatoxin-producing Aspergillus
species in each AEZ, (n = 120) according to Horn & Dor-
ner [42]. In a biosafety cabinet, a stereo microscope and a
flame sterilized needle were used to isolate conidia from
the colonies of interest in each culture plate. Direct isola-
tion of pure colonies of A. flavus and A. parasiticus from
the MDRB culture plates was based on the size of conidio-
phores, vesicles, conidia and on the colour of conidial
heads [43]. Colonies of A. flavus appear yellow-green to
grey-green while those of A. parasiticus are dark green ac-
cording to Christensen [43]. The fully grown A. flavus col-
onies are of two strains, the S strain and the L strain. The
S strain is characterised by numerous sclerotia < 400 μm
in diameter whereas the L strain produces fewer sclerotia
> 400 μm in diameter [44]. Using a stereo microscope, the
conidia from a single conidiophore were then picked and
transferred onto freshly prepared plates of MDRB
medium. In order to obtain a single colony from the
picked conidia, streaking was done by successively turning
the media plate in a right-angle manner in an attempt to
adequately disperse the individual conidium at the ex-
treme end of the streak. After three days of incubation at
37 °C, hyphal tips from single colonies were picked using a
flamed scalpel and transferred into Czapek Dox agar
(OXOID Ltd., Hampshire, England) slants for identifica-
tion and storage.

Aspergillus species and strain identification
Twelve-day old pure cultures of Aspergillus grown on
Czapek Dox agar at 30 °C were morphologically charac-
terized based on the distinguishing features for each
morphotype as described above. Different species and
strains were identified in accordance with Diba et al.
[45], and comparison to reference cultures in the collec-
tion at National Peanut Research Laboratory, Dawson,
GA, USA. Each isolate was derived from a sample and in
some cases, two or more isolates would be derived from
a single sample on condition that the colony characteris-
tics showed different morphotypes; L- or S- strain (A.
flavus) or A. parasiticus.

Quantification of total aflatoxin from A. flavus mycelia
This was done using the MaxSignal Total Aflatoxin
ELISA Test kit (Bioo Scientific Corporation, Austin,
Texas, USA). Representative A. flavus isolates con-
sisting of 18 each from pre-harvest and from the
post-harvest groundnut samples were randomly
picked from each AEZ for total aflatoxin quantifica-
tion. Each of the isolate was grown on potato dex-
trose agar at 37 °C for 7 days. Mycelia were extracted
and ground for 3 min in a 3 ml extraction solution
(70% v/v, methanol/water) using a sterile mortar and
pestle. The ground samples were allowed to settle
and the top layer of the extract filtered through a
Whatman #1 filter paper. The resultant filtrate was
treated with the kit’s reagents following manufac-
turer’s instructions. A microwell reader fitted with a
450 nm filter was used to read the optical density of
the reaction mixture in each microwell. A standard
curve was constructed using ELISA absorbance read-
ings of the total aflatoxin standards (0, 0.02, 0.06,
0.2, 0.6 and 1.5 ng/mL) to determine aflatoxin con-
centrations in ppb. Absorbance readings and concen-
trations of the standard solutions were entered into
a Microsoft Excel 2016 spreadsheet, and a standard
curve was generated (Fig. 4). From this standard
curve, concentrations of aflatoxins in corresponding
samples were calculated using the equation of the
line; y = − 0.0719x + 2.09 (y = optical density and x =
aflatoxins concentration).

Genomic DNA extraction and quantification
Genomic DNA from the Aspergillus flavus isolates was
extracted at National Peanut Research Laboratory,
Georgia, USA, using Qiagen DNeasy Plant kit (QIAGEN,
Hilden, Germany). Sterile disposable plastic loops were
used to harvest 3 loopful of spores from the culture
slants and loaded into each sample tube. Following the
manufacturer’s instructions, a 500 μl clear lysate was
pipetted into a 2 ml eppendorf tube and later loaded
into a QIAcube robot (QIAGEN, Hilden, Germany).
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The concentration of the eluted DNA was determined
using a Nanodrop ND 2000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA).

Genotyping of Aspergillus flavus isolates
Primers that were previously developed by Faustinelli
et al. [40] to detect insertions-deletions (InDels) within
the aflatoxin-biosynthesis cluster of Aspergillus were
used in this study for the genetic fingerprinting of the
Aspergillus isolates (Table 5). Since deletions/insertions

in this gene cluster are associated with aflatoxin produc-
tion [35], clustering of isolates were deduced from the
shared deletions/insertions patterns that correspond to
aflatoxigenicity or non-aflatoxigenicity.
The forward primers were tailed with a 5′-CAGTTT

TCCCAGTCACGAC-3′ sequence and labelled with 6-
carboxyfluorescein (6-FAM). The reverse primers were
tailed with 5′-GTTT-3′ sequence to promote non-
template adenylation [46]. Amplifications were per-
formed using 10 ng of DNA and Titanium Taq

Fig. 4 Standard curve for determination of aflatoxins concentration. The equation of the line was used to calculate the corresponding
concentrations of aflatoxins in each sample based on the absorbance readings

Table 5 Primer pairs that were used in the amplification of the aflatoxin biosynthesis gene [40]

Marker Forward 5′→ 3’ Reverse 5′→ 3’ Amplicon size (bp)

AFLC01 CCGACCTCACGACGCATTAT CCGGCTAGCTTCAACAGACG 140–370

AFLC02 GGTTGGCGGATTGAGAGGTA GGAGATCAGCCGAGAAGACA 100–296

AFLC03 TCCGCCGAGAGCCATAATAG GGATGCTGACACCTCGATAG 120–160

AFLC07 GTCAGCAAGAGGAGCCTTCA GGTCACGGAGATCCTCCATA 159–404

AFLC08 CGCCAGCACGGAGATCGAAT CGTCTCCTCAGGCGGTCTAT 224–399

AFLC12 CGCAAGGAGCTCGACCAATA TTCAGCTCAGCGACGAGAGT 241–360

AFLC13 TCGGTTCAATGCTCGAACAC TCCAACCTTCGGCCTAGTCT 140–410

AFLC15 GCTCTACAGGCTGATTCAAG TCGACAGTCCGACAATATGC 204–370

AFLC16 ATCGCAGCGGAAGCTTGGAA AGTCTCGGACTCCGGTGACA 145–410

AFLC17 GCACAACTCGTACAGCTATC TCTAAGTGCGAGGCAACGAA 125–390

AFLC18 GGCAGCCAGACCAAGGAATA CCTTCTCGTAGCCGCTCATC 130–400

AFLC19 ACAGGACCGCACGGATCAAT AGGAGCGGATGTCGAAGTCT 260–491

AFLC20 GCCTAGCGCTCCATTCTCAG CCATCGTATCCGGCTCTATC 120–370

AFLC21 TACCTTACTCCGCTAAGCAG GCGGTCACCTACCAATGAAT 150–368

AFLC22 TTCGCAGGAGTGTAGCCAAG GTTGGAACACGCTCCATAGG 120–371

AFLC24 GAACGAGATAACGGCTGCAT ATCAATCCACGGACCGTTGT 100–430
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polymerase (Clontech) in 5 μl reactions as described by
Arias et al. [47]. The labelled PCR amplicons were ana-
lyzed using an ABI 3730XL DNA analyzer and data were
processed by GeneMapper v 4.0 (Applied Biosystems,
Foster City, California, USA).

Data analysis
The GenStat Discovery Edition 14 (2002) for windows
(VSN International Ltd., Rothamsted Experimental
Station, UK) software was used for data analysis. The
Chi-square test and One–Way analysis of variance
(ANOVA) were used to compare the frequencies of
groundnut contamination with Aspergillus species and
to determine the relative abundance of isolated Aspergil-
lus species and strains at pre- and post-harvest stages re-
spectively. Allele sizes observed as relative fluorescence
units from the electropherogram were converted to bin-
ary data, where the presence of an amplicon of any size
was scored as ‘1’ whereas its absence was scored as ‘0’.
The fingerprint data for all the samples were corrected
for clonality by removing isolates sharing the same InDel
profiles at all loci from the data. Analyses like population
pair-wise Fst values and allele frequencies were per-
formed on isolates’ alleles data in order to establish
whether the sample size for each AEZ is adequate to be
used in subsequent statistical analyses. After these, our
analyses were restricted to unique isolates identified
from the fingerprint data and to AEZs for which A. fla-
vus isolates were available. Analysis of molecular vari-
ance was carried out using the program Arlequin
version 3.5 for estimation of variance components and
partition of the within and among population variance.
In addition, isolation by distance (IBD) was assessed
using the Mantel test that plots the genetic distance
against geographic distance (log-transformed) for the en-
tire study area and within districts using the program
GenAIEx 6.5b. In both analyses, significance was
assessed by conducting 999 permutations. During these
analyses, sixteen InDel loci were used to identify genetic
structure in A. flavus populations. Allele frequencies
were calculated for A. flavus within each AEZ and geo-
referenced. Allele frequencies were standardized by the
lowest value and natural log-transformed while retaining
zero values. Relationships among the isolates based on
InDel data were determined through unweighted pair
group method with arithmetic mean (UPGMA) with
1000 bootstrap replications [16], using TREECON for
Windows version 1.3 b.
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