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Abstract

Background: Biodiversity and productivity of coral-reef ecosystems depend upon reef-building corals and their
associations with endosymbiotic Symbiodiniaceae, which offer diverse functional capabilities to their hosts. The
number of unique symbiotic partners (richness) and relative abundances (evenness) have been hypothesized to
affect host response to climate change induced thermal stress. Symbiodiniaceae assemblages with many unique
phylotypes may provide greater physiological flexibility or form less stable symbioses; assemblages with low
abundance phylotypes may allow corals to retain thermotolerant symbionts or represent associations with less-
suitable symbionts.

Results: Here we demonstrate that true richness of Symbiodiniaceae phylotype assemblages is generally not
discoverable from direct enumeration of unique phylotypes in association records and that cross host-species
comparisons are biased by sampling and evolutionary patterns among species. These biases can be minimized
through rarefaction of richness (rarefied-richness) and evenness (Probability of Interspecific Encounter, PIE), and
analyses that account for phylogenetic patterns. These standardized metrics were calculated for individual
Symbiodiniaceae assemblages composed of 377 unique /TS2 phylotypes associated with 123 coral species. Rarefied-
richness minimized correlations with sampling effort, while maintaining important underlying characteristics across
host bathymetry and geography. Phylogenetic comparative methods reveal significant increases in coral bleaching
and mortality associated with increasing Symbiodiniaceae assemblage richness and evenness at the level of host
species.

Conclusions: These results indicate that the potential flexibility afforded by assemblages characterized by many
phylotypes present at similar relative abundances does not result in decreased bleaching risk and point to the need
to characterize the overall functional and genetic diversity of Symbiodiniaceae assemblages to quantify their effect
on host fitness under climate change.
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Background

Coral-Symbiodiniaceae symbioses are the foundation of
coral reef ecosystems, as most shallow corals depend
upon the photosynthesis of mutualistic Symbiodiniaceae
for their fixed carbon [1]. When disassociated from these
symbionts (e.g. bleaching), corals face decreased func-
tionality and greater mortality which can result in sys-
temic reef degradation and potential ecosystem collapse
[2, 3]. Symbiodiniaceae (formerly known as Symbiodi-
nium [4]) are genetically and physiologically diverse with
>400 phylotypes identified [5, 6] with different capabil-
ities for photosynthetic production [7, 8], oxidative stress
resistance [9], and thermal stress tolerance [10-13].
From this functionally diverse pool of potential partners,
coral species associate with a selection of phylotypes
(heretofore ‘Symbiodiniaceae assemblage’), where indi-
vidual coral colonies frequently associate with a single
symbiont phylotype, and across conspecific colonies few
phylotypes are typically present at high frequencies and
dominate the assemblage, while others are present at
low frequencies and are minor components [14—16].
High-resolution genetic markers (e.g., nuclear microsa-
tellites and chloroplast psbA"™") are uncovering an un-
precedented number of host-specific Symbiodiniaceae
lineages revealing that ancestral phylotypes long consid-
ered generalists, such as Cladocopium C1 and C3 (ITS2
type C1 and C3 sensu [17]) are likely subdivided in 100 s
of host-specialized lineages with some flexibility in speci-
ficity, although a few lineages, such as Durisdinium tren-
chii (ITS2 type D1-4 or Dla, sensu [17]) are host-
generalists [4, 18—24]. Furthermore, these associations
can be highly dynamic with seasonal changes in sym-
biont density [25-27], biogeographical changes in sym-
biont composition [14, 28, 29] or changes in phylotype
composition due to environmental stress [29, 30]. Here,
we focus on the ‘Symbiodiniaceae assemblage’ as the po-
tential pool of symbionts available for association with a
given host species across biogeographic distributions,
environmental stress, and individual variability. The gen-
etic and physiologic diversity of symbionts, host specific-
ities, and dynamics of Symbiodiniaceae phylotype
associations with each coral species have been challen-
ging to adequately characterize, therefore their role in
holobiont fitness and stress resistance is still being re-
vealed. However, increasingly frequent and pervasive
thermal stress under climate change has heightened the
urgency to understand the consequences of coral-
Symbiodiniaceae association patterns in response to
thermal stress.

Associating with high thermotolerance phylotypes can
raise bleaching thresholds by 1-2 °C and protect holobionts
from thermal stress [10, 31, 32] by increasing the abun-
dance of thermotolerant phylotypes within the assemblage
(symbiont shuffling) or acquiring novel thermotolerant
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phylotypes from the environment (symbiont switching)
(Adaptive Bleaching Hypothesis) [33—36]. This suggests
that assemblage composition with greater phylotype rich-
ness (number of unique phylotypes associated with a coral
species) may include phylotypes that provide functional re-
dundancy or present the opportunity to dynamically adjust
relative abundancies of phylotypes from different functional
guilds to suit specific conditions, and thereby increase holo-
biont physiological flexibility [11, 37, 38]. Alternatively, high
fidelity to fewer phylotypes may form associations that lack
functional redundancy but result in matches of higher sym-
biont and host fitness that are more closely interdependent
and robust and are therefore capable of thriving under di-
verse conditions [39, 40]. Recent analyses suggest that coral
species with higher symbiont diversity may be more sensi-
tive to environmental stress [30, 41].

The presence of sub-dominant (i.e., phylotypes present
in the assemblage at low abundances) thermotolerant phy-
lotypes in an assemblage permits shifting to be a viable
strategy for thermal stress resistance. Phylotypes such as
Durusdinium trenchii (D1-4) are known to increase host
thermal stress resistance and are often present at back-
ground frequencies but increase in abundance under ther-
mal stress as the previously dominant phylotypes decrease
[11, 16, 42]. This suggests that assemblages that are char-
acterized by uneven relative abundances of unique phylo-
types (ie. low assemblage evenness), may provide a
mechanism of retaining functionally diverse phylotypes
whose physiological capabilities are only needed under
certain conditions. Alternatively, the presence of sub-
dominant phylotypes may represent associations that have
little functional significance [43] or are opportunistic non-
mutualists [20, 44, 45] that destabilize the assemblage.

Here we revisit the hypothesized links between Sym-
biodiniaceae assemblage composition (richness) and
relative phylotype abundance (evenness) with thermal
stress resistance of the holobiont. As access to Symbiodi-
niaceae functional diversity is based upon phylotype gen-
etic diversity, we reason that the physiological scope of
Symbiodiniaceae assemblages can be assessed by charac-
terizing phylotype richness and evenness using phylo-
genetic comparative methods to correct for evolutionary
non-independence among species.

Species assemblage richness and evenness are founda-
tional observations for assessing any ecological system,
but several biases are known to affect their estimation
[46-49]. Comparing raw species counts across assem-
blages can lead to misleading conclusions as the number
of species has been observed to increase with increasing
sampling effort [47, 49]. Species assemblage richness is
typically evaluated by building rarefaction curves, which
relate the expected number of species in each assemblage
as a function of the number of samples [46]. Comparisons
of raw species richness counts across assemblages are only
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credible when their rarefaction curves have reached an
asymptote, such that raw-richness approximates true rich-
ness [47-49]. Compilations of Symbiodiniaceae assem-
blages from the literature include broad ranges of
cumulative sampling effort and apparently diverse speci-
ficities of corals (e.g. [50, 51]), which will likely result in
rarefaction curves of varying properties and of differing
proximities to potential asymptotes. Additionally, richness
assessments can be biased by species delineations in both
Symbiodiniaceae and Scleractinia, which have been com-
plicated by high genetic diversity (e.g., [4, 18, 52, 53]). The
internal transcribed spacer 2 (ITS2) of the ribosomal RNA
nuclear gene is the most common taxonomic marker for
Symbiodiniaceae, but its multiple copies per genome
undergo concerted evolution resulting in a diversity of
functional and non-functional copies (intragenomic diver-
sity) that complicate species delineation [4, 18-20, 54].
Recent efforts involving high-resolution genetic markers
(e.g., mitochondrial (cob), chloroplast (psbA™"), and single
copy nuclear microsatellites), together with genetic re-
combination, and physiological-, ecological- and morpho-
logical- differentiation, are clarifying definitions of genera,
species, and individuals of both partners [4, 18-21, 52, 53,
55-57]. Furthermore, the ability to detect low-abundance
phylotypes is variable, which may obscure our under-
standing of symbiont diversity as well as dynamic changes
in partner identity or abundance. Molecular techniques,
such as PCR coupled with Denaturing Gradient Gel Elec-
trophoresis (DGGE) or direct sequencing have revealed
dominant and co-dominant phylotypes (i.e., more than ~
10% of the assemblage) which are assumed to be the most
physiologically relevant and have shown dynamic changes
in symbiont identity during thermal stress (e.g., [10, 58—
60]). Recent high-resolution techniques such as quantita-
tive PCR and next-generation sequencing (NGS) methods
have uncovered low-abundance phylotypes (present at less
than ~ 1% [15, 33, 42, 61, 62]) which, similarly to the ‘rare
bacterial biosphere’, may provide functions necessary to
the host and contribute to stress resilience [42, 62] or may
be intragenomic variants (IGV) or represent individual
variability within a lineage [18, 63, 64].

Additional biases occur in cross-species comparisons
by ignoring the shared evolutionary history among spe-
cies. Interaction patterns in mutualistic associations,
such as pollinators or arthropods associated with ant
hosts, are determined by a combination of ecological
and evolutionary processes [65, 66]. Cross-species pat-
terns of coral traits have been shown to be influenced by
evolutionary relationships among species (e.g. coloniality
and symbiosis, symbiont acquisition, skeletal light scat-
tering properties, and partner specificity [67-70];).
Therefore, it is likely that similar composition and rela-
tive abundancies of Symbiodiniaceae assemblages in
corals may partially result from evolutionary processes
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[17, 18, 28, 30, 71]. Standard tests for phylogenetic struc-
ture in the data, and appropriate phylogenetic correc-
tions for analyses that may be influenced by that
structure, are widely applied to other groups [65, 72]
and are becoming increasingly common as molecular
phylogenetics of corals becomes more robust (e.g. [55]).

Here we determine the role of Symbiodiniaceae assem-
blage composition (richness) and phylotype relative
abundance (evenness) in coral thermal stress resistance.
We start by evaluating how sampling biases (insufficient
and uneven sampling) affect the quantification of Sym-
biodiniaceae assemblage composition and abundance,
and use rarefaction methods to standardize richness and
evenness metrics to minimize biases. We then perform
comparative analysis of their correlations with bleaching
susceptibility across 123 coral species using phylogenetic
comparative methods. We chose the I/7S2-DGGE phylo-
types for our analyses because it is the most extensive
dataset currently available, with the understanding that
(i) we are conservatively estimating richness as we are
limited to the most abundant (marker sensitivity of ~
10%) and likely most physiologically relevant phylotypes,
and (ii) we will not have the best available resolving
power to distinguish specific lineages or intragenomic
variants identified by higher-resolution markers (e.g., [4,
19, 73]). We compiled and analyzed a dataset of 15,566
records of associations between 123 coral species with
documented responses to thermal stress [74] and 377
Symbiodiniaceae ITS2 phylotypes.

Results

Incorporating evolutionary history into cross-species
analyses to reveal patterns among traits

We evaluated whether shared evolutionary history among
coral hosts could explain similar coral-Symbiodiniaceae
phylotype association patterns. Out of the fourteen regres-
sion analyses reported here, seven (50%) were corrected
for phylogenetic relationships where significant phylogen-
etic signal was detected (Table S3).

Effect of sample size on richness and evenness of
Symbiodiniaceae assemblages

We determined the species-specific number of associ-
ation records to evaluate uniformity of sampling efforts
across species (Table S1). The probability distribution
function of the number of records of phylotype associa-
tions with each coral is a long-tailed distribution indicat-
ing that sampling effort is highly uneven, where half of
the species have been sampled at 44 records of associ-
ation or less (median =44 records, n =62 species), and
few species have been extensively sampled (1 =22 spe-
cies with >200 records of association, Fig. 1a and Table
S2).
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Fig. 1 Sampling effort (number of coral phylotype association records) biases. a Probability distribution function of sampling effort across 123
coral species with 15 or more phylotype association records showing uneven sampling across species. b Raw-richness (maximum number of
unique phylotypes within each Symbiodiniaceae assemblage) and ¢ Raw-evenness (relative abundance of phylotypes within each
Symbiodiniaceae assemblage) dependence on sampling effort for 123 species

We calculated raw-richness (raw-R) and raw-evenness
(raw-E, Eq. 1) for each of the 123 coral-specific phylo-
type assemblages (Table S2), resulting in a mean raw-R
of 9.55+7 (mean tst dev) phylotypes per assemblage
and a range of 1-41 phylotypes, and a mean raw-E of
0.71 £ 0.21. Because the number of species observed is
known to increase with sampling effort (e.g. [49]), raw-R
and raw-E of phylotype assemblages were compared
with sample size. Raw-R significantly increases with in-
creasing sampling effort (linear-r = 0.656, p <0.001, n =
123; Fig. 1b and Table S3), indicating that extensively
sampled coral species may artificially appear to be asso-
ciated with higher numbers of unique phylotypes and
raw-richness may not reflect true richness of assem-
blages. Conversely, raw-E tended to decrease with sam-
pling effort (linear-r = - 0.122, p =0.179, n =123; Fig. 1c
and Table S3), as has been described for other

assemblages (reviewed in [48]), but this trend was not
statistically significant.

Rarefaction analysis to compare phylotype richness

across differentially sampled assemblages

The tight correlation between sample size and raw-
richness could be caused by insufficient sampling of the
assemblage, which results in increased probabilities of
detecting novel phylotypes with each additional sample.
This effect is observable as a rarefaction curve (Eq. 2),
which relates the expected number of phylotypes yielded
by sampling effort. We focused on rarefaction curves for
coral species with more than 100 records (35 species,
Figs. 2a and S1, Table S2), as these assemblages are most
likely to be sufficiently sampled. The slope at the end of
the rarefaction curve (‘slope-at-end’) was calculated to
evaluate if the curve reached an asymptote. As expected,
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depth n=15 (Eq. 2) on sample size (compare with Fig. 1b)
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Fig. 2 Rarefaction methods to estimate and compare phylotype richness among coral species. a Rarefaction curves for coral species with 100 or
more records of coral-phylotype association (35 coral species, see Fig. S1 and Table S2 for details). Curves are colored by the extent to which they
level off ('slope at end’), with darker blue coloration indicating saturated curves (low slope at end) and darker red coloration indicating highly
unsaturated curves (high slope at end) b Dependence of reaching an asymptote (expressed as slope at end of rarefaction curve) on sample size.
Slopes approaching zero are indicative of asymptotic rarefaction curves. Coloration as in (a). ¢ Dependence of rarefied-richness at rarefaction

the more an assemblage was sampled, the higher the
likelihood a curve reached an asymptote (i.e. the smaller
the ‘slope-at-end’, linear-r = -0.338, p=0.047, n =235,
Fig. 2B, and Table S3). Rarefaction curves of phylotype
assemblages for a few coral species are asymptotic, indi-
cating that raw-richness approximates true richness for
those species (e.g. Orbicella annularis and Pocillopora
damicornis, curve 7 and 1, Fig S1). However, many rar-
efaction curves are non-asymptotic with currently avail-
able sample sizes (e.g. Porites lobata and Acropora
millepora, curves 2 and 21, Fig S1) and as in some mi-
crobial, invertebrate, and tropical plant assemblages they
may never be asymptotic within practical sampling ef-
forts ( [47] and references therein).

In order to compare phylotype richness across species
with uneven and insufficient sampling, we used rarefaction

to interpolate expected richness of each assemblage at uni-
form sample sizes (see methods, [48]). Specifically, we rar-
efied each curve to a standardized subsample size n (Eq. 2)
selected in the rising part of the rarefaction curve and com-
pared expected richness (rarefied-R) across assemblages. In
this way, setting n =15 records of association (R;5 - only
coral species with at least 15 records of association were an-
alyzed, methods and Table S1) resulted in distinct rarefied-
R;5 values for Symbiodiniaceae assemblages indicated in
Fig. 2a: 6.1 unique phylotypes associated with Porites
lobata, 8.5 with Pocillopora damicornis, 7.2 with Orbicella
annularis and 2.9 with Acropora millepora (see Table S2
and Fig S1 for rarefied-R;5 calculated for other species).
We also determined if rarified-R;5 was significantly af-
fected by sampling effort. Contrary to the tight correlation
between raw-R and sampling effort for 123 coral species
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(linear-r = 0.656, p < 0.001; Fig. 1b and Table S3), the rela-
tionship between rarefied-R;5 and sampling effort is not
significant and is nearly eliminated (linear-r=0.127, p =
0.162; Fig. 2c and Table S3). These results indicate that
better sampled phylotype assemblages do not have higher
rarefied-R;5 values than poorly sampled assemblages,
allowing for valid cross-species comparisons of phylotype
richness among assemblages that are insufficiently (non-
asymptotic rarefaction curves) and unevenly sampled. Al-
though rarefaction isolates rarefied-R from covariation
with sampling effort, rarefied-R;5 and raw-R are signifi-
cantly correlated (phylo-r=0.578, p<0.001, n=123
Fig. 3a, Table S3), indicating that underlying patterns in
the data are preserved after rarefaction. Four exemplar
species with varying rarefied-R;s/raw-R correlations were
examined: Orbicella annularis (rarefied-R;5 = 7.2, raw-R =
20, raw-E=0.73, and 1093 records) with rarefied-R;s
higher than expected from the correlation, Pocillopora
damicornis (rarefied-R;5 = 8.5, raw-R =41, raw-E=0.71,
and 1350 records) with rarefied-R;5 within expected
values, and Porites lobata (rarefied-R;5 = 6.1, raw-R = 40,
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raw-E =0.53 and 537 records) and Acropora millepora
(rarefied-R;5 = 2.9, raw-R = 12, raw-E =0.29, and 601 re-
cords) with rarefied-R; 5 lower than expected from the cor-
relation (Fig. 3a, Table S2). While O. annularis and P.
damicornis have phylotype assemblages with asymptotic
rarefaction curves, P. lobata and A. millepora have phylo-
type assemblages with non-asymptotic rarefaction curves
(Fig. 3b). When the relative phylotype abundance of a
Symbiodiniaceae assemblage is highly even (i.e. phylotypes
are present in similar abundances) and the assemblage is
highly sampled (e.g. O. annularis), it is likely that the as-
semblage is sufficiently sampled, as indicated by an
asymptotic rarefaction curve, such that raw-richness ap-
proximates true richness (Fig. 3b and c). However, uneven
relative phylotype abundance (i.e. presence of few high-
abundance and multiple low-abundance phylotypes; low
evenness) decreases the probability of sufficiently sam-
pling and estimating true richness (e.g. A. millepora), par-
ticularly at smaller sample sizes (e.g. P. lobata) and may
effectively prohibit asymptote identification at any sam-
pling effort (e.g. P. lobata) (Fig. 3b and c).
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Fig. 3 Comparing richness of Symbiodiniaceae assemblages across coral species. a Dependence of rarified- richness (at rarefaction depth n=15,
Eq. 2 or rarified-R;s) on raw- richness for coral species with 100 or more records of coral-phylotype association (35 coral species, see Table S2 for
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based on their individual abundances within each assemblage. Phylotypes present in the assemblage at frequencies of 5% or higher are labeled
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Rarefaction methods to compare phylotype evenness
across coral species: rarefaction of slopes at start

Shape of rarefaction curves depends on the maximum
number of phylotypes of the assemblage, which is de-
fined by the asymptote (assemblage richness), and the
relative abundance of species, which is defined by the
slope (assemblage evenness) [48, 75]. Rarefaction curves
of assemblages structured by high evenness have higher
initial slopes in the rising part of the curve (i.e. ‘slope-at-
start’), while assemblages structured by low evenness
have lower initial slopes [48, 75]. This initial slope of the
rarefaction curve is the maximum slope attainable and is
mathematically equivalent to the probability of randomly
selecting two different species from the compiled associ-
ation records (PIE [76]). Probability of Interspecific En-
counter ranges from 0, representing minimum evenness
where one species is dominant and others are rare, to 1,
representing maximum evenness where all species are
equally abundant.

A similar dependence was observed for Symbiodinia-
ceae assemblages, where the greater the raw-E of the as-
semblage, the higher the PIE or the steeper the slope in
the rising part of the rarefaction curve (linear-r = 0.855,
p<0.001, n=123; Table S3). Specifically, rarefaction
curves of low-evenness assemblages will slowly rise at
first since each sample will likely yield a dominant phy-
lotype before minor phylotypes are identified (i.e. low
initial slope), while high-evenness assemblages will rise
quickly at first since each sample will likely yield a novel
phylotype (i.e. high initial slope, Fig. 3b and c). Similarly
to raw-E (linear-r = - 1.22, p =0.179, n = 123; Fig. 1c and
Table S3), PIE is independent of sample size (phylo-r =
0.171, p = 0.058, n = 123, Table S3).

Symbiodiniaceae assemblages of the 123 coral species
studied are structured by a broad range of relative phylo-
type abundance, such as high PIE of phylotype
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assemblages associated with O. annularis with several
co-dominant phylotypes and low PIE of phylotype as-
semblages associated with A. millepora with one domin-
ant and several sub-dominant types (Fig. 3c and Table
S2). Sub-dominant phylotypes present in the assemblage
at very low frequencies were observed only once (or a
few times), so that for an assemblage sampled by 50 re-
cords ‘singletons’ would be present at 2%, while sam-
pling 400 records would be 0.25%. Rarely observed
phylotypes affect whether a rarefaction curve approaches
an asymptote, such that assemblages with multiple rare
phylotypes may need more extensive sampling to reach
an asymptote or may never reach an asymptote at a
practical sampling effort (compare P. lobata and A. mill-
epora, with O. annularis and P. damicornis, Fig. 3c).

Preservation of bathymetric and geographic patterns in
phylotype assemblage richness

Comparing raw-R to rarefied-R indicates that underlying
patterns in the data are preserved after rarefaction. How-
ever, there are other important characteristics of assem-
blage composition that could be potentially obscured
during the rarefaction process. Studies of phylotype as-
semblages in coral species that span bathymetric and
geographic ranges have shown significant correlations
between phylotype richness and depth and biogeo-
graphic ranges of host coral species [28, 77-79]. We
compared ranges of bathymetry, latitude, and longitude
distribution for each coral species (Table S2) with the
raw-R and rarefied-R of their Symbiodiniaceae assem-
blages (Table 1).

Differences in distribution of coral species significantly
correlated with both raw-R and rarefied-R, with wider
range of bathymetry, latitude, and longitude correlated
with greater phylotype richness (Table 1). These results
indicate that rarefaction of phylotype richness preserves

Table 1 Relationships between raw-richness (raw-R), rarefied-richness (rarefied-R), or taxon-specific bleaching response (taxon-BRI)
and depth, latitude, or longitude ranges of observation records for 123 coral host species

Metric Parameter Linear r Linear p Pagel's A p Phylogenetic r Phylogenetic p
Raw-R Species A Depth 0.145 0.110 <0.001 0.24 0.007

Species A Lat 0.338 <0.001 1.000 0.122 0.178

Species A Long 0.546 <0.001 1.000 0.267 0.003
Rarified-R Species A Depth 0.003 0.978 0.002 0.220 0.014

Species A Lat 0.273 0.002 1.000 0177 0.051

Species A Long 0.568 <0.001 1.000 0.252 0.005
Taxon-BRI Species A Depth 0.110 0.224 0.010 0.112 0217

Species A Lat 0.312 <0.001 0.043 0.095 0.296

Species A Long 0.140 0.123 1.000 0.101 0.264

Significant Pagel’s A p-values (< 0.05, in bold) indicate phylogenetic bias in the distribution of linear regression residuals; and only when Pagel’s A is significant,
were phylogenetically-corrected regression results accepted for interpretation. The p-values of regressions indicated by Pagel's A test (either linear for non-
significant A, or phylogenetic for significant A) are also in bold when significant to indicate which result was accepted for interpretation. Individual species ranges

of depth, latitude and longitude can be found in Table S2
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the general patterns of assemblage composition across
host species distributions, with the strongest correlation
observed across longitudinal range (expressed as A-lon-
gitude, linear-r =0.568, p <0.001, Table 1 and Fig. 4a).
Across bathymetric ranges (expressed as A-depth, phylo-
r=0.220, p =0.014, Table 1) some assemblages acquire
new phylotypes more likely to be found at certain depths
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(e.g. phylotype C3.U2 in Montastrea cavernosa and phy-
lotype D1-4 in Platygyra daedalea, Fig. 4b), while others
mainly show differences in the relative abundance of
some or all of their phylotypes (e.g. phylotypes A4 and
B1 in Porites astreoides, phylotype D1 but not C3n-t in
Seriatopora hystrix, and C3, C3b and C3b.N1 in Agaricia
humilis Fig. 4b).
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color corresponds to a phylotype, with the density of its records for that coral species plotted as a function of depth
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Phylotype assemblage richness and evenness and their
relationship to coral thermal stress response (coral
bleaching susceptibility)

Using rarefied-R and PIE to minimize the effects of in-
sufficient and uneven sampling and allow valid cross-
species comparisons, we revisited the question of Sym-
biodiniaceae assemblage richness and evenness in
expanding coral host functional capabilities under ther-
mal stress.

We evaluated the relationship between rarefied-R and
coral bleaching response for 123 species (see Table S2
for species-specific susceptibility indices or taxon-BRI
values) at multiple rarefaction depths. Performing corre-
lations between richness and bleaching response at in-
creasing rarefaction depths allows for evaluation of the
trend and strength of correlation independently of differ-
ences in evenness among assemblages. Because assem-
blages with higher evenness show steeper slopes than
assemblages with lower evenness (e.g. P. lobata and A.
millepora, Fig. 3b and c), rarefaction curves of different
assemblages may cross each other at some rarefaction
depth depending on their expected richness. In this case,
the rank order of expected richness between Symbiodi-
niaceae assemblages could change depending on the
sub-sample size chosen for rarefaction. However, coral
species lists that can be compared at increasing rarefac-
tion depths will decrease in number because most coral
species have small sample sizes (median =20 records,
Fig. 1a) and will be excluded from deeper analyses. Thus,
rarefaction depths of 15, 20, 30, 40, 50, and 60 records
yielded corresponding taxon sets of 123, 105, 81, 65, 55,
and 49 coral species. We demonstrate that the probabil-
ity distributions of rarefied-R shift with rarefaction
depth, but converge at greater resampling depths (e.g.
compare peak of distributions for rarefied-R;5~6.5
unique phylotypes out of a random draw of 15 records
with rarefied-Rsy = 8 unique phylotypes out of random
60 record draws, Fig. 5a).

The relationship between rarefied-R and bleaching
susceptibility was examined at the same six rarefaction
depths. We identified a significant positive correlation at
all rarefaction depths, which increased in strength and
significance with increasing rarefaction depth (correl-
ation coefficients ranged from 0.276 at rarefaction depth
15, to 0.466 at rarefaction depth 60; Fig. 5b and 6 and
Table S3). These results demonstrate that the relation-
ship between taxon-BRI and richness is independent of
rarefaction depth and its corresponding reductions in
taxon sets. Furthermore, the relationship between taxon-
BRI and richness is not being driven by increases in
Symbiodiniaceae phylotype richness observed across
host coral species distributions. Although we demon-
strated a correlation between rarefied richness and coral
host distributions (significant positive relationships
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between rarefied-R;5 and A depth, A latitude, and A lon-
gitude; Table 1), taxon-BRI is not significantly correlated
with change in coral host A depth (phylo-r=0.112, p =
0.217, n=123; Table 1), A latitude (phylo-r =0.095, p =
0.296, n=123; Table 1), or A longitude (linear-r =0.14,
p=0.123, n=123; Table 1). These results indicate that
association with assemblages composed of increasing
numbers of phylotypes (i.e. higher rarefied-R) is related
to increasing risk of coral bleaching (i.e. higher taxon-
BRI).

A similar pattern was detected between evenness and
bleaching susceptibility, where a significant positive rela-
tionship between PIE and taxon-BRI was observed for
123 coral species (phylo-r = 0.182, p = 0.044, Fig. 6, Table
S3). These results indicate that corals that associate with
Symbiodiniaceae assemblages with equal relative abun-
dance of phylotypes (high evenness) are more suscep-
tible to bleaching.

Discussion

Here we evaluated the effect of associating with different
numbers of Symbiodiniaceae partners (assemblage com-
position or richness) at different abundances (assemblage
evenness) on coral thermal stress response by performing
comparative analysis across 123 coral species. Direct enu-
meration of species richness and evenness is known to be
heavily biased by sample effort, and cross-species com-
parison is known to be heavily biased by evolutionary pat-
terns among species. We minimized these biases by (i)
applying rarefaction methods to derive standardized met-
rics of richness and evenness and (ii) applying phylogen-
etic comparative methods to correct for evolutionary
relationships. We show that rarefaction methods effect-
ively minimize the effects of sampling bias for cross-
species comparisons (Figs. 1 and 2). Furthermore, the ap-
propriate application of phylogenetic correction, or in the
absence of phylogenetic signal the application of the un-
corrected analysis, averted incorrectly identifying signifi-
cance or lack thereof in five of the nine regression
analyses (Table 1). Using these standardized metrics of
richness and evenness along with phylogenetic compara-
tive analysis, we show that coral species with higher Sym-
biodiniaceae assemblage richness and evenness are
associated with a higher risk of bleaching.

Sampling effort of Symbiodiniaceae assemblages is
highly uneven among 123 coral species in this study
(Fig. la), in agreement with the previously observed
highly skewed sampling effort among 307 coral species
[80]. This is due, in part, to patterns of species abun-
dance (few abundant species while most are rare [81,
82]), difficulty in sampling remote or deep reefs, and
various biological or experimental interests of the inves-
tigators collecting the data (e.g. [28, 80, 83]). While enu-
merating unique phylotypes associated with each species
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(raw-richness or raw-R) and comparing across species
has contributed to the understanding of coral specificity
(e.g. [50, 84, 85]) it is unclear how much of the observed
patterns of coral-Symbiodiniaceae associations are due
to sampling biases caused by insufficient and unequal
sampling effort.

We demonstrate that by rarefying each assemblage to
a standardized subsample size, we can interpolate an es-
timate of expected richness for each assemblage (rari-
fied-R) that is independent of variation in sample effort
(Fig. 2a and c). Furthermore, because a standard sub-
sample is chosen in the rising part of the rarefaction
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curve before an asymptote could be reached, rarified-R
also becomes independent of the level of sampling re-
quired to reach an asymptote (Fig. 2a). Therefore,
rarified-richness minimizes sampling effort bias and al-
lows for estimates of expected phylotype richness re-
gardless of how completely an assemblage is sampled
(after achieving a minimum sampling effort) and allows
for valid cross-assemblage comparisons. Rarefaction
methods are broadly applied to obtain standardized met-
rics of richness to allow for comparisons among a variety
of terrestrial, aquatic, and marine assemblages [47, 86].

Rarefaction of assemblage richness does not determine
the absolute values of richness in the sample of coral-
Symbiodiniaceae associations (i.e. number of unique
phylotypes [87]), but instead calculates the expected
number of unique phylotypes in a sub-sample randomly
drawn from all association records with that coral spe-
cies. The rarefaction process thus decouples the value of
richness from sampling effort and provides a metric that
can be validly compared across species while maintain-
ing the underlying patterns in the data, including in-
creasing richness with increasing bathymetric and
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geographic distributions of the host corals (Table 1, Fig.
4a). Exemplar Symbiodiniaceae assemblages that were
tracked across bathymetry have greater richness values
with expanding depth ranges, as phylotypes are
substituted (Montastrea cavernosa or Platygyra daedala,
Fig. 4b) or their relative frequencies are shuffled across
depth (Porites astreoides, Fig. 4b). Similar changes in
phylotype composition across environmental and bio-
geographic gradients have been reported in surveys of
corals across the Great Barrier Reef (e.g., [88, 89]), In-
dian Ocean [28], Caribbean [83], in Red Sea Porites [90]
and corals from the South China sea [91].

The relative phylotype abundance, or evenness, of
Symbiodiniaceae assemblages was also evaluated. Raw-E
varied considerably among the 123 Symbiodiniaceae as-
semblages in this study (range 0-1) and, although it
tended to decrease with sample size (as observed for
other communities [48]), this trend was not statistically
significant (Fig. 1c). However, because rarefaction curves
provide knowledge of both richness (by rarefying assem-
blages to a given rarefaction depth) and evenness (by de-
termining the maximum slope of the rising part of the
rarefaction curve; reviewed in [48]) we extracted both
richness and evenness metrics directly from rarefaction
curves for consistency. There is a strong correlation be-
tween PIE and raw-E for the 123 coral species (linear-
r=0.855, p<0.001, Table S3), and because PIE is also
decoupled from sampling effort, it can be validly com-
pared across species.

We observed a strongly positive correlation between
rarefied-richness and bleaching susceptibility, regardless
of rarefaction depth (Fig. 5b). This correlation is not
driven by patterns in host distributions (A depth, A lati-
tude, and A longitude), which are significantly correlated
with rarefied-R;5, but not taxon-BRI. This indicates that
increasing numbers of phylotypes in Symbiodiniaceae as-
semblages are associated with increasing coral suscepti-
bility to bleaching. Our study extends the observations
of Putnam et al. [30] for raw-richness in Acropora, Pocil-
lipora, and Porites genera and for diversity in a larger
sampling of coral species by Darling et al. [41], which re-
ported increased sensitivity to environmental stress with
increasing numbers of symbiont partners. We also ob-
served a positive correlation between Symbiodiniaceae
assemblage PIE and coral bleaching susceptibility
(phylo-r = 0.182, p = 0.044, Table S3), where corals asso-
ciated with assemblages dominated by one phylotype
(PIE=0, or — 0) showed lower bleaching susceptibility
than corals with multiple co-dominant phylotypes (PIE =
1). This indicates that the presence of a dominant phy-
lotype is associated with decreasing coral susceptibility
to bleaching. Highly specific mutualisms (i.e., PIE=0)
may promote tight correlations between symbiont and
host fitness [39], where symbiont fitness is associated
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with host survival, reproduction, and increased physio-
logical performance of the holobiont under both normal
or stressful conditions (eg., [19, 68, 92]). Alternatively,
associations with one main phylotype and multiple sub-
dominant phylotypes present at low-abundances (PIE —
0), may favor holobiont fitness under stress since sub-
dominant phylotypes may represent a pool of diverse
functional capabilities that can be accessed by the host
as needed to address changes in environmental condi-
tions and may temporarily replace dominant phylotypes
[11, 15, 33]. Furthermore, associations with multiple
phylotypes (PIE — 1) where hosts may expel symbionts
for novel genotypes, (i.e. high symbiont turnover) may
weaken the relationship between symbiont fitness and
host survival. In this case, symbiont fitness may be
ascribable to the relative importance of other determi-
nants of symbiont performance [93] such as the ability
to outcompete other symbionts (e.g. [94]) or to avoid
host expulsion (e.g. [11]). When symbionts face these
competing selection pressures, selection for increased
holobiont fitness may be greatly reduced in favor of
symbiont-selfish traits that may be detrimental for sym-
biosis stability under stress (e.g. [37, 93]). To elucidate
the dynamics and the roles of both low-abundance and
resident dominant phylotypes in the assemblages, high-
sensitivity tools such as NGS may be required. Less sen-
sitive DGGE-ITS2 may not detect low abundance phylo-
types in some surveys unless the resident dominant
assemblage is disturbed by stresses. These hypotheses
will become more easily testable as more studies using
high resolution techniques examine the identities and
relative abundances of Symbiodiniaceae associations at
the colony-level and are reported on platforms like Sym-
Portal [95].

Limitations and general considerations

By identifying strong correlations between the number
of symbiont partners, their relative abundance, and coral
response to thermal stress, this study adds to the grow-
ing evidence that the fitness of the host is influenced by
the overall functional capabilities of its Symbiodiniaceae
assemblage, including dominant and sub-dominant phy-
lotypes. Due to the large number of coral species used
for comparative phylogenetic analysis, we applied the
largest and most comprehensive currently available data-
set: the ribosomal RNA I7S2 Symbiodiniaceae phylo-
types. Although I7S2 is a multiple-copy gene with
considerable intragenomic variation (reviewed in [54, 64,
96, 97]), it is the most intensively used genetic marker in
Symbiodiniaceae research and is therefore comparable
across studies and species, and is the most comprehen-
sive source of information on our current understanding
of Symbiodiniaceae differential host specificity, nutrient
production, nutrient acquisition, photophysiology, and
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thermotolerance. However, our results should be inter-
preted within the limitations of [7S2 phylotype
identification.

First, we are limited to evaluating the most abundant
(and likely most physiologically relevant) phylotypes
present in each symbiont assemblage due to I752-DGGE
sensitivity limits (~ 10%). Importantly, individual phylo-
type abundance seems to be dynamically regulated by
the host in response to environmental change and stress
[25, 98]. High-sensitivity techniques such as NGS are
poised to advance our understanding of the diversity and
dynamics of Symbiodiniaceae assemblages due to their
ability to identify extremely low-abundance sequences
(e.g., [61, 63, 64]). However, NGS tends to uncover very
rare community members within a colony (less than ~
1%) that have, so far, an unknown bearing on coral fit-
ness (e.g., [42, 43, 61, 62]). These low abundance phylo-
types could significantly influence rarefaction analysis by
inflating richness estimates. Furthermore, because NGS
does not yet have host species coverage provided by
ITS2-DGGE (but see recent advances in [95]) and is very
sensitive, the two data types are not easily merged, so
NGS data was not included in this study.

Additionally, ITS2-DGGE has shown low taxonomic
resolution to distinguish many recently identified host-
specific lineages or IGVs identified by higher-resolution
markers (e.g., [4, 19, 73]). Recent integrative approaches
that rely upon multiple lines of evidence are supporting
robust species hypotheses and clarifying species delinea-
tions in Symbiodiniaceae [18-21, 57]. Likewise, host
misidentification, particularly in the case of cryptic coral
species complexes, may also affect richness and evenness
estimates since distinct species within the complex may
associate with different phylotype assemblages. Further-
more, while there are many phylotypes that are typically
identified by 2-3 co-dominate unique I7S2 sequences
(such as D1-4 or D1-4-6) and are widely accepted to
represent a single I7S2 phylotype because of repeated
observation, there are other observations where it is
much less clear what this variation may represent, such
as C3.N5 or C3.N6 (of [78]) which were originally
thought to represent IGV within single phylotypes or a
mix of host-specific phylotypes, but recent evidence sug-
gests the latter (Pim Bongaerts personal communica-
tion). These observations of similar I7S2 DNA
sequences that have not yet been codified in the phylo-
type literature were classified as potential intragenomic
variants (P-IGVs, but not the unique variants described
in Bongaerts and colleagues, see Table S1), which were
treated as individual phylotypes in the analysis. P-IGVs
make up ~4% of our phylotype association records
(Table S1), and exclusion of these records (i.e., treating
them as true IGV of a single phylotype) still show a sig-
nificantly positive correlation between rarified-richness
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and BRI (phylo-r =0.213, p = 0.02, n = 118) similar to the
full dataset.

Finally, there are technical limitations regarding /752-
DGGE identification that could confound estimates of
symbiont richness and evenness. Our dataset contains
ITS2 phylotypes identified using different primers and
protocols, although 67% of coral-Symbiodiniaceae asso-
ciation records (10,496 out of 15,566, Figure S2) were
identified with ITSintfor2 and ITS2Clamp primers and
protocol [17, 99] (Table S1). Recently, three of the most
commonly used 752 primers were tested and a specific
pair was demonstrated to be the most specific and sensi-
tive [100], rendering other primers less optimal to iden-
tify low-abundance phylotypes across a variety of host
species.

Additionally, about 15% of the association records were
identified using cloning of rDNA genes (Table S1), which
is known to increase the variability of the sequences gen-
erated and artificially increase richness estimates [101];
nevertheless, because many of the phylotypes identified by
cloning were common to the main phylotypes identified
by ITS2-DGGE and artifacts are typically rare events, we
expect them to have a negligible influence on the conclu-
sions of this study. Furthermore, while most DGGE bands
were excised, sequenced, and reported as containing
unique phylotypes, or particular configurations of phylo-
types if co-dominant bands were present (Table S1), IGVs
may artificially overestimate richness in particular assem-
blages or may not be resolved by DGGE and underesti-
mate richness [73]. However, in spite of these drawbacks,
ITS2-DGGE has identified many phylotypes over the last
decades that have proven congruent with higher-
resolution genetic markers (e.g., [18]) and several compila-
tions of coral-Symbiodiniaceae associations (e.g., [5, 102,
103], which are included in our dataset) have been ana-
lyzed to inform general trends and patterns.

High-resolution techniques that are providing genetic
and metabolic characterization of all the members of Sym-
biodiniaceae assemblages (e.g., [42, 61, 62, 104]) will reveal
a clearer picture of the functional capabilities that sub-
dominant phylotypes may bring to their hosts, as well as
the role of dominant and subdominant phylotypes in the
community, as well as community dynamics. These colony-
level data on Symbiodiniaceae assemblage composition,
abundance, and dynamics may aid in management and
conservation of coral species in a changing climate.

Conclusions

We have demonstrated that rarefaction and phylogenetic
comparative methods allows for the elimination of spe-
cific biases in assessing the relationship between richness
and evenness of Symbiodiniaceae phylotype assemblages
and coral bleaching response, while preserving under-
lying assemblage patterns across host bathymetry and
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geography. Although these techniques are broadly ap-
plied across many other systems, they are rarely applied
to the coral-Symbiodiniaceae symbioses and, to our
knowledge, estimates of these assemblages have never
been simultaneously corrected for both sampling effort
and phylogenetic biases. The results indicate that Sym-
biodiniaceae phylotype assemblages that are character-
ized by the potential flexibility afforded by many
phylotypes present at similar relative abundances are as-
sociated with increased bleaching susceptibility across a
broad scope of coral species diversity and suggest that
coral species that employ this strategy in compiling their
symbiotic assemblages will not be the species that perse-
vere under climate change.

Methods
Pan-tropical matrix of associations between 123 coral
species and 377 Symbiodiniaceae ITS2 phylotypes
Naturally occurring combinations of coral species and
Symbiodiniaceae ITS2 phylotypes were identified
through a survey of the literature. We targeted coral spe-
cies with quantifiable responses to thermal stress
through a previously described taxon-specific bleaching
and mortality index, taxon-BRI, where elevated response
to thermal stress (high taxon-BRI) indicates high bleach-
ing susceptibility [74]. However, only phylotype associa-
tions observed under non-bleaching conditions were
considered here in order to identify the baseline pattern
of Symbiodiniaceae associations for each coral species.
Thus, taxon-BRI is used in this study as an estimate of
the mean bleaching risk of each coral species due to the
lack of information regarding bleaching response of each
sampled colony. We relied upon Symbiodiniaceae phylo-
type definitions based on I7S2, without assuming that
this level of genetic variation represents a specific taxo-
nomic unit, but rather as an ecologically relevant unit of
genetic diversity. ITS2 phylotypes in our compiled data-
set were typically identified through PCR amplification
of the nuclear rDNA, combined with DGGE, band exci-
sion, and subsequent DNA sequencing (~ 75% of the re-
cords of association; ~15%, ~7.5% and ~0.9% were
identified through cloning, single strand conformation
polymorphism and small-subunit restriction fragment
length polymorphism respectively). Table S1 contains
detailed information on the technique described in each
study used for phylotype identification. Individual phylo-
types with repeatedly observed co-dominant DGGE
bands were listed as different configurations; by a single
ITS2 DNA sequence (e.g. D1), two distinct sequences
(e.g. D1-4), or three distinct sequences (e.g. D1-4-6) as
reviewed in [21].

Symbiodiniaceae recently underwent major taxonomic
revision with genetic groups known as clades (within for-
maly known Symbiodinium genus) now being recognized
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as distinct genera within the Symbiodiniaceae family [4].
We treat sets of sequences that are repeatedly identified
together throughout the literature, and are broadly consid-
ered as part of the DGGE fingerprint of a single phylotype,
as single analytical units (i.e. one set of sequences equals
one phylotype) and list them by their new genus name
and their earlier ITS2 alphanumerical designation (Table
S1). Observations of similar /752 DNA sequences that are
rare, singleton observations, or singleton reports that have
not yet been codified (i.e., designated as an I7S2 phylotype
using the standard nomenclature) in the literature as be-
ing a component of a repeatedly observed and legitimate
phylotype were classified as potential intragenomic vari-
ants (P-IGV) which were treated as individual phylotypes
in the analysis (~ 4% of the association records, Table S1).

Existing association compilations [5, 102, 103, 105]
and an original search of GenBank (www.ncbi.nlm.nih.
gov/nucleotide/) and the scientific literature identified
primary sources for the original observations of coral
species-Symbiodiniaceae ITS2 phylotype associations.
Each recorded association in our dataset is one observa-
tion of a single Symbiodiniaceae phylotype in association
with an individual coral colony and does not include re-
peated sampling of the same phylotype within the same
coral colony. Different phylotypes co-occurring in the
same coral colony are unique association observations.
In order to minimize artifacts associated with scarce
sampling, only coral species with at least 15 records of
association were included in the compilation, yielding
15,566 records of associations between 123 coral species
and 377 Symbiodiniaceae phylotypes (Table S1). Fur-
thermore, the studies showed high congruency among
protocols and I7S2 primers used for phylotype identifi-
cation, where in our dataset 10,496 out of 15,566 records
(67% of records, Figure S2) were identified with ITSint-
for2 and ITS2Clamp primers following the protocol ori-
ginally described by LaJeunesse and colleagues [17, 99]
(Table S1). Association records included information on
the depth and location of sample collection, such that
bathymetric, latitudinal, and longitudinal ranges could
be calculated for each coral species (Table S2).

Raw-richness and raw-evenness

Richness is a basic species (in Symbiodiniaceae, phylo-
type) composition parameter of any assemblage and pro-
vides the number of unique species within that
assemblage but ignores the relative abundance of indi-
vidual species by treating composition as a binary ques-
tion of presence or absence. Here, raw-richness is the
number of different phylotypes associated with a coral
species in the dataset. Evenness describes the abundance
structure of the assemblage by quantifying the uniform-
ity of relative abundances of individual species in the as-
semblage. Thus, the number of interactions which are
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possible is quantified by richness, while how equally
those interactions are realized is quantified by evenness.
Raw evenness (/') is estimated as:

/ _21;1pi lnpi
— =l Sl 1
J InP (1)

where, —Zf;lpi Inp; is the Shannon diversity index of
the set of associations with each coral, p; is the propor-
tion of all associations for the coral species that are with
phylotype i, and P is the number of phylotypes that asso-
ciate with that species (raw-richness).

Rarefaction curve construction and insufficient sampling
A rarefaction curve represents expected richness in an
assemblage as sub-sample size increases, which at infin-
itely large sample sizes hypothetically approaches true
richness estimated as an asymptote [47, 106]. Records of
Symbiodiniaceae phylotype associations were used to
construct individual rarefaction curves for each coral
species targeted. Rarefaction is calculated as:

S S8 ()| N

where E(S) is the expected number of phylotypes in the
rarefied coral sample, n is the standardized sample size,
N is the total number of association records for the coral
species, N; is the number of association records for phy-
lotype i with the coral species, and P is the number of
unique phylotypes that associate with the coral species,
or raw-richness. Thus, rarefaction calculates the ex-
pected number of phylotypes in a subsample of size n,
which is randomly drawn from a pool of records N (in
our case all phylotype records associated with a coral
species). Rarefaction curves can be generated for every
value of 7 in N, resulting in a smooth rarefaction curve
that can be used to infer sufficient sampling, as the slope
converges to 0 [47]. Rarefaction curves were calculated
using rarecurve in the ‘Vegan’ R package v2.4—6 [107]. If
the rarefaction curve of a coral species reaches an identi-
fiable asymptote (its slope approaches 0), this was ac-
cepted as evidence of sufficient sampling, such that
further sampling is not likely to significantly alter the
curve nor the parameters that can be derived from it. To
evaluate the extent to which each curve reached an
asymptote, the ‘slope-at-end’ was calculated as the differ-
ence between rarefaction at depth # = N and rarefaction
at depth 7 = N-1 (i.e. Ry — Ry.q).

Standardization of assemblage composition and
abundance parameters

Rarefied- richness: Calculations of raw-richness values
from assemblages with asymptotic rarefaction curves are
valid for cross-species comparisons as raw values will
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approximate true values of the assemblage, although
they should be interpreted as representing their respect-
ive minimum values [47]. However, calculations of raw-
richness values from assemblages with non-asymptotic
rarefaction curves are inappropriate to compare across
species, since additional sampling will uncover further
species [47, 75] rendering the comparisons inaccurate
and potentially misleading. In this case, rarefaction
methods can be applied to interpolate richness values
from the rarefaction curves by setting a constant sub-
sample 7 for each species in the rising part of the curve
(rarefied-richness [47, 48];). For example, setting # to 15
association records (R;s) on the x-axis (or rarefying each
assemblage to n=15) allowed for comparison of ex-
pected rarefied-richness across multiple assemblages by
comparing values of the y-axis at a fixed n=15. Thus,
taking rarified-richness at a given rarefaction depth (sub-
sample size n), is equivalent to randomly drawing a
number of associations from the dataset equal to the rar-
efaction depth (without replacement) and finding a
mean number of unique phylotypes detected across
many iterations of these random draws. We calculated
rarified-R at rarefaction depths of 15, 20, 30, 40, 50, and
60 records.

Probability of Interspecific Encounter (or assemblage
evenness): the shape of rarefaction curves depends, in
part, on the relative abundance of species in the assem-
blage, such that rarefaction curves from assemblages
with co-dominant species (high evenness) will rise faster
than those from assemblages with a mixture of domin-
ant and rare species (low evenness) [48, 75]. Thus, the
slope of the rising part of the rarefaction curve (max-
imum slope) can be used as the expectation of observing
additional phylotypes resulting in a metric that is inde-
pendent of sample size [48, 76]. Taking evenness as the
maximum slope of the rarefaction curve is equivalent to
Hurlberts [76] Probability of Interspecific Encounter
(PIE) defined as:

PEE=0 =Y (%) (A]i[__AD (3)

where P (as in Eq. 1) is the number of unique phylotypes
that associate with coral species (raw-richness), N is the
total number of records from the assemblage, N; is the
number of records of the ith phylotype in the assem-
blage. Probability of Interspecific Encounter is an alter-
native measure of evenness which defines the probability
that two randomly chosen samples from an assemblage
will be different phylotypes. Probability of Interspecific
Encounter is equivalent to the difference between rar-
efaction at # =1 and rarefaction at n=2 (i.e. Ry-R;) or
the steepest slope in the rarefaction curve and is thus
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mathematically equivalent to rarified-evenness (reviewed
in [48]).

Phylogenetic correction

Species trait data often vary in a pattern that reflects
their evolutionary history, where closely related species
have more similar traits then distantly related species
[65, 66]. This phylogenetic structuring of species trait
data may also be present between pairs of species traits,
where the relationship between two traits may covary
with the phylogenetic distance between species. Phylo-
genetic structure in the relationship between species
traits is detectable as phylogenetic signal in regression
residuals; i.e. the deviation of each species trait value
from the value predicted by the regression is signifi-
cantly different from random and is significantly similar
to a pattern described by the species phylogeny.

Significant phylogenetic signal in regression residuals
can confound standard statistical analyses and artificially
obscure significant patterns (reviewed in [108]). Stand-
ard statistical analyses do not properly account for infor-
mation loss caused by similarities among evolutionary
relatives, violating the assumption of replicate independ-
ence, and result in increased type I error rates (probabil-
ity of incorrectly identifying statistical significance
[109]). However, inappropriately applying phylogenetic
correction to analyses of data that are not phylogenetic-
ally structured can result in poor statistical performance
and uncorrected regression will return a more robust re-
sult [72]. Therefore, phylogenetically corrected analyses
should be favored over standard statistical analysis only
when the assumption of replicate independence is vio-
lated by demonstrable phylogenetic structure in the
data.

The coral phylogeny of Huang [55] was trimmed to
123 targeted taxa using Phytools ver 0.6-20 R package
[110] to maintain accurate relationships and branch
lengths. This trimmed phylogeny was used to define evo-
lutionary relationships and distances between species for
detection of phylogenetic structure in the data and
phylogenetic correction of regression analyses. A priori
assessment of phylogenetic signal was performed on the
residuals of Ordinary Least Squares (OLS) regression of
each trait comparison analysis (see Table S3 for regres-
sion analysis between specific traits), which were then
mapped to the phylogeny of corals (each residual value
was assigned to its species in the data matrix), and tested
for statistically significant phylogenetic signal (a pattern
in the regression residual values that reflect phylogeny
topology and branch lengths) with Pagel’s Lambda [111]
using PhyloSig [112] in the Phytools [110] R package.
Significant phylogenetic signal detected in the OLS re-
siduals (i.e. Pagel's A, p <0.05) indicates that phylogen-
etic correction of the regression analysis is warranted
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and that the OLS regression is biased by evolutionary re-
lationships among species. Phylogenetic regression ana-
lysis was conducted via Phylogenetic Independent
Contrasts (PIC) test applied to the same coral phylogeny
and was performed in the Phenotypic Diversity Analysis
Programs (PDAP:PDTREE [113];) module of Mesquite
ver 3.10. Here we report the results of both the OLS and
PIC analyses but use the significance of Pagel’s A to de-
termine which to interpret.
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