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Abstract

Background: Conjugation plays a major role in the transmission of plasmids encoding antibiotic resistance genes
in both clinical and general settings. The conjugation efficiency is influenced by many biotic and abiotic factors,
one of which is the taxonomic relatedness between donor and recipient bacteria. A comprehensive overview of
the influence of donor-recipient relatedness on conjugation is still lacking, but such an overview is important to
quantitatively assess the risk of plasmid transfer and the effect of interventions which limit the spread of antibiotic
resistance, and to obtain parameter values for conjugation in mathematical models. Therefore, we performed a
meta-analysis on reported conjugation frequencies from Escherichia coli donors to various recipient species.

Results: Thirty-two studies reporting 313 conjugation frequencies for liquid broth matings and 270 conjugation
frequencies for filter matings were included in our meta-analysis. The reported conjugation frequencies varied over
11 orders of magnitude. Decreasing taxonomic relatedness between donor and recipient bacteria, when adjusted
for confounding factors, was associated with a lower conjugation frequency in liquid matings. The mean
conjugation frequency for bacteria of the same order, the same class, and other classes was 10, 20, and 789 times
lower than the mean conjugation frequency within the same species, respectively. This association between
relatedness and conjugation frequency was not found for filter matings. The conjugation frequency was
furthermore found to be influenced by temperature in both types of mating experiments, and in addition by
plasmid incompatibility group in liquid matings, and by recipient origin and mating time in filter matings.

Conclusions: In our meta-analysis, taxonomic relatedness is limiting conjugation in liquid matings, but not in filter
matings, suggesting that taxonomic relatedness is not a limiting factor for conjugation in environments where
bacteria are fixed in space.
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Background
Antibiotic resistance (ABR) in bacteria is recognised
world-wide as an important threat to human and animal
health [1–3]. To address this threat, a better understand-
ing of the key factors that determine the spread of ABR
between bacteria is needed. A key factor in the spread of
ABR is the transmission of plasmids that encode ABR
genes [4], which is the focus of this review.
Transmission of ABR genes between bacteria can

occur through transformation, transduction, or conjuga-
tion. Transformation and transduction have been impli-
cated in the spread of ABR in clinical settings, but their
importance is not yet clear [5–7]. In contrast, the major
role of conjugation in the spread of ABR genes in both
clinical and general settings is evident [5–7].
Conjugation efficiency is most commonly quantified by

the ratio of the number of transconjugants (i.e., recipient
cells that have received a plasmid from a donor cell) at the
end of the experiment to the number of donors or recipi-
ents at the beginning of the experiment. We will call this
the conjugation frequency, but we note that in the litera-
ture it has been called conjugation rate as well. We will
use the term conjugation rate for the speed of the conju-
gation process, with units mL cell− 1 h− 1.
The conjugation frequency is determined in mating

experiments, where donors and differently-marked
recipient bacteria are separately cultured, then mixed in
liquid [8–12], on agar medium [12], on filters [12–14],
on touch surfaces [15], or in animals [9, 16, 17] and
allowed to conjugate for a given period. Then the differ-
ent population densities are determined by selective
plating, and the conjugation frequency is quantified by
the ratio of the number of transconjugants to the initial
number of donors or recipients. This can be done at
multiple time points during the experiment to obtain a
time series, or at the end of the experiment to obtain a
single estimate of the conjugation frequency.
Mating experiments have shown that the conjugation

frequency is affected by various biotic and abiotic factors,
such as growth phase, cell density, donor-to-recipient
ratio, carbon and metal concentrations, temperature, pH,
and mating time [11, 18–21]. The used donor and recipi-
ent species, the plasmid, and the use of liquid matings,
filter matings, or matings in live animals as experimental
method also significantly influence the conjugation fre-
quency [22].
The conjugation efficiency of plasmids is limited by the

various steps involved [23]. The donor has to meet a recipi-
ent bacterium, form a conjugative pilus, and attach to the
surface of the recipient bacterium. The probability of
mating-pair formation is influenced by the density of do-
nors and recipients, their motility, and the structure of the
environment (i.e., liquid versus solid, or structure of the fil-
ter [24]). Once a mating pair has been successfully formed,

a copy of the plasmid has to be transferred to the recipient,
and the pilus should remain intact until this process is
finished. Plasmids carrying genes that code for all the
machinery needed to form a mating pair and transfer the
plasmid to the recipient are called self-transmissible plas-
mids, whereas plasmids that require the help of transfer
machinery encoded on other plasmids in the donor bacter-
ium to achieve this are called mobilisable plasmids. Once
inside the recipient, the plasmid should escape degradation
by restriction endonucleases of the recipient which recog-
nise restriction sites on the plasmid, and host factors
should be able to ensure plasmid replication and equal
distribution of the plasmid copies among the two daughter
cells during cell division [23].
The conjugation efficiency can also be affected by plas-

mids that are already present in the recipient bacterium.
They can stabilise mating pairs and increase the conju-
gation efficiency [25], or decrease mating-pair formation
and make it more difficult for other related plasmids to
enter the recipient [23]. Plasmids in the recipient can
inhibit stable maintenance of other plasmids if they use
the same replication-control mechanism [26]. Based on
the different replication-control mechanisms, 28 differ-
ent incompatibility (Inc) groups are recognised for
plasmids in Enterobacteriaceae [27]. The presence of
genes coding for replication-control mechanisms corre-
lates with the presence of genes needed for conjugation
[28], and therefore may correlate with differences in
conjugation efficiency.
A potentially fundamental and generic determinant of

conjugation efficiency is the taxonomic relatedness between
donor and recipient bacteria. On evolutionary timescales,
plasmid genes are more frequently shared within than
between taxonomic classes, and even more frequently be-
tween lower taxa [29]. Recently shared mobile resistance
genes are also more frequently shared within than between
taxa, from the species level up to the phylum level [30].
This effect of taxonomic relatedness is apparent when
comparing conjugation frequencies within versus between
genera [22], and also when comparing conjugation frequen-
cies at the intraspecies level between transconjugants and
recipients from which they were derived versus donors and
recipients [8]. The latter could be caused by de-repression
of plasmid genes in transconjugants, leading to a temporar-
ily higher conjugation rate in transconjugants [8]. It could
also be caused by the shared genetic background of the
transconjugants and recipients, as opposed to the different
genetic backgrounds of the donors and recipients. This
could be important, since small genetic differences at the
strain level determine the restriction status of the recipient,
which affects intraspecies conjugation rates more than the
genetic distance between them [31].
Conjugation efficiency is clearly influenced by many

factors, one of which is the taxonomic relatedness
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between donor and recipient bacteria. Understanding
the role of relatedness is important in order to deter-
mine the potential of ABR plasmids to spread between
species. However, a comprehensive overview of the
influence of taxonomic relatedness between donor and
recipient bacteria on the conjugation frequency is still
lacking. Such an overview is important to quantitatively
assess the risk of plasmid transfer [22] and the effect of
interventions which limit the spread of ABR [32, 33],
and to obtain parameter values for conjugation in math-
ematical models [33, 34]. We performed a meta-analysis
on reported conjugation frequencies from Escherichia
coli (E. coli) donors to various recipient species, incorp-
orating taxonomic distances from the intraspecies up to
the phylum level, and taking into account differences in
biotic and abiotic factors between studies.

Results
Identification of relevant studies
Our selection for studies which mentioned more than
one recipient species in the abstract, used liquid broth
matings or filter matings with E. coli donors containing
a self-transmissible plasmid yielded 32 studies (Fig. 1)

reporting 313 conjugation frequencies for liquid broth
matings [9, 35–51] and 270 conjugation frequencies for
filter matings [38, 44, 45, 50, 52–65].

Liquid broth matings
Across all liquid broth matings, the conjugation frequen-
cies varied over nine orders of magnitude (1.0 · 10− 9 –
1.3; Additional file 1). The conjugation frequency was
below the detection limit in 80 out of 313 cases (25.6%).
The final statistical model to test the effect of donor-

recipient relatedness on the conjugation frequency in
liquid broth matings contained the following factors:
taxonomic relatedness to E. coli, donor origin, plasmid
Inc group, temperature, and agitation of the medium
(Table 1). The mean conjugation frequency was lower
for more distantly related recipients, albeit in a non-
monotonic manner. The mean conjugation frequency
for bacteria of the same family, the same order, the same
class, and other classes was 0.37, 10, 20, and 789 times
lower than the mean conjugation frequency within the
same species, respectively (Table 1). Other factors that
significantly influenced the conjugation frequency were
plasmid Inc group and temperature. Plasmids from Inc
groups A/C had a 85 times lower conjugation frequency

Fig. 1 Flowchart depicting the search results and the selection of studies. N: number of studies
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than IncF plasmids, and plasmids from unreported Inc
groups had a 93 times lower conjugation frequency than
IncF plasmids. The conjugation frequency was 14 times
higher at 20–30 °C than at 35–37 °C (Table 1).

Filter matings
Across all filter matings, the conjugation frequencies
varied over 11 orders of magnitude (4.5 · 10− 11 – 2.1;
Additional file 1). The conjugation frequency was below
the detection limit in 97 out of 270 cases (35.9%).
The final statistical model to test the effect of donor-

recipient relatedness on the conjugation frequency in filter
matings contained the following factors: taxonomic
relatedness to E. coli, recipient origin, donor-to-recipient
ratio, temperature, mating time, and pore size of the filter
(Table 2). The mean conjugation frequency for bacteria of
the same family as E. coli was 41 times higher than the
mean conjugation frequency within the same species, but
relatedness did not significantly influence the conjugation
frequency for the other taxonomic groups. Other factors
that significantly influenced the conjugation frequency
were recipient origin, temperature, and mating time.
Recipients obtained from dairy cattle, water, and food had
a 143, 1.25 · 106, and 197 times lower conjugation fre-
quency than laboratory strains, respectively. The conjuga-
tion frequency was 3036 times higher at 5 °C than at 35–
37 °C. The conjugation frequency was 4239 times lower
for experiments with a mating time of 16–24 h than for
experiments with a mating time of less than 4 h (Table 2).

Discussion
Decreasing taxonomic relatedness between donor and
recipient bacteria is associated with a lower conjugation
frequency in liquid matings, but not in filter matings,
when adjusted for confounding factors (Table 1; Table
2). This distinction between liquid and filter matings re-
garding the influence of relatedness can be explained by
the different conditions in these two assays with respect
to mating-pair formation. The efficiency of mating-pair
formation is influenced by local cell density, as well as
by the lipopolysaccharides and outer-membrane proteins
at the cell surface of the recipients. The type of conjuga-
tive pili (thin flexible, thick flexible, or rigid) might also
play an important role [66], but in the reviewed studies
pilus type was not determined and pilus type cannot be
inferred otherwise with confidence [67, 68].
The efficiency of intraspecies mating-pair formation in

liquid broth can be decreased by mutations in the lipo-
polysaccharide pathway, which decrease recipient ability
in E. coli [69]. This could explain why less-related bac-
teria are less-efficient at mating-pair formation in liquid
matings, resulting in a lower conjugation frequency. This
effect, however, is absent in solid plate matings [69].
Similarly, differences in the lipopolysaccharide structure
of Salmonella typhimurium strains can affect their
mating-pair formation abilities. Normal Salmonella
typhimurium strains, which are not able to form stable
mating pairs in liquid, do not conjugate efficiently in li-
quid matings, but these strains do conjugate efficiently

Table 1 Parameter estimates for the final multivariable linear
mixed regression model for liquid broth matings

Included data points Log10(T / D)

n % Mean 95% CI

Reference

313 100 −4.97 −6.73 −3.22

Relatedness to E. coli donor

Same species 184 58.8 Reference

Same family 47 15.0 0.43 −0.25 1.12

Same order 43 13.7 −1.00 − 1.93 −0.08

Same class 23 7.3 −1.30 −3.53 0.93

Other class 16 5.1 −2.90 −5.19 −0.60

Donor origin

Laboratory strain 222 70.9 Reference

Chicken 71 22.7 −1.70 −5.15 1.76

Human 16 5.1 0.06 −2.78 2.90

Wastewater 4 1.3 2.42 −1.86 6.69

Plasmid Inc group

F 80 25.6 Reference

A/C 7 2.2 −1.93 −3.33 −0.54

H 60 19.2 −1.38 −4.91 2.16

I 1 0.3 −0.38 −3.77 3.01

L/M 8 2.6 −0.06 −1.38 1.27

P 39 12.5 1.90 −0.71 4.51

T 6 1.9 −2.22 −6.37 1.94

V 3 1.0 −3.56 −7.90 0.78

X 2 0.6 2.62 −1.52 6.75

NR 107 34.2 −1.97 −2.94 − 1.00

Temperature (°C)

5 4 1.3 0.86 −0.95 2.68

20–30 171 54.6 1.15 0.55 1.75

35–37 119 38.0 Reference

42–47 12 3.8 −0.97 −2.04 0.11

NR 7 2.2 −1.44 −5.12 2.25

Agitation of the medium

Shaken 143 45.7 Reference

Static 70 22.4 −0.70 −2.35 0.94

NR 100 31.9 2.13 −0.89 5.14

CI confidence interval; D initial number of donors; Inc incompatibility; n
number of data points; NR not reported; T number of transconjugants. The
value given as ‘Reference’ denotes the mean log10(T/D) if all variables are
equal to their reference category, i.e., if the recipient is an E. coli bacterium,
the donor is an E. coli laboratory strain carrying an IncF plasmid, and the
experiment is performed at 35–37 °C in shaken medium. The values for the
other categories list the differences from that overall mean
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in filter matings. In contrast, mutant Salmonella typhi-
murium strains lacking lipopolysaccharide side chains
conjugate efficiently in both liquid broth and filter
matings [50]. This also points to mating-pair formation
as a limiting step in conjugation in liquid matings. These
differences in mating-pair formation efficiency between
different strains of the same species in liquid mating can
also lead to competition between donors, related recipi-
ents and less-related recipients for mating-pair forma-
tion with a donor. In liquid matings, this competition
will be present over the whole period of the experiment
because of the constant mixing of the populations.
In filter matings, the bacteria are fixed in space such

that conjugation is limited to neighbouring cells. Under
these conditions, mating-pair formation does not play an
important role in limiting conjugation, because conjuga-
tion to related recipients will be efficient at first and will
then saturate when all neighbouring recipients have re-
ceived the plasmid. Conjugation to less-related recipients
might be less efficient, but because the bacteria are fixed
in space, conjugation will continue for a longer time,
and cease when all neighbouring recipients have received
the plasmid. Competition for mating-pair formation will
be less important here as well, because the mating pairs
are fixed in space. As a result, the difference in conjuga-
tion frequency to more-related versus less-related recipi-
ents will decrease over time, and at later time points
relatedness will appear not to influence the conjugation
frequency.
The conjugation frequency is slightly higher in filter

matings than in liquid matings (Table 1; Table 2). In
filter matings, the conjugation frequency reflects the in-
trinsic conjugation rate, i.e., the conjugation rate from
one cell to another given that these cells form a mating
pair [12, 70]. In liquid matings, the conjugation fre-
quency reflects the product of the intrinsic conjugation
rate upon mating-pair formation and the rate of mating-
pair formation, and is therefore lower than the intrinsic
conjugation rate itself [70]. Both assays thus have an im-
portant interpretation, where liquid matings can be used
to quantify conjugation rates and assess the effect of
mating-pair formation in randomly mixing planktonic
populations, and filter matings can be used to determine
the ability of conjugation and to quantify the intrinsic
conjugation rate, when the number of neighbouring re-
cipients is limited.
In our review, conjugation was quantified by the ratio

of the number of transconjugants to the initial number
of donors. In order to better understand the role of con-
jugation in the spread of antibiotic-resistance plasmids,
the way conjugation is quantified needs attention. The
ratio of the number of transconjugants to the initial
number of donors or recipients is a straightforward way
to compare the ability of different strains to conjugate,

Table 2 Parameter estimates for the final multivariable linear
mixed regression model for filter matings

Included data
points

Log10(T / D)

n % Mean 95% CI

Reference

270 100 −5.38 −9.37 −1.40

Relatedness to E. coli donor

Same species 130 48.1 Reference

Same family 88 32.6 1.61 0.74 2.47

Same class 22 8.1 0.59 −1.03 2.22

Other class 30 11.1 0.64 −5.37 6.65

Recipient origin

Laboratory strain 116 43.0 Reference

Human 57 21.1 −0.86 −1.80 0.08

Dairy cattle 44 16.3 −2.16 −3.37 −0.94

Plant 16 5.9 −2.67 −6.75 1.41

Water 10 3.7 −6.10 −7.89 −4.31

Food 5 1.9 −2.29 −4.20 −0.39

Acidic drainage of a hot-spring 2 0.7 −1.37 −8.50 5.77

NR 20 7.4 −2.26 −4.56 0.03

Donor-to-recipient ratio

0.05–0.125 80 29.6 −2.59 −6.48 1.30

0.25–0.50 54 20.0 2.42 −0.83 5.68

1.00 124 45.9 Reference

3.00 10 3.7 −1.94 −8.31 4.44

NR 2 0.7 1.48 −3.50 6.46

Temperature (°C)

5 3 1.1 3.48 1.44 5.52

20–30 49 18.1 −0.15 −1.90 1.60

35–37 190 70.4 Reference

42–47 6 2.2 −0.03 −1.48 1.41

NR 22 8.1 1.06 −1.67 3.80

Mating time (h)

≤ 4 102 37.8 Reference

4.01–8.0 17 6.3 −1.80 −5.97 2.38

16–24 114 42.2 −3.63 −6.94 −0.31

30 27 10.0 −3.21 −7.70 1.29

48–72 10 3.7 −2.99 −10.78 4.81

Filter pore size (μm)

0.20–0.22 17 6.3 Reference

0.40–0.45 229 84.8 3.51 −1.35 8.38

NR 24 8.9 2.61 −2.59 7.82

CI confidence interval; D initial number of donors; n: number of data
points; NR not reported; T number of transconjugants. The value given as
‘Reference’ denotes the mean log10(T/D) if all variables are equal to their
reference category, i.e., if the recipient is an E. coli laboratory strain, and
the experiment is performed with a donor-to-recipient ratio of 1.00, a
temperature of 35–37 °C and less than 4 h mating time on a filter with a
0.20–0.22 μm pore size. The values for the other categories list the
differences from that overall mean
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but only when these assays are done under the same
conditions. The same conditions are needed between
experiments because the conjugation frequency ignores
essential population dynamics that are influenced by ex-
perimental conditions such as initial densities of donors
and recipients, donor-to-recipient ratio, nutrient concen-
tration, and mating time [11, 71].
Levin et al. proposed a way to estimate the conjugation

rate as a measure which is not sensitive to those experi-
mental conditions, and Simonsen et al. elaborated on this
by proposing a different method to measure it [11, 71].
This conjugation rate parameter is estimated from the
growth rate and initial density of the total population and
the densities of donors, recipients, and transconjugants at
the end of the experiment, and is expressed in the units
mL cell− 1 h− 1 [11]. It assumes random mixing of the bac-
teria, a resource-dependent growth rate which is the same
for all strains, and a resource-dependent conjugation rate
which is the same for donor and transconjugant strains
[11, 71]. We could not calculate this parameter for any of
the included studies, because growth rates of the bacteria
and their densities at the end of the experiments were not
reported. Therefore, we adjusted for differences in experi-
mental conditions by including some of the experimental
conditions as fixed effects in our statistical model. Some of
the unexplained variance may be explained by factors such
as the growth phases and initial densities of the bacteria
and the pH of the medium, which could not be included in
the model-selection process because they were frequently
not reported. The random study effect also incorporates
some of these potential effects of excluded variables on the
conjugation frequency. The inclusion of this random study
effect improved the model fit, showing that experimental
conditions influenced the conjugation frequency.
The intestines are considered an important hotspot for

the transmission of resistance plasmids with consequences
for public and veterinary health [72, 73]. Conjugation of
plasmids carrying extended-spectrum beta-lactamase
genes is more efficient in the intestines than in liquid mat-
ings [8, 16], and in vivo transmission of plasmids in the in-
testines occurs in a way resembling a fixed spatial location
such as in a biofilm [74]. Together with our finding that
conjugation in filter matings is not affected by donor-
recipient relatedness, this could suggest that distantly
related bacteria which live together in the intestinal
mucus exchange resistance plasmids through conjuga-
tion over large taxonomic distances. Maintenance in
the transconjugant population is further influenced by
factors such as fitness effects of the plasmid, adaptive
evolution [75], segregational loss, and the presence of
addiction systems [76]. Transconjugants from a dis-
tantly related recipient maintained the plasmid for 50
generations in absence of antibiotics [60], suggesting
the possibility of long-term maintenance.

Conclusions
Our results show that taxonomic relatedness is limiting
conjugation in liquid matings, but not in filter matings,
suggesting that relatedness is not a limiting factor for
conjugation in environments where bacteria are fixed in
space and conjugation is limited to mating between
neighbouring bacteria.

Methods
Scope
We included studies in which E. coli, a medically and vet-
erinary relevant species in which many resistance plasmids
have been described [26, 77–79], was used as a donor.
Furthermore, we restricted our search to liquid broth mat-
ings and filter matings, to circumvent the large heterogen-
eity regarding hosts and sampling methods encountered
in in vivo studies. The data from the liquid broth matings
and filter matings was analysed separately, because these
assays represent different experimental systems with fun-
damental differences in mating opportunities.

Search strategy
PubMed [80] and the CAB Abstracts database [81] were
searched to identify relevant studies from the biomedical
and veterinary field. Search terms to select articles giving
quantitative data on conjugation of plasmids were com-
bined with the AND-operator in a search which was
restricted to the title and abstract: (1) dynamic*[tiab] OR
efficienc*[tiab] OR rate*[tiab] OR kinetic*[tiab] OR fre-
quenc*[tiab] OR model*[tiab] OR quantitat*[tiab] OR quan-
tification*[tiab]; (2) (conjuga*[tiab] OR filter mating*[tiab]
OR HGT[tiab]) OR ((horizontal*[tiab] OR lateral*[tiab] OR
interspecific[tiab] OR interspecies[tiab]) AND(transfer*[-
tiab] OR spread*[tiab] OR transmiss*[tiab])) and (3) ((plas-
mid*[tiab]) OR ((resistan*[tiab] AND gene*[tiab]) OR
(conjugative[tiab] AND transposon*[tiab]))) in PubMed and
(1) (dynamic* or efficienc* or rate* or kinetic* or frequenc*
or model* or quantitat* or quantification*).ab,ti.; (conjuga*
or filter mating* or HGT or ((horizontal* or lateral* or
interspecific or interspecies) and (transfer* or spread* or
transmiss*))).ab,ti.; and (3) (plasmid* or ((resistan* and
gene*) or (conjugative and transposon*))).ab,ti. in CAB
Abstracts. The last search was performed on 18 September
2019. The 34 studies included in the review by Hunter
et al., who focused on conjugation in the intestines and on
intestinal bacteria not restricted to E. coli as a donor [22],
and a study by Saliu et al. [49], were added to the search
results as well.

Study selection
The studies were imported into Covidence systematic
review software [82]. Duplicate entries were removed.
The remaining studies (n = 5277) were first screened for
eligibility based on their title (Fig. 1). Studies were
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excluded if the title implied they did not deal with bac-
terial conjugation, or conjugation events from the distant
evolutionary past were inferred by comparing genome
sequences of bacteria, instead of measuring the conjuga-
tion efficiency in a laboratory assay.
The remaining studies (n = 3638) were then screened

for eligibility based on their abstract. Studies that men-
tioned only one recipient species in the abstract were
excluded, to select for studies in which the effect of re-
latedness on the conjugation frequency could also be
assessed within the study. This approach allows us to
make the comparison between studies less biased by
methodological differences that will affect comparisons
of conjugation frequencies. Studies were also excluded if
the donor or recipient contained other plasmids apart
from the one under study, or if the plasmid was not self-
transmissible. The effects of surface-exclusion, plasmid
incompatibility, and mobilisation on the conjugation fre-
quency were thereby excluded as we wanted to focus on
the effect of donor-recipient relatedness. Studies were
also excluded if the genes needed for conjugation or rep-
lication of the plasmids were modified, or if parts of
multiple natural plasmids were combined to create artifi-
cial plasmids.
The remaining studies (n = 345) were assessed based

on their full text. Studies were excluded if the English
full text was not available, if the mating experiment did
not involve liquid broth matings or filter matings, if the
donor species was not E. coli, or if no conjugation fre-
quency was reported.
The remaining studies (n = 32) were included in the

analysis. These involved 14 studies using liquid broth
matings, 14 studies using filter matings, and 4 studies
using both methods. The studies were published be-
tween 1972 and 2020 (Additional file 2).

Data extraction
For each experiment, we recorded the donor-to-
recipient ratio, the nutrient concentration, temperature,
pH, and agitation of the medium, the mating time, and
the pore size of the filter. For each plasmid, we recorded
the Inc group. If the Inc group of the plasmid was not
specified in the article, it was derived from other litera-
ture [50, 83, 84]. IncS was renamed IncH [27]. For each
donor and recipient bacterium we recorded the species,
their origin, growth phase, and the initial cell density.
Archaic species names were replaced with the current
species names as used in the Taxonomy database
[85]. This database was also used to extract the taxo-
nomic ranks genus, family, order, class, and phylum
for each recipient bacterium (Additional file 3). The
lowest taxonomic rank shared between the E. coli
donor and the recipient species was used to assess
their degree of taxonomic relatedness.

The conjugation frequency was expressed as the log10
ratio of transconjugants to donors. Data was extracted
from figures using WebPlotDigitizer if needed [86]. If no
transconjugants were detected, the reported detection
limit was extracted. If no detection limit was reported,
the detection limit was set at 1 · 10− 6.

Data analysis
The data was analysed using linear mixed regression with
a survival-analysis framework to account for censored data
points. The log10-transformed conjugation frequency was
used as the dependent variable. Relatedness was included
as the fixed effect of interest, and study was included as a
random intercept to account for the correlation between
multiple measurements within studies. The conjugation
frequencies that were below the detection limit were in-
cluded in the statistical model as censored data points in a
survival-analysis framework with the detection limits as
upper bounds for the conjugation frequencies. Model se-
lection was performed by adding variables to the model
based on the lowest Akaike information criterion (AIC
[87]), as long as adding a variable lowered the AIC by
more than 2 points. The liquid broth matings and filter
matings were analysed separately, given the fundamental
differences in mating opportunities they represent. The
following variables were considered for inclusion during
model selection: donor and recipient origin, donor-to-
recipient ratio, plasmid Inc-group, nutrient concentration,
temperature, and agitation of the medium, mating time,
and pore size of the filter. The growth phase and initial
density of donors and recipients and the pH of the
medium were not included, because in more than half of
the cases they were not reported. R version 3.6.3 [88] was
used for statistical analysis of the data. The survival-
package version 3.1–12 was used to estimate parameters
of the statistical model [89], assuming an identity link and
a normal distribution of the errors.
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