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Abstract

Background: The bacterial community present in the abdomen in Anophelinae mosquitoes can influence
mosquito susceptibility to Plasmodium infection. Little is known about the bacteria associated with Nyssorhynchus
darlingi, a primary malaria vector in the Amazon basin. We investigated the abdominal bacterial community
compositions of naturally Plasmodium-infected (P-positive, n = 9) and non-infected (P-negative, n = 7) Ny. darlingi
from the Brazilian Amazon region through massive parallel sequencing of the bacterial V4 variable region of the
16S rRNA gene.

Results: Bacterial richness of Ny. darlingi encompassed 379 operational taxonomic units (OTUs), the majority of
them belonging to the Proteobacteria, Firmicutes and Bacteroides phyla. Escherichia/Shigella and Pseudomonas were
more abundant in the P-positive and P-negative groups, respectively, than in the opposite groups. Enterobacter was
found only in the P-negative group. The results of statistical analyses conducted to compare bacterial abundance
and diversity between Plasmodium-infected and Plasmodium-non-infected mosquitoes were not significant.

Conclusions: This study increased knowledge about bacterial composition in Ny. darlingi and revealed that
Plasmodium-positive and Plasmodium-negative groups share a common core of bacteria. The genera Prevotella 9,
Sphingomonas, Bacteroides, and Bacillus were reported for the first time in Ny. darlingi.
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Background
Malaria is one of the world’s most common and deadly
tropical diseases. Recent data from the World Health
Organization (WHO) has estimated that there were 219
million clinical cases and 435,000 estimated deaths in 87
malaria-endemic countries with ongoing malaria trans-
mission in 2017 [1]. Brazil, Nicaragua and Venezuela
registered increased malaria incidences in 2017. Malaria
infections in Brazil are predominantly caused by Plasmo-
dium vivax, accounting for > 84% of cases [2]. Most

malaria cases occur in the Amazon region, where the
primary vector is Nyssorhynchus darlingi.
It is known that the mosquito midgut microbiota can

affect the development of Plasmodium parasites in mos-
quitoes [3–8]. Isolates of Enterobacter amnigenus and
Enterobacter cloacae are able to impair the sporogonic
development of P. vivax, while Serratia marcescens com-
pletely inhibits P. vivax oocyst development in Anoph-
eles albimanus [9]. One Enterobacter sp. strain (Esp_Z)
isolated from the gut of wild Anopheles arabiensis con-
fers resistance to P. falciparum infection in Anopheles
gambiae [3]. Other studies have reported that Serratia
marcescens blocks the development of P. falciparum
ookinetes in An. gambiae [4, 10]. It has been proposed
that bacteria present in the midgut modulate
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Plasmodium infection in the mosquito through at least
two mechanisms: production of bacterial metabolites
that impair the development of the parasite and induc-
tion of the immune response [3, 10–12].
Following an infective blood meal, the numbers of

ookinetes present in the midgut lumens of aseptic and
septic An. gambiae are similar, while the numbers of
ookinetes present in the midgut epithelia of aseptic mos-
quitoes are 2.5 times higher than those in septic mosqui-
toes, suggesting that the bacterial effect occurs during
ookinete development and invasion of the midgut epi-
thelium [11]. Additionally, Anopheles and Aedes mosqui-
toes that are fed antibiotics to reduce microbiota
populations have higher rates of Plasmodium and den-
gue virus infection than untreated mosquitoes [13].
Thus, symbiotic bacteria can be an alternative tool for
blocking Plasmodium development in mosquitoes by de-
creasing vector competence.
The interaction between insects and microbes has

been studied in a variety of vector species; however, little
is known about the bacterial communities associated
with the abdomen in the primary neotropical vector, Ny.
darlingi [14–16]. This study compared the bacterial
communities associated with the abdomens of non-
infected and Plasmodium-infected field-collected females
of Ny. darlingi.

Results
Sequencing data output
Twenty-four female abdomens were employed to gener-
ate bacterial community data. Sixteen samples (66.6%)
were successfully amplified and sequenced for the 250
bp 16S rRNA genomic region. Nine were infected with
Plasmodium (3 from Cruzeiro do Sul, 1 from Mâncio
Lima, 1 from Lábrea, and 4 from Machadinho D’Oeste),
and seven were not infected with Plasmodium (6 from
Cruzeiro do Sul and 1 from Machadinho D’Oeste)
(Additional file 1).
The MiSeq Illumina platform generated 2,505,232 raw

reads (R1 and R2) from 16 abdomens, with a median of
135,829 reads (range: 28,430 – 434,102). The read values
were 1,379,570 for the P-positive samples and 1,125,662
for the P-negative samples. After assembly and filtering
of the OTUs with less than 5 sequences, 275,203 se-
quences were retained. These sequences were assigned
to 407 unique OTUs (Additional file 2); 96 were found
only in the P-positive group, 172 were found only in the
P-negative group, and 139 were identified in both
groups.

Bacterial compositions
Twenty-eight OTUs corresponded to chloroplasts, mito-
chondria, and unassigned OTUs. Of the 379 bacterial
OTUs obtained, 333 were identified to the genus level.

Additionally, 35 OTUs could only be identified at the
family level, 4 OTUs could only be identified at the
order level, 6 could only be identified at the class level,
and one could only be identified at the phylum level.
After filtering of the non-bacterial sequences, the se-

quences detected in the P-negative group were assigned
to 294 bacterial OTUs and sorted into 12 phyla, among
which Proteobacteria (90.1%), Firmicutes (6.6%) and Bac-
teroidetes (1.15%) were the most abundant and
accounted for 98% of the sequence reads. The most
abundant bacterial phyla of the 214 bacterial OTUs
within the P-positive group were Proteobacteria (80.3%),
Firmicutes (8.7%), Bacteroidetes (6.7%) and Actinobac-
teria (2.7%) (Fig. 1). Gammaproteobacteria was the pre-
dominant class in both groups, but its families had
different tendencies. Within the phylum Proteobacteria,
Pseudomonadaceae was predominant in the P-negative
samples, while Enterobacteriaceae was predominant in
the P-positive samples.
A Venn diagram was employed to display the common

and unique bacterial OTUs observed at the genus level
in both groups (Additional file 3). In the P-negative
group, 294 bacterial OTUs were detected, while in the
P-positive group, 214 bacterial OTUs were detected. The
proportion of unique bacterial OTUs was 43.54% in the
P-negative group and 22.43% in the P-positive group.
The percentage of bacterial OTUs detected in both
groups was 34.04%.
The genera Pseudomonas and Escherichia/Shigella

were the most abundant in the P-negative and P-positive
groups, respectively, compared with the opposite groups.
Considering the genera that had relative abundances of
more than 1%, Prevotella 9, Sphingomonas and Bacter-
oides were found in the P-positive group, and Delftia,
Methylobacterium and Bacillus were found in the P-
negative group (Fig. 2). According to the results of
previous studies on the microbiota of Anophelinae
mosquitoes, the genera Prevotella 9, Sphingomonas, Bac-
teroides and Bacillus have never been associated with
the abdomen of Ny. darlingi. Composition of the bacter-
ial OTUs from each sample can be viewed in
Additional file 4.

PCoA and alpha and beta diversity analyses
A rarefaction curve was created with a sampling depth
of 1500 sequences, showing that the sequencing depth
was adequate to infer the structure and abundance of
the bacterial community in the abdomen of Ny. darlingi
(Additional file 5). Two sequenced samples (AC141–7
and AC144–17) had sequence numbers lower than the
depth used for the rarefaction and therefore were not
used in the diversity analyses. To address the bacterial
diversity, we used Shannon’s diversity index, also known
as the Shannon-Weaver index, which considers the
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richness and relative abundance of OTUs. The results
showed no significant difference between the P-negative
(2.78 ± 0.71) and P-positive (2.68 ± 1.24) groups
(Additional file 6).
The beta diversity distances between both groups

were measured using PCoA. Both PCoA plots of un-
weighted and weighted UniFrac distances not defined
clustering of P-negative versus P-positive samples
(Fig. 3). The PERMANOVA analysis did not detect
any difference in the bacterial composition between
the P-positive and P-negative groups (p > 0.05). For
the above analyses, data from the 407 OTUs gener-
ated were used.

Because no significant difference was found in bac-
terial composition when comparing infected and non-
infected groups when samples from all localities were
included, beta diversity (PERMANOVA) analysis was
performed to compare infected and non-infected
groups encompassing females collected in Cruzeiro do
Sul and Machadinho D’Oeste separately. The analysis
was performed between (1) the infected and non-
infected groups (infected = 3; non-infected = 6) from
Cruzeiro do Sul and (2) the infected and non-infected
groups (infected = 4; non-infected = 1) from Macha-
dinho D’Oeste. In both PERMANOVA analyses, there
was no significant difference between the groups

Fig. 1 Composition of bacterial phyla in the abdomen of P-negative and P-positive groups Nyssorhynchus darlingi after filtering
non-bacterial sequences

Fig. 2 Abundance of the bacterial genera in P-positive and P-negative Nyssorhynchus darlingi after filtering non-bacterial sequences. Only genera
that had a relative abundance of 1% or greater are presented. Others < 1.0 corresponds to genera that had relative abundance < 1%
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analysed (Cruzeiro do Sul, p = 0.681; Macha-
dinho D’Oeste, p = 0.373).

Discussion
In this study, the bacterial community associated with
the abdomen of Ny. darlingi was investigated. In
addition, the bacterial diversity was compared between
the two groups studied (the P-negative and P-positive
groups). Next-generation sequencing of PCR products
was used to identify the bacterial community associated
with the female abdomen. The DNA samples from 7
non-engorged mosquitoes failed to exhibit amplification
of 16S rRNA after several trials, likely because of the
presence of PCR inhibitors or the low numbers of
bacteria in these samples. This result is corroborated by
those of other studies, such as an investigation con-
ducted by Terenius et al. [14], in which only one of four
non-blood-fed Ny. darlingi presented amplification of
the16S rRNA gene.
The bacteria in adult Ny. darlingi abdomens com-

prised three predominant phyla: Proteobacteria, Firmi-
cutes and Bacteroidetes. This result presents similarity to
the results of other studies performed with Anophelinae
mosquitoes [17, 18] and suggests that bacteria of these

phyla have importance in the physiology of Anophelinae
mosquitoes. The number of OTUs identified was higher
than those found in other conventional molecular stud-
ies [14]. Of the 379 bacterial OTUs, only 7 showed an
abundance higher than 2%, suggesting that there are few
predominant bacterial genera. Minard et al. [19] re-
ported that mosquito females are colonized mainly by
Gammaproteobacteria. Similarly, Gammaproteobacteria
was the most prevalent class of bacteria identified in the
females analysed (16/16 samples). Gammaproteobacteria
includes the Enterobacteriaceae and Pseudomonadaceae
families.
Enterobacteriaceae has been found in abundance in

Plasmodium-infected An. gambiae, indicating that bac-
teria of this family contribute to the development of the
parasite [20]. Although Enterobacteriaceae was the most
abundant family identified in the Ny. darlingi P-positive
group, there was no significant difference in diversity be-
tween the P-positive and P-negative groups (p > 0.05).
Inconsistent results of studies can be caused by various
factors, including differences in experimental design and
sample preparation. For example, the females used by
Boissière et al. [20] were fed P. falciparum-infected
blood, and the midgut microbiota was analysed 8 days

Fig. 3 Beta diversity. Composition of OTUs at family level of all 16 samples (a) and Principal Coordinates Analysis based on the unweighted (b)
and weighted (c) UniFrac distances
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after the blood meal. In our study, field-collected females
were found naturally infected with Plasmodium, but we
did not have information about the time of the mosquito
blood meal. Considering that the females were naturally
infected, they would have fed on Plasmodium-infected
human blood at least 10–15 days before [21]. The differ-
ences observed may be associated with the time of the
infected blood meal and the HLC collection procedure.
Anopheles gambiae exposed to an Enterobacter (Esp_

Z) isolate have been found to become less susceptible to
P. falciparum infection [3]. Enterobacter was recovered
from 2 Ny. darlingi females, neither of which was in-
fected with Plasmodium. Despite this finding, it is pre-
mature to hypothesize that females with Enterobacter
are less susceptible to P. falciparum infection than those
without it, because our sample was small and limited to
a few localities with moderate, low or moderately high
transmission [22]. These two limitations prevent us from
drawing any conclusions about the impact of Enterobac-
ter on vector species susceptibility to P. falciparum in-
fection. Further studies will be necessary to verify
whether any Enterobacter isolates can decrease Ny. dar-
lingi susceptibility to Plasmodium infection and to deter-
mine if the inhibition mechanism is similar to that of
the Esp_Z isolate in An. gambiae, which is mediated by
the generation of reactive oxygen species (ROS).
Pseudomonas was found in Ny. darlingi and has been

widely reported in anopheline mosquitoes from Africa,
Asia and America [14, 15, 23–25]. In this study, Pseudo-
monas was the most abundant genus in the P-negative
group and was detected in 15 out of 16 samples ana-
lysed. These data corroborate those of a study by Chav-
shin et al. [26], who reported Pseudomonas as the most
common bacterial isolate in Anopheles stephensi larvae
and adults, indicating possible transmission of Pseudo-
monas between mosquito developmental stages. The
high prevalence of Pseudomonas in Anopheles mosqui-
toes suggests the capability of Pseudomonas to easily
adapt to the midgut environment.
The most predominant bacteria in the P-positive

group detected in all investigated samples were found to
belong to the genus Escherichia/Shigella. In previous
studies, this genus has been found in all mosquito sam-
ples analysed in Northern California (USA) [27] and in
more than 85% of samples of An. gambiae [20]. Both
studies have also reported the prevalence of this genus
in other species of mosquitoes. The fact that these bac-
teria were found in Ny. darlingi breeding sites located in
Manaus in the Brazilian Amazon region [28] suggests
that this genus is either acquired during immature devel-
opment or immediately after emergence.
Although the P-negative group had a higher number

of OTUs than the P-positive group, there was no signifi-
cant difference in bacterial diversity between the groups

(P-positive and P-negative); neither group was more di-
verse than the other. Additionally, there was no significant
difference in the composition of the bacteria between the
groups (beta diversity), not even between the infected and
non-infected groups of the same municipality (Cruzeiro
do Sul and Machadinho D’Oeste). These results appear
contrary to the findings of Bassene et al. [29], who re-
ported greater bacterial diversity in vectors (An. gambiae
and An. funestus) infected with P. falciparum. Possibly,
this difference in results could be related to the fact that
we did not differentiate whether the Ny. darlingi infection
was caused by P. vivax or P. falciparum.
Another possible explanation for the lack of statistical

significance difference, not addressed here, could be due
to the effects of Ny. darlingi genotype variant on micro-
bial communities [30–32]. Several studies have shown
that various factors such as nutrition, sex, environment,
and genotype can all shape the pattern of mosquitoes-
associated microbiota [19, 33]. Despite these reports,
Minard et al. [33] demonstrated that the Aedes albopic-
tus genetic variation is correlated with microbiome com-
position. However, in another study with populations of
Ae. albopictus reared in the laboratory, Minard et al.
[34] verified that when environmental factors were re-
moved, there were no differences in the microbiota di-
versity between the populations studied. Dickson et al.
[35] found that the microbiota diversity in the Aedes
aegypti is determined by the environment, regardless of
the host genotype. Thus, further studies are needed to
verify whether different genotypes of Ny. darlingi can in-
fluence the bacterial composition of the microbiota.
Considering that our study employed field collected fe-

males, the number of specimens analyzed was small. Fur-
ther studies will be needed to test the hypotheses and
address if the load of Plasmodium parasites is associated
with the divergence in the mosquito gut microbiota.

Conclusions
Here, we provide data on bacterial communities associ-
ated with the abdomens of Ny. darlingi naturally in-
fected and not infected with Plasmodium. The genera
Prevotella 9, Sphingomonas, Bacteroides and Bacillus are
reported for the first time in Ny. darlingi. Our data con-
tribute to a better understanding of the bacteriome com-
position in Ny. darlingi. Since Enterobacter was found in
two non-infected Ny. darlingi samples and was absent in
the P-positive group, other studies are necessary to de-
termine if Enterobacter species present in Ny. darlingi
offer protection against Plasmodium infection.

Methods
Mosquito collections
Females of Ny. darlingi were collected in the municipal-
ities of Cruzeiro do Sul (Acre state), Mâncio Lima (Acre
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state), Lábrea (Amazonas state), and Machadinho
D’Oeste (Rondônia state), Brazilian Amazon (Additional
file 1). Field collections were conducted in peridomestic
habitats by human landing catches (HLCs). Mosquitoes
were killed with ethyl acetate (C4H8O2) and immediately
preserved in silica gel until species identification.
Mosquito species were identified using morphological
characteristics. Following identification, females were
preserved at − 80 °C.

Plasmodium testing
Each Ny. darlingi female collected was divided into the
head/thorax and abdomen. The DNA of the head/thorax
was extracted according to Laporta et al. [36] and used
for Plasmodium testing. Plasmodium detection was per-
formed by using real-time PCR of the 18S rRNA region
followed by high-resolution melting (HRM) analysis. For
each 20 μl reaction, 1X MeltDoctor™ HRM Master Mix
(ThermoFisher Scientific, Inc., Waltham, MA, USA), 10
ng of DNA, 500 nM of each primer (1459-M13[forward,
5’TGTAAAACGACGGCCAGTCTGGTTAATTCCGA-
TAAC 3′] and 1706-M13 [reverse, 5’CAGGAAACAGC-
TATGACCTAAACTTCCTTGTGTTAGAC 3′]) [37]
and commercial ultrapure H2O were added. The cycling
program consisted of 95 °C for 10 min followed by 50 cy-
cles of 95 °C for 15 s and 60 °C for 1 min. The reaction
was then followed by HRM curve analysis, which was
conducted by increasing the temperature from 60 °C to
95 °C with a ramp rate of 0.3%. The results were ana-
lysed using StepOnePlus™ Software v2.3 and HRM v3.0.1
Software. Seventy samples were infected with Plasmo-
dium. The corresponding abdomens from 13 infected
samples and 11 Plasmodium-uninfected female Ny.
darlingi were used for the 16S rRNA amplicon survey
(Additional file 1).

Sequencing of the V4 region of 16S rRNA
Abdomens of Ny. darlingi were surface rinsed twice in
70% ethanol and ultrapure water. The genomic DNA of
each individual abdomen was extracted by using a
DNeasy PowerSoil kit (Qiagen, Hilden, Germany) or by
the salt precipitation method [36]. For the DNeasy
PowerSoil Kit, each abdomen was placed in PowerBead
tubes (included in the PowerSoil kit) and incubated at
room temperature for 15 min before bead beating for
another 15 min. After these steps, genomic DNA was ex-
tracted according to the manufacturer’s instructions. For
the salt precipitation method, each abdomen was mixed
in 500 μL of TEN buffer (2 mM Tris-HCl pH 8.0, 0.5
mM EDTA, 5 mM NaCl) and homogenized using 1-
mm-diameter zirconia beads (Biospec, Bartlesville, USA)
via the use of BeadBlaster24 equipment (Benchmark Sci-
entific, Inc., Sayreville, NJ, USA) for 4 cycles with shak-
ing (4 m/sec) for 40 s followed by 20 s without shaking

in each cycle. A lysis buffer containing 5 μL of 10% SDS
(Promega, Madison, USA) and 3 μL of 20 mg/mL pro-
teinase K (Promega) was added to the homogenate and
mixed. After 1 h of incubation at 56 °C, 150 μL of 5M
NaCl was added, and the mixture was shaken vigorously
for 15 s. The mixture was centrifuged for 10 min at 13,
000 rpm at 20 °C, and the supernatant was gently trans-
ferred into a new tube. Immediately, 600 μL of freshly
prepared cold isopropyl alcohol was added to the super-
natant and mixed by inversion, and the mixture was in-
cubated at − 20 °C for 48 h. The supernatant was
decanted after a 10 min centrifugation. The remaining
pellet was washed with 1 mL of 70% ethanol, and the
dried pellet was resuspended in 20 μL of TE buffer (2
mM Tris-HCl, pH 8.0, 0.5 mM EDTA).
The V4 hypervariable region of the 16S rRNA gene

was amplified according to Caporaso et al. [38]. Briefly,
each reaction was performed in a final volume of 20 μL
consisting of 1X GoTaq® Colorless Master Mix (Pro-
mega), 0.3 μM of each primer (Additional file 7), 2 μL of
genomic DNA and ultrapure water. The thermocycling
conditions were 94 °C for 3 min followed by 29 cycles of
94 °C for 45 s, 50 °C for 1 min, 72 °C for 1 min and 30 s,
and a final extension of 72 °C for 10 min. The reactions
were carried out in triplicate. The PCR products were
visualized on a 2% agarose gel stained with Gelred® (Uni-
science, Miami, USA). The PCR products were purified
with Agencourt AMPure XP magnetic beads (Beckman
Coulter, Brea, USA) and then quantified by real-time
PCR with KAPA (KAPA Biosystems, Wilmington, USA)
according to the manufacturer’s recommendations.
All samples were normalized to 3 nM, and an equimo-

lar pool of DNA was prepared. Next-generation sequen-
cing of the V4 region was performed on an Illumina
MiSeq sequencer (Illumina, San Diego, USA) using a
MiSeq Reagent Micro v2 kit (300 cycles).

Processing of sequences and taxonomic attribution
Illumina paired-end reads were assembled in QIIME
v.1.9 [39] with a minimum overlap of 20 base pairs
(join_paired_ends.py). The sequences were filtered based
on the length and sequencing error rates (E_max = 1).
USEARCH v.11 [40, 41] was used to filter sequences
(fastq_filter), discard singletons (sortbysize), and remove
chimaeras and cluster sequences in unique OTUs (clus-
ter_otus). The taxonomic classification of each read was
assigned against Silva v.128 [42] at a 99% threshold of
pairwise sequence similarity using QIIME v.1.9. All
OTUs that had fewer than 5 sequences were removed
from the analysis.

Diversity index determination and statistical analysis
The Shannon-Weaver index (H) and observed OTU
index (S) were used to describe the bacterial diversity
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(alpha diversity) of each separate specimen and each
group (P-positive and P-negative). The Wilcoxon-Mann-
Whitney test was used to compare the results for both
groups. Dissimilarity analyses (beta-diversity) between
the P-positive and P-negative groups were performed
using the unweighted and weighted UniFrac distances
and a sampling depth of 1500 sequences. The un-
weighted UniFrac distance is a qualitative measure that
uses phylogenetic information to compare biological
communities, while the weighted Unifrac distance is a
quantitative measure. Principal coordinate analyses
(PCoA) of the unweighted and weighted UniFrac dis-
tances of bacterial communities were conducted to
measure the distance between communities. Permuta-
tional multivariate analysis of variance (PERMANOVA)
was employed to measure intergroup distances. The
PCoA and PERMANOVA analyses were conducted with
rarefied data recovered after rarefying steps in QIIME2
(2019.1 version).
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