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Abstract

Background: Scrub typhus causes up to 35% mortality if left untreated. One billion people living in the endemic
regions are at risk. In spite of its heavy disease burden in some of the most populated areas in the world, there is
no vaccine available. Although the disease can be effectively treated by proper antibiotics, timely and accurate
diagnosis remains a challenge. Orientia tsutsugamushi infects a variety of mammalian cells in vitro and replicates in
the cytoplasm of the infected cells. Microarray analysis has been used extensively to study host-pathogen
interactions in in vitro models to understand pathogenesis. However there is a lack of in vivo studies.

Results: In this study, C3HeB/FeJ (C3H) mice were infected by O. tsutsugamushi via the intraperitoneal route and
monitored gene expression at 10 different time points post infection. We observed two distinct types of expression
profiles in the genes that we analyzed. There are two valleys (4-18 h and 2-4 days) with low number of differentially
expressed genes (DEG) with three peaks with high number of DEG at 2 h, 1-day and 7-day post infection. Further analysis
revealed that pathways like complement and coagulation cascade, and blood clotting cascade pathways showed
significant global changes throughout entire time course. Real time quantitative Polymerase Chain Reaction (RT-gPCR)
confirmed the change of expression for genes involved in complement and coagulation cascade. These results suggested
dynamic regulation of the complement and coagulation cascades throughout most of the time post infection while
some other specific pathways, such as fatty acid metabolism and tryptophan metabolism, are turned on or off at certain
times post infection.

Conclusions: The findings highlight the complex interconnection among all different biological pathways. It is
conceivable that specific pathways such as cell growth control and cell development in the host are affected by Orientia
in the initial phase of infection for Orientia to grow intracellularly. Once Orientia is replicating successfully inside the host
as infection progresses, the infection could activate pathways involved in cellular immune responses to defend for host
cell survival and try to eliminate the pathogen.
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Background

Scrub typhus is a febrile illness caused by an obligate
intracellular bacterium, Orientia tsutaugamushi. The dis-
ease is transmitted by the bite of the larvae of various spe-
cies of trombiculid mites. Humans are the accidental
hosts while the natural hosts for these mites are rodents.
Scrub typhus is endemic in Asia-Pacific region and up to
23% of all febrile illnesses can be attributed to scrub ty-
phus [1, 2]. Scrub typhus is endemic within a “tsutsuga-
mushi” triangle area that is about 13 million square
kilometers which includes Pakistan, India and Nepal to
the west, Japan to the east, southeastern Siberia, China,
and Korea to the north and Indonesia, Philippines, north-
ern Australia and the intervening Pacific islands to the
south [3—12]. This area is one of the most populated areas
and an estimated 1 billion people living in this area are at
risk. Recent evidence has suggested that the disease is
expanding beyond the traditional Asia-Pacific area to
include the Middle East, South America and Africa [2,
13-15]. The disease is characterized by fever, rash, eschar,
pneumonitis, meningitis, and in some severe cases, pa-
tients can have disseminated intravascular coagulation
that may lead to circulatory failure [16]. In most scrub ty-
phus patients, the symptoms are relatively mild, a timely,
accurate and differential diagnosis can be challenging [17].
Therefore, although the disease can be effectively treated
by doxycycline, oftentimes the patients are left untreated
due to the lack of accurate diagnosis. The mortality in this
untreated population can be as high as 35% [1, 17]. Fur-
thermore, cases of ineffective doxycycline treatment have
been documented in Thailand and India, suggesting the
potential rise of antibiotic resistant strains of O. tsutsuga-
mushi in endemic areas [18, 19].

Orientia is extremely labile and can infect a variety of
mammalian cells ex vivo, including endothelial cells [20],
dendritic cells [21], monocytes [21] and polymorphonuclear
leukocytes [22]. Once they are in mammalian cells, it is be-
lieved to replicate in the cytoplasm of the infected cells.
This is supported by previous studies showing that O. tsu-
tsugamushi induces phagocytosis of host cells and then es-
capes from the phagosome in 30min by lysing the
phagosomal membrane [23]. Nevertheless, the exact mech-
anisms by which O. tsutsugamushi enter the host cells and
escape from the host endocytic pathway have not yet been
elucidated. Human endothelial cells are believed to be the
target cells mainly because the results of immunohisto-
chemistry using autopsy tissues of scrub typhus patients
[24]. In contrast to autopsy results, dendritic cells and
monocytes rather than endothelial cells are the target cells
in eschars of scrub typhus patients [21], suggesting that the
cells first encounter (i.e., dendritic cells and monocytes) O.
tsutsugamushi can be different from those cells where O.
tsutsugamushi are subsequently disseminated (endothe-
lium) and accumulated. The involvement of local host
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immune responses and the mechanism for following sys-
temic dissemination of Orientia may be very important to
elucidate infection mechanism. A lot of efforts have focused
on the immune responses upon infection of O. tsutsuga-
mushi in various animal models to better understand the
pathological observations in patients. Traditionally, the in-
traperitoneal (IP) inoculation is the route of choice to infect
mice and has been used to evaluate the efficacy of several
vaccine candidates [25-28]. Other routes for inoculation,
such as intradermal (ID) [29, 30], intravenous (IV) [31-34],
and more recently footpad [35], have been used in mouse
models to study immunological responses. From all these
studies, it appears that parameters like variations in route
of inoculation, the mouse strains used, and strains of O. tsu-
tsugamushi inoculum, can often lead to different challenge
outcomes (e.g., lethal vs. non-lethal challenge models).
However, it is difficult to conclude whether certain route or
strain of mouse or strain of O. tsutsugamushi inoculum is
really superior to the other as these studies had different
emphases. Some models observed whether mice succumb
to O. tsutsugamushi infection to evaluate the efficacy of
vaccine candidates (i.e., IP), others suggested that a good
mouse model is the one that shows similar pathology and
target cells as observed in human scrub typhus (ie., ID),
and still others suggested that a good model should use an
inoculation route that is similar to the natural infection
route (ie., ID or footpad). In addition to mouse models, a
non-human primate monkey model has recently been used
to evaluate the leading vaccine candidates [36, 37]. The
study of the immune responses in non-human primate
model is not as comprehensive as that in mouse model.

Microarray technology has been used extensively to in-
vestigate the host transcriptomic responses in various in-
fectious diseases. Results from experiments conducted
ex vivo or in mouse model have revealed insights into
mechanisms of pathogenesis [38—41]. Similarly, micro-
array technology has been used to study host responses
upon infections in animal models [42—45].

In this study, we inoculated C3H mice with O. tsutsu-
gamushi via the IP route and characterized the changes
in gene expression profiles at 10 different time points
post inoculation. We observed two valleys (4—18 h and
2—4 days) of low number of differential expressed genes
(DEG) with three peaks of high number of DEG at 2h,
1 day and 7 days post inoculation. A spike pathway net-
work analysis was performed and showed, in addition to
a more general change of expression in pathways like
the complement and coagulation cascades throughout
most of the time course, there were also pathways that
appear to be turning on or off at certain times post-
inoculation. Further RT-qPCR was performed to confirm
the expression of genes involved in complement and co-
agulation cascade. The findings highlight the complex
connection of all different biological pathways. It is
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conceivable that during the initial phase of infection,
Orientia is actively affecting pathways such as cell
growth control, extracellular matrix adhesion and cell
development in the host in order to survive. At later
time post-infection, genes involved in cellular immune
responses are triggered to defend infection and try to
eliminate the pathogen.

Results

Clinical observation

Five mice per time point were observed for apparent
clinical symptoms. All mice appeared healthy during the
first 9 days with no signs of disease or illness. There was
no eschar formation or any observable reaction at the in-
jection site in any of the mice by 9 days post inoculation
(dpi). Ruffled fur and loss of mobility were observed
starting 9 dpi. All the 5 mice monitored for survival suc-
cumbed to the infection by 12 dpi, with an average sur-
vival of 11.2 dpi.

Antibody response following inoculation

Serum samples from each mouse were used to monitor
the antibody responses elicited by O. tsutsugamushi in-
fection. No Orientia-specific antibodies were detected in
infected mice before or at 7 dpi. At 10 dpi, two mice
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were found non-responsive to outside stimuli and were
euthanized to collect blood and tissues. The sera from
these two mice had detectable IgG and IgM antibodies
against the Orientia 56 kDa immunodominant protein,
but the antibodies against the 47 kDa protein antigen
were still undetectable. Antibodies were detected by
10 dpi, indicating that antibodies rose to detectable
levels between 7 dpi and 10 dpi. This observation coin-
cided with the appearance of ruffled fur and loss of
mobility.

Detection of circulating soluble cell adhesion molecules

In order to investigate surrogate markers of endothelial
and leukocyte activation following IP inoculation of O.
tsutsugamushi, serum levels of circulating L-selectin,
ICAM-1, and VCAM-1 were measured at selected time
points. As shown in Fig. 1la, the amount of ICAM de-
creased as early as 8-h post inoculation (hpi) and contin-
ued to be lower than sham samples until 7 dpi when
infected samples had more ICAM. Similar patterns were
found for L-Selectin (Fig. 1b). The trend for VCAM (Fig.
1c) was different. The infected samples started to show
increased amounts as early as 1 dpi and were higher
than sham samples from 1 dpi to 7 dpi. Statistically sig-
nificant differences in the amounts of these cell adhesion
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Fig. 1 Effect of infection on the release of ICAM (a), L-Selectin (b) and VCAM (c). Sera from sham inoculated (open bars) and Orientia challenged
(black bars) mice were collected from selected time points as indicated. ELISA was used to quantitate the amount of each protein in serum
samples using a standard curve established per manufacturer’s instruction. * Significantly different was determined by student’s t-test (p < 0.025)

*
)
£ 10007 C *
= —_
£
— 8001
=
(&}
D 6001
[J]
wv
2y 4001
=
5]
o 2004
c
>
g 0+ : : : :
< N N N N &
% > ,y,b NS ,\,b

Time post inoculation




Chao et al. BMIC Microbiology (2020) 20:3

Page 4 of 13

2-hr 4-hr 6-hr 8-hr
2-hr
4-hr 0164
6-hr  -0.188  0.160
8-hr | 0307 0004 -0.141
12-hr  -0.111/ 70241 0.068 0.009
18-hr  -0.093 -0.015 -0.040 -0.096
1-day -0.050 -0.054 0.147 -0.079
2-day | 0466 0001 -0.153 0.023
4-day -0.045 -0.103] 0.317
7-day -0.134 -0.144

12-hr

0.086

18-hr 1-day 2-day 4-day 7-day
1
-1
0.025 -0.322
0 0.288 0.095
-0.014| 0.229 -0.190 0.055
-0.291 -0.007 -0.115 -0.075 -0.055

h vs 2-day and 12-h vs 2-day

Fig. 2 Correlation matrix of the fold changes at each time point. Clear distinction of the fold change was observed at 2-h vs. 8-h, 2-h vs 4-day, 8-

molecules between sham and infected samples were ob-
served with ICAM at 8 hpi and 1 dpi. (Fig. 2a), for L-
Selectin at 4 dpi and 7 dpi. (Fig. 2b), and for VCAM at 7
dpi. (Fig. 2c).

Tissue tropism of O. tsutsugamushi in IP inoculated mice

To determine the distribution of O. tsutsugamushi in
mouse tissues after IP inoculation, lung, liver, and spleen
were collected for bacterial quantitation by the Orientia-
specific 47 kDa qPCR assay. Negligible amounts of O.
tsutsugamushi were detected in all three tissues at 4 dpi
(Table 1). Appreciable amounts of Orientia DNA were
detected at 7 dpi and 10 dpi. Among these tissues, the
liver had the highest amount of O. tsutsugamushi at
all time points (4 dpi, 7 dpi, and 10 dpi), followed by the
spleen, and then the lung. The fold increase of Orientia
between 4 dpi and 7 dpi was similar to that between 7

Table 1 Dissemination of O. tsutsugamushi in mouse tissues®

# of 47 kDa gene/10° mouse cfd gene (fold increase)®

Time post Liver Spleen Lung

infection

< day 2 68 + 7.5 ND¢ 08 +04°

Day 4 66+ 16 (097) 63+39(/ 15+09(19)
a)?

Day 7 1473 + 488 (223) 290 +224 244 + 92 (163)
(46.0)

Day 10f 39x10°+ 18X 8701 +£4370  524x10° + 7.1 %

10° (264.7) (30.0) 10% (214.9)

“Numbers represent average of three independent qPCR quantitations of
mouse and O. tsutsugamushi copy numbers using cfd and 47 kDa gene,
respectively, as described in materials and methods. The number of O.
tsutsugamushi 47 kDa gene/10° cfd gene is reported as

mean + standard deviation

PNumbers in parentheses represent fold increase over previous time point
“Average of detectable O. tsutsugamushi 47 kDa gene from 4 hpi, 6 hpi, and 18
hpi samples. Samples from other time points before 2 dpi did not have
detectable 47 kDa gene

IND: Not determined

€Average of detectable O. tsutsugamushi 47 kDa gene from 12 hpi samples.
Samples from other time points did not have detectable 47 kDa gene
fOnly two mice had tissues collected to perform qPCR

9Not applicable

dpi and 10 dpi for both liver and lung, leading to very
high Orientia load in these tissues. The fold increase was
much more moderate for the spleen.

Correlation of fold change

We applied Pearson’s test to correlate the fold change of
expression at each time point. The higher the correlation
indicates the higher similarity in gene responses between
the two time points (Fig. 2). Noticeably, the gene
response at 2 hpi was negatively correlated to 8 hpi (-
0.307) and 4 dpi (-0.410), suggesting the expression
between 2 hpi was opposite to that of 8 hpi and 4 dpi. In
contrast, 12 hpi vs 2 dpi (0.349) and 8 hpi vs 4 dpi
(0.317) have positive correlations, indicating that the
gene responses between these time points are sharing
similar patterns.

Individual differentially expressed probes analysis

A rank-sum test was used to identify the Differentially
Expressed Probes (DEPs) (defined by p-value<0.05 and
|log(fold change)| >0.5) for individual time points. We
also applied moderated #-test (limma, R package). The
number of DEPs from ¢-test is generally 1.5 times more
than that of the rank-sum test, but the trend is the same.
The stacked bar chart of Fig. 3 highlights the number of
up-regulated (red) and down-regulated (green) DEPs. Sig-
nificantly larger numbers of DEPs were observed at 2 hpi,
1 dpi, and 7 dpi than those of the adjacent times. After an
initial response to IP inoculation at 2 hpi, it seemed that
at 6 hpi and 8 hpi. Fewer probes showed significant
changes, while from 8 hpi there is a sharp jump in
DEPs (~2000 DEPs). However, it suddenly dropped
to ~400 DEPs at 2 dpi and then gradually increased
to more than 800 DEPs. Therefore, the three peaks at
2 hpi, 1 dpi, and 7 dpi may suggest a three-phase re-
sponse, with an initial response to infection (i.e. 2
hpi) then 2 cycles (i.e., early (4 hpi — 1 dpi), and late
stage (2 dpi — 7 dpi)) of increasing number of signifi-
cantly expressed genes. The initial phase at 2 hpi
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Fig. 3 A three-phase response of differential expression of genes. The number of differential expressed genes (Y-axis) at different time post inoculation
(X-axis) was plotted showing a two-phase response. One initial phase at 2 hpi followed by an early phase between 4 hpi to 1 dpi and a late phase
between 2 dpi to 7 dpi. The number of up-regulated genes is shown in red bars and the number of down-regulated genes is shown in green bars

might be different from the later two phases as they
took longer to develop.

Gene cluster analysis

We further dissected the DEGs into spike patterns
based on number of significantly up- or down-
regulated probes at different time points. Figure 4
panel A shows top 20 spike patterns with the number
of up- and down-regulated probes in descending
order. These results revealed that three different spike
patterns showed the highest number of probes with
significant changes occurred at 2 hpi (pattern #8, #9
and #20), 18 hpi (pattern #5, #6 and #11), and 7 dpi
(pattern #3, #4 and #18). On 1 dpi, 5 different pat-
terns showed most up- and down-regulated genes.
The majority of these 20 spike patterns had only sin-
gle time point with most significantly up- and down-
regulated probes. The exceptions were pattern #11,
#18 and #20. Figure 4 panel B shows the number of
probes /genes that are significantly up- or down-
regulated at each time point. We further studied the
enriched pathways of the top 20 clusters. As shown in Fig.
5, Racl pathway (up), TNFa signaling via NFkB (down),
TGEFp signaling (down), interleukins signaling (up), and
cytokine signaling (down) pathways are in general the
major enriched pathways from 2 hpi to 1 dpi. Various sig-
naling pathways were commonly expressed from 18 hpi, 1
dpi, and 7 dpi. Many metabolic pathways emerged at 2 dpi
but disappeared later. Inflammation signaling path-
ways were activated between 18 hpi and 1 dpi. Vari-
ous metabolic pathways were up regulated at 2 dpi
and 4 dpi. At 7 dpi many pathways encompassing
various biological functions such as WNT, TNF,

mTOR, interferon, cytokines/chemokines, and toll-like
receptor pathways were shown to be significantly up-
regulated. The detailed enriched functions are listed
in Additional file 1: Table S1.

Global pathway analysis

Pathway enrichment analysis identified the top 30 path-
ways with significant changes throughout the entire time
course (Fig. 6). In general, around 40% of all genes in-
volved in these pathways were significantly regulated.
Several clusters pointed to pathways related to platelet
degranulation and adhesion, coagulation, immune sys-
tem (interferon alpha and immune-regulatory inter-
action), complement pathway, and iron metabolism.

Confirmation of selected pathways using qRT-PCR

The differential expression profiles of genes involved in
blood coagulation cascades and classic complement
pathways were confirmed using qRT-PCR. The fold-
change of gene expression resulting after Orientia infec-
tion was confirmed. Four genes, including genes in-
volved in complement pathway (C2 and cfb) and
coagulation pathways (F5 and SerpinC1), were shown in
Fig. 7 as examples to demonstrate that similar trends
were observed by microarray probes (dotted lines) and
qRT-PCR (solid lines).

Discussion

Significant variations of gene expression in many key
biological pathways are observed in C3H mice infected
by Orientia. The C3H mouse model is a lethal model
and all mice that received the 250 mLDs, of Orientia
were sick and succumbed to the infection within 21 dpi.
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The expression profiles, while varying significantly for
specific pathways, can be grouped into two valleys (4—18
hpi and 2-4 dpi) of differentially expressed genes and
three peaks of differentially expressed genes at 2 hpi, 1
dpi, and 7 dpi. There were no genes associated with
certain pathways showing a stable and continuous up-
or down-regulation throughout the entire time course.
The IP challenge route resulted in dissemination of
Orientia to different tissues in a time-dependent fashion
with the maximum copy number of Orientia detected in
the liver. Other challenge routes have shown different tis-
sue tropisms, suggesting that different challenge routes
may lead to different immune responses [29-35]. Orientia
was detected in the liver as early as 7dpi, which is slightly
earlier than the visible clinical signs, i.e., ruffled fur. It is
intriguing that the lung, which is one of the target tissues
associated with severe ST, appeared to have accumulated
more Orientia in comparison to the spleen. We have also
observed that higher numbers of Orientia accumulated in
the lung were associated with delayed recovery in mice
partially protected by immunization using recombinant
protein antigens (data not shown). Leukocytes and endo-
thelial cells were activated based on the level of surrogate
markers. All three of these markers showed highest levels
in infected mice at 7 dpi with a general upward trend sug-
gesting that the activation occurs at around the same time
when signs of sickness appeared and dissemination of

Orientia to different tissues were detected. Both IL-1 and
TNFa pathways were significantly up-regulated at 7 dpi
and this may contribute to the upward trend of the three
markers as the infection progressed.

There are pathways in which 40% of all genes involved
were significantly regulated throughout the entire time
course. Among these pathways, the complement, platelet
and coagulation pathways are particularly interesting as
they are among the top 30 pathways. These include intrin-
sic and extrinsic coagulation pathways, complement path-
way, and platelet degranulation and adhesion pathways.
While these 7 pathways have their respective unique
pathophysiological roles, they do share some commonal-
ities, particularly with respect to their innate defences
against external threats (i.e., Orientia invasion) [46]. There
are several interesting observations to support our results.
First, it was observed in an ectoparasite infection fish
model that a non-lethal dosage of infection resulted in sig-
nificant down-regulation of many genes in these pathways
[47] similar to what we observed in the early phase of in-
fection. On the contrary, when a lethal dose of infection
was administered in the fish model, many of these same
genes were up-regulated, just as what was observed in the
late phase of Orientia infection. Second, our results are
similar to a genome-wide transcriptome profiling of a mur-
ine acute melioidosis model in which early activation of
complement system was observed at 24 h post-infection to
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maintain host cellular homeostasis and eliminate intracel-
lular bacteria [48]. Furthermore, a recent prospective study
from Laos has shown that markers of coagulation activa-
tion and all inflammatory cytokines are significantly ele-
vated, and in vivo coagulation activation ears prominent
and seems to be related to a strong proinflammatory re-
sponse [49] in scrub typhus pappatients. Finally, the activa-
tion of the complement system can also directly induce
platelet activation and aggregation [50], and trigger the in-
duction of tissue factor expression and activity in endothe-
lial cells and neutrophils. The activation of endothelial cells
may explain the procoagulant properties in scrub typhus
patients with acute respiratory distress syndrome [51-53].
Among the 20 clusters of gene expression patterns,
unique and shared pathway enrichments were observed
at different time points. Especially noteworthy pathways
in the early phase (2 hpi) of infection included Racl,
TNFa signaling via NFkB and G_a signaling events.
These genes are mainly responsible for cell growth con-
trol, cytokine secretion, cell motility, extracellular matrix
adhesion, cell transformation and invasion, and cell de-
velopment. In the case of TNFa signalling via NF«B,
these genes signify that NFkB-dependent signalling path-
way could be crucial for the initial cellular responses to
Orientia via the IP challenge route. As early as 2 hpi,

genes responsible for the reorganization of cell-cell
interaction and cell surface were differentially expressed,
possibly due to the invasion of Orientia. As the infection
continues, genes involved in additional pathways were
differentially expressed. For example, the TGEp signal-
ling pathway and extracellular matrix—receptor inter-
action pathway were activated between 4 hpi and 8 hpi,
cytokine signalling, FAS signalling, different interleukin
signalling, Fcy receptor mediated phagocytosis and Fcy
receptor signalling were all significantly regulated during
12 hpi to 18 hpi. These are consistent with the idea that
early gene regulation involved Orientia invasion and
host cellular immune responses.

During the late phase, from 1 dpi and 4 dpi, pathways
related to many cellular functions were affected. In
addition to pathways involved in cellular immune re-
sponses and MAPK/JAK_STAT pathways, several meta-
bolic pathways were significantly affected, such as pyruvate
metabolism and TCA cycle and respiratory electron trans-
fer, bile acid metabolism, metabolism of lipids and lipopro-
teins, fatty acid p-oxidation, metabolism of amino acids,
and derivatives, arachidonic acid metabolism, and trypto-
phan metabolism. These observations suggest that as the
infection progressed, host cellular responses shifted from
establishment of infection to affecting host metabolic
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pathways to potentially accommodate the need of Orientia
growth. Specifically, we observed that Ido2 was one of the
up-regulated genes at 2 dpi and its gene product is known
to catabolize tryptophan to kynurenine. This is of interest
because indoleamine 2,3-dioxygenase (Idol), another gene
product involved in catabolizing of tryptophan, is up-
regulated in scrub typhus patients [54]. Although Idol was
not observed in this study, it is possible that a different
route of infection for the two hosts (i.e., human and
mouse) may explain the difference in observation of either
Idol or Ido2 up-regulation in Orientia infected hosts.
Many genes participating in fatty acid p-oxidation were
also up-regulated, including Hmgcs2, that is involved in
the ketogenesis pathway leading up to the generation of 3-
hydroxybutyrate. Interestingly enough, the accumulation
of 3-hydroxybutyrate has been observed in two metabolic
studies in Orientia infected mouse models [55, 56]. These
results demonstrated a significant perturbation of energy
production.

Antigen presenting and processing, and Class | MHC
mediated antigen presenting and processingwere signifi-
cantly regulated at 7 dpi. These pathways are particularly
interesting since antibody responses were also detectable
after 7 dpi. In addition, genes such as I/15ra (1.5 folds),
Il12rb1 (4.1 folds), 1118 (2.7 folds) were significantly up-
regulated only at 7 dpi. Since these cytokines are all

IFNy-induced cytokines, it is not surprising that these
cytokines are released into serum samples in high con-
centrations in scrub typhus patients [57]. Furthermore,
the transcriptomic study of monocytes infected by
Orientia had shown many genes up-regulated at 8 hpi
and 1 dpi, including, Il-1b, Cxcl10, Oasl, and MxI [58].
These genes were also observed significantly up-
regulated by 3.6, 16.0, 7.5 and 16.0 folds at 7 dpi, re-
spectively. It is not clear whether any of these genes
were specifically responsible for the overall outcome.
Nevertheless, the combination of these genes, when they
are all significantly up- or down-regulated simultan-
eously, is likely to be the major contributing factor for
the final outcome of Orientia infection.

It is noted that IP is not a natural route for infection
nor is the amount of live Orientia used be comparable
with the chigger-fed mouse model [59]. Regardless, there
are similarities between the two models that could still
provide information regarding cellular responses to
Orientia infection. For example, in both cases, the time
for onset of symptoms is around 9 dpi, and both routes
resulted in animal death within 21 dpi. On the contrary,
multiple variables are different between the two models.
For example, the infection by chiggers may also involve
an exchange of proteins between chigger and animal
host, while IP injection does not. Consequently, it is
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important to explore the regulatory pathways in a chig-
ger challenge model in order to better understand the
cellular regulation upon Orientia infection.

Conclusions

Many pathways are dynamically regulated at different
time points post Orientia IP infection in a mouse model.
During the initial phase of infection, genes involved in
pathways related to cell growth control, cytokine secre-
tion, cell motility, extracellular matrix adhesion, cell
transformation and invasion, and cell development are
significantly regulated, supporting the idea that the
Orientia is actively affecting the host in order to survive.
At later time post-inoculation, genes involved in cellular
immune responses are triggered to defend infection and
try to eliminate the pathogen. We observed good correl-
ation between regulation of various metabolic pathways
and the change of amounts of various transcripts and
proteins involved in them, suggesting that the growth
of Orientia after initial invasion affected many different
metabolic activities. Furthermore, the regulation of
complement and coagulation pathways may play a role
in the overall homeostasis of pathogens and host
immune responses.

Methods

Mouse model

The procedures for animal study were approved by
the Walter Reed Army Institute of Research (WRAIR)
Naval Medical Research Center (NMRC) Institutional
Animal Care and Use Committee (IACUC). The facil-
ity’s animal care and use program is accredited by
Association for Assessment and Accreditation of

Laboratory Animal Care International (AAALAC). Fe-
male eight-week old C3HeB/Fe] (C3H) inbred mice
were purchased from Jackson Laboratories (Bar Har-
bor, Maine). Mice were divided into two groups and
housed in an ABSL3 laboratory in cages (5 mice per
cage) in accordance with the most current SOPs
established by Veterinary Service Program (VSP) of
NMRC. Feeding and water were provided ad libidum.
One group of mice was inoculated with Snyder’s buf-
fer (sham) to serve as naive controls and those in the
other group (infected) were infected via IP route [28]
with 250 mLDsq of liver/spleen homogenate from
mice infected by the Karp strain O. tsutsugamushi
from New Guinea as described previously [60]. We
used Snyder’s buffer as a negative control instead of
normal non-Orienita infected mouse liver-spleen
homogenate based on results obtained from previ-
ously performed experiments (data not shown). The
results from these experiments showed that sera from
normal liver-spleen homogenate inoculated mice ex-
hibited similar amounts of Thl (TNF-«, IFN-y, IL-2,
and IL-12) and Th2 (IL-4, IL-5, and IL-10) cytokines
as those from sera collected from sham inoculated
mice. Therefore, the results suggest that only limited
if any immune responses are activated by liver-spleen
homogenate from uninfected mice. After inoculation,
mice were observed twice daily for up to 12 days.
Clinical signs, such as ruffled fur, mobility and mor-
bidity were recorded. Each group of mice was divided
into 5 mice per time point for a total of 10 different
time points (2-h (hr), 4-h, 6-h, 8-h, 12-h, 18-h, 24-h, 2-day,
4-day and 7-day, Fig. 8). At the indicated times, mice from
each group were euthanized by CO,, blood was drawn
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a. Infectious agents used for sham challenge was Snyder buffer only injected via IP. For the Orientia Karp strain,
250 x mLDy, was prepared as described in Materials and Methods and was injected via IP as determined
previously. The seed was prepared earlier in C3H mouse.

b. The whole blood from one sample failed to pass quality control in the microarray processing.

Fig. 8 Study Design. A total of 5 mice per group received Snyder buffer or Orientia Karp strain at indicated dosage via IP. Blood was taken at 10

different time points after IP inoculation. Blood were taken from each mouse as described in Material and Methods
A\

(detail described below) followed by collecting lung, liver,
and spleen. Five additional mice were infected with the
same infectious dose and monitored daily for up to 21 days
or until they succumb to infection to ensure that 250
mLDs is a lethal.

Blood collection, RNA extraction and data acquisition at
indicated times

Before euthanasia whole blood from each mouse was
collected by cardiac puncture. A total of 0.6 mL blood
was immediately transferred to PAXgene™ blood RNA
Tubes (Qiagen, Valencia, CA, USA). The samples
were mixed and then flash frozen in liquid nitrogen
until use. Additional blood was centrifuged to obtain
serum for serology. RNA extraction was performed
on a Qiacube™ (Qiagen, Valencia, CA, USA) and the
quantity of extracted RNA was measured by Nano-
Drop™ 2000 spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) as per manufacturer’s guideline.
Agilent® SurePrint G3 Mouse GE 8x60K Microarray
slides with associated Feature Extraction software
v11.0.1.1 (Agilent Technologies, Santa Clara, CA,
USA) were used following recommended protocol.
Each SurePrint G3 Mouse GE 8x60K Microarray slide
contains 27,122 RefSeq (Entrez) gene count and 4578
IncRNA transcripts. All genes have multiple probes.

Recombinant protein antigen based ELISA for antibody
detection

ELISA was performed as previously described [61]. The
cutoff was determined by using the mean of the sham
group plus 1.745 times the standard deviation for the
95% confidence interval [62].

Detection of soluble cell adhesion molecules (sCAMs)

Serum samples from all time points were assessed for
sL-selectin, SICAM-1 and sVCAM-1 by using ELISA Kkits
(R & D Systems, Minneapolis, MN, USA) following the

manufacturer’s instructions. Samples were assayed in
duplicate. The optical density at 465 nm (Vmax/Kinetic
Microplate Reader, Molecular Devices, San Jose, CA,
USA) was measured. The quantity of each molecule was
calculated based on a standard curve established with
known amount of the said molecule. The average quan-
tity of each molecule in mouse sera from sham inocu-
lated mice and from Orientia inoculated mice was
compared by t-test at each time point.

Quantitation of O. tsutsugamushi

The quantity of O. tsutsugamushi in liver, lung, and
spleen after inoculation was determined by a qPCR assay
targeting the Orientia-specific 47 kDa gene [63]. Mouse-
specific primers for the single copy gene mouse comple-
ment factor D (cfd) were used to quantitate the amount
of mouse gene equivalents in the extracted DNA as
described by Sunyakumthorn et al. [29].

RT-qPCR processing

A real-time quantitative PCR (RT-qPCR) analysis was
carried out using the RT? Profiler PCR Array System (SA
Biosciences Corp, Frederick, MD) focusing on the blood
clotting cascade and classical complement pathway
according to the manufacturer’s protocol. Five hundred
ng of total RNA was used to produce cDNA using the
RT? First Strand Kit (Qiagen, Germantown, MD, USA),
followed by qPCR assays using the RT> SYBR Green/Rox
Mastermix Kit (Qiagen, Germantown, MD, USA) in an
Applied Biosystems 7900HT (Applied Biosystems, Foster
City, CA, USA) under the recommended conditions. The
RT-qPCR results were analyzed with SDS 2.3 software
(Applied Biosystems, Foster City, CA, USA).

Data pre-processing to identify differentially expressed
genes

For those samples that failed in RNA extraction or
had a low RIN (RIN<6.5), they were removed from
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microarray experiment. All data from microarray ex-
periment was preprocessed and quality control was
performed using within-chip Lowess and between-
chip quantile normalization. Two outliers were identi-
fied by Principal Component Analysis and were re-
moved from downstream analysis as they could bias
the analysis. Batch correction of extraction time was
done using Bioconductor limma 3.7 package [64] in R
3.2 [65]. Differentially expressed genes (DEGs) were
identified using Wilcoxon rank-sum test.

Clustering and enrichment analysis

The clustering and pathway analysis were performed
using Functional Heatmap (https://bioinfo-abcc.nciferf.
gov/Heatmap/index.php) and custom R code. Func-
tional Heatmap first transfers gene expression levels
into average fold change curves, and then transfers
the changes above 0.5 as symbol “+”, below -0.5 as
symbol “-“, and the rest as “0”. Thus we generalized
the curves into strings. Finally, the strings with simi-
lar appearance were grouped into patterns and the
genes of selected patterns were sent to pathway
enrichment analysis using the hypergeometric test.
The pathway view showed the temporal pathway ex-
pression for known pathways collected from five path-
way databases KEGG version 80 [66], Wiki pathway
[67], Biocarta [68], Reactome [69], and GSEA [70].
The dark green, green, red, and dark red stand for
the percentage of the genes with log2 fold change of
(=o0, = 1), (- 1,-0.5), (0.5, 1), and (1, +o), respectively.
Pathways with 95% common components were
merged.
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