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secretion system (T6SS) genes in the
emergent fish pathogen Francisella
noatunensis subsp. orientalis in different
physiochemical conditions
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Abstract

Background: Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of
piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to
infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this
emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly
understood. Several potential virulence determinants have been identified in Fno, including homologues of the
recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role
the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis
of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions.

Results: Few transcriptional differences were observed at different temperatures, growth stages and pHs; however,
a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected
when compared to those quantified at 30 °C and under no H2O2 (p < 0.05).

Conclusions: Results from this study suggest that several of the F. tularensis T6SS-homologues may play an
important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and
oxidative stress.

Keywords: Francisella, Gene expression, Oxidative stress, Type six secretion system

Background
Members of the genus Francisella are small, Gram-
negative, pleomorphic, non-motile coccobacilli in the
gamma-Proteobacteria family Francisellaceae, order
Thiotrichales. The known diversity within the Franci-
sella genus has expanded significantly from two major
species groups, F. tularensis [1] and F. philomiragia [2],
to over 6 species in the genus, some causing important
diseases in aquatic animals [3–7].
Francisella noatunensis, an emerging pathogen of fish,

is the causative agent of piscine francisellosis. Of the fish

pathogenic Francisella sp. there are two distinct genetic
lineages: Francisella noatunensis subsp. noatunensis
(Fnn) and Francisella noatunensis subsp. orientalis
(Fno). Fnn infects cold-water fish species and was first
identified in diseased cultured cod (Gadus morhua L.)
from Norway [8]. Fno causes diseases in warm-water fish
species and was first identified in three-line grunt (Para-
pristipoma trilineatum) from Japan [9]. In the last dec-
ade, piscine francisellosis has been diagnosed worldwide
in cultured and wild fish in marine and freshwater envi-
ronments reaching mortalities of 30–75% [3, 6–10].
Piscine francisellosis due to Fno is characterized by a

severe granulomatous inflammatory response in multiple
organs, particularly in the kidney and spleen [6, 7]. Little
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information has been published regarding the epizootiol-
ogy of piscine francisellosis. Environmental factors such as
temperature play an important role in the development of
piscine francisellosis [6, 7, 11]. Higher mortalities typic-
ally occur in cooler water temperatures < 28 °C with
few to no mortalities occurring at temperatures > 28 °C
degrees [6, 7, 11].
Unlike F. tularensis, the etiologic agent of tularemia in

humans and mammals, Fno does not grow above 30 °C
and therefore is not associated with disease in
warm-blooded animals. However, the genomes of F.
tularensis and F. noatunensis are very similar, particu-
larly for the region encoding the Francisella pathogen-
icity island [12]. Importantly, F. noatunensis colonizes
and replicates in phagocytes and endothelial cells in a
process that is analogous to that of F. tularensis in mam-
malian phagocytes [13–16].
Many have explored the internalization and intracellu-

lar trafficking and survival used by F. tularensis in mam-
malian cells. Our current understanding indicates that
Francisella tularensis enters host macrophages in asym-
metric spacious pseudopod loops [17], arrests matur-
ation of the phagosome at a late endosomal-like stage,
and in minutes, escapes into the cytosol of the host cells
were it replicates [18, 19] eventually inducing apoptosis
[20] and pyroptosis [21]. Although Fno and Fnn have
been found to survive inside fish macrophages and
endothelial cells [15, 16, 22], the basis of virulence for
Fno and the pathogenesis of piscine francisellosis are still
poorly understood. Additionally, histological and electron
microscopic analysis suggest that a potentially different
mechanism for intracellular survival is utilized by Fno as
compared with the previously described mechanism used
by F. tularensis, since most intracellular Fno are typically
observed in spacious vacuoles within the macrophages,
not in the cytoplasm as F. tularensis [15, 16, 23].
Several virulence determinants have been identified in

Fno, including a homologous pathogenicity island (PI) to
the F. tularensis PI [24, 25]. Additionally, genes potentially
encoding proteins similar to components of the F. tular-
ensis type VI secretion system (T6SS) have been identified
in Fno including IglA, IglB, VgrG, DotU, and PdpB [25].
The T6SS is a recently described bacterial secretion

system that translocates proteins into a variety of recipi-
ent cells including eukaryotic cell targets and other
bacteria [25]. T6SSs are very large with up to thirteen
proteins that appear to be well conserved and are
thought to play a structural role in the secretion appar-
atus. Structural components of the T6SS apparatus may
also serve as effector proteins [25]. These effector pro-
teins are thought to have many functions with many di-
rected against the cell wall and membrane of other
neighboring bacteria that may be competing to exploit a
specific host niche [25]. T6SSs are also thought to play a

role in bacteria-bacteria interactions that may ultimately
increase the fitness of the T6SS expressing bacteria
within host-associated microbial communities [25].
de Bruin et al., [26] demonstrate that F. tularensis de-

letion mutants of iglABCD and T6SS homologues vgrG,
dotU, and pdpB were attenuated, and that those genes
were all essential for intracellular growth and virulence.
They proposed IglC as the analogue of Hcp, IglA and
IglB as structural components of an outer tube that sur-
rounds IglC subunits; and DotU and PdpB, IcmH and
IcmF homologues, respectively, localizing to the inner
membrane. Two of the proteins, VgrG and IglI, encoded
in the Francisella PI have been shown to be required for
F. tularensis phagosomal escape, intramacrophage
growth and virulence in mice [26]. VgrG also doesn’t re-
quire the other FPI proteins, indicating that it acts in an
FPI-independent manner. However VgrG, IglI and other
FPI genes (including PdpB) are required for the secre-
tion of IglI into the macrophage cytosol suggesting that
VgrG and other FPI factors are components of a secre-
tion system [26].
Few studies have investigated virulence factors in Fno.

The iglABCD operon has been found important for viru-
lence determination in Fno and necessary for induction
of disease and intra-macrophage survival in tilapia and
zebrafish [15, 16, 27, 28]. Hansen et al. [27] and Farrell
et al. [28] demonstrated that mutation of the pdpA gene
in Fno resulted in significant attenuation in the zebrafish
and the hybrid red tilapia model of infection. Similarly,
mutation of clpB,the gene encoding the Caseinolytic
protease B in Fnn, caused in vitro and in vivo attenu-
ation in the zebrafish [29].
Since temperature has been shown to play an im-

portant role in the development of piscine francisello-
sis, and since acidic and oxidative stress have been
reported as important cues for virulence gene expres-
sion in multiple bacteria, we performed transcrip-
tional analysis of the Fno T6SS-homologue genes with
the goal of gaining a better understanding on this
emergent disease pathogenesis.

Results
Francisella noatunensis subsp. orientalis growth at
different temperatures
Similar growth patterns were observed at 25 °C and 30 °C
during the first 30 h (Additional file 1 Figure S1). Post hoc
comparisons showed that the two temperatures
approached significance at time 30 h (p = 0.054), and then
were significantly different at time 31 h (p = 0.0249),
time 32 h (p = 0.0099), time 33 h (p = 0.0018), and
time 34 h (p = 0.0006). Beginning at time 35 h, and for
all subsequent times through time 90 h, the two tem-
peratures were significantly different with p < 0.0001.
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Expression of Fno T6SS-homologue genes at different
growth stages at different temperatures
The gene expression of putative T6SS genes was
assessed during the exponential and stationary growth
phases of Fno at 25 °C and 30 °C. A trend towards higher
expression at 25 °C compared to 30 °C was observed in
several experiments as all tested genes presented lower
expression during stationary phase at the higher
temperature (Table 1). Additionally, most presented
lower expression during exponential phase at 30 °C
when compared to exponential phase at 25 °C. Interest-
ingly, pdpB showed significantly higher expression dur-
ing exponential phase at 30 °C when compared to
exponential phase at 25 °C (p ≤ 0.05) (Table 1). There
were similar expression patterns at exponential and sta-
tionary phases when incubated at 25 °C; but a trend to-
wards lower expression in stationary phase was observed
when incubated at 30 °C (Table 1).

Survival of Fno and expression of Fno T6SS-homologue
genes at acidic pHs
In order to determine whether acidic stress could be
the signal that leads to an expression of the Fno
T6SS-homologue genes during infection, we first evalu-
ated the survival of Fno in broth adjusted to pH 4.0, 6.4,
and 7, and compared the expression of T6SS-homologues

at each condition during 24 h. Francisella noatunensis
subsp. orientalis was recovered at all conditions tested,
however significantly fewer culturable organisms were
quantified at 24 h at pH 4 when compared to those at neu-
tral and slightly acidic pH of 6.4 (p ≤ 0.0001) (Fig. 1). Simi-
lar expression of the putative T6SS genes was observed at
the different conditions and time points (Fig. 2); interest-
ingly, significantly lower expression of iglA and dotU were
detected under acidic conditions at some time points
(Fig. 2).

Survival of Fno and expression of Fno T6SS-homologue
genes at different concentrations of H2O2

In order to determine whether oxidative stress could be
the signal that leads to an expression of the Fno
T6SS-homologue genes during infection, we first evalu-
ated the persistence of Fno in broth adjusted to 0.1 mM,
1 mM, and 5mM H2O2, and compared the expression of
T6SS-homologue at each condition during 24 h. Cultur-
ability of Fno decreased (p < 0.0001) over time when in-
cubated at 5 mM H2O2. Similar persistence was found at
all other concentrations (Fig. 3).
A trend towards higher expression of putative T6SS

genes was detected during oxidative stress (Fig. 4). The
increased expression of the different T6SS-homologue
genes was detected at different time points (Fig. 4).

Table 1 Expression profile of Francisella noatunensis subsp. orientalis putative T6SS genes, iglA, iglB, pdpB, vgrG, and dotU, during
exponential and stationary growth phases when incubated at 25 or 30 °C. Gene expression was determined by qRT- PCR, using
relative quantification. Gene expression was normalized by the housekeeping gene ftsZ

In some experiments exponential growth phase at 25 °C, exponential growth phase at 30 °C, or stationary growth phase at 25 °C were used as calibrator (value =1).
Statistically significant differences relative to calibrator are marked (*, P < 0.05)
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Discussion
Virulence gene expression in most bacteria is a highly
regulated event, affected by a variety of parameters in-
cluding temperature, growth phase, pH, and oxidative
stress. In order to survive in different environments Fno
has to be able to sense and respond to signals from its
surroundings to precisely regulate expression of neces-
sary genes, including those involved in attachment,
intracellular replication and stress responses.
In the model of the T6SS apparatus that has been pro-

posed by [25, 26], IglA and IglB form the outer tube of
the T6SS apparatus with IglC being the dominant com-
ponent of the inner tube. Additionally, PdpB and DotU
appear to reside in the inner membrane and the stability
of PdpB is dependent on the presence of DotU [25, 26].
Finally, VgrG appears to be secreted by the T6SS appar-
atus and serves as one of the effector proteins [25, 26].
In this study we sought to examine the effect of environ-
mental stimuli such as temperature, bacterial growth
phase, pH, and oxidative stress on the expression of pu-
tative T6SS genes of the fish pathogen Fno.
Similar growth of Fno was detected during the first 30 h

at both temperatures; however, Fno grew significantly
greater at 25 °C after 31 h of incubation (Additional file 1
Figure S1). Significantly greater expression of some of the
T6SS-homologue genes was also observed at the lower
temperature. These temperatures were chosen since previ-
ous in-vivo infectious challenges have demonstrated that
tilapia are particularly susceptible to piscine francisellosis
when the environmental temperature is < 30 °C, whereas

no mortality, clinical presentation of diseases and lesions
are found when fish are maintained at higher tempera-
tures [11, 16]. Differential expression of virulence
genes at environmental (25 °C) and mammalian host
body temperature (37 °C) has also been reported for
F. tularensis [30, 31].
Facultative and obligate intracellular pathogens utilize

different mechanisms for intracellular survival. In some

Fig. 1 Percent survival of Francisella noatunensis subsp. orientalis at
various pH in broth. Percent survival was calculated by comparing
the number of bacteria in the test wells to the number of bacteria
incubated for the same period of time at pH 7 (100% survival). The
error bars represent the standard deviation of twelve replicate wells
from three independent experiments

Fig. 2 Expression profile of Francisella noatunensis subsp. orientalis
putative T6SS genes, iglA, iglB, pdpB, vgrG, and dotU when exposed
to different pHs for 1 h (a), 6 h (b) or 24 h (c). Gene expression was
determined by qRT-PCR, using relative quantification. Gene expression
was normalized by the housekeeping gene ftsZ. Zero hour of growth
at pH 7 was used as calibrator (value =1). The error bars represent the
standard deviation of nine replicate samples from three independent
experiments. Statistically significant differences relative to 0 h at pH 7
are marked (*, P < 0.05)
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bacteria, phagosome acidification and oxidative stress in-
duces the expression of virulence and stress-associated
genes allowing pathogenic bacteria to escape the phago-
some or persist even in the presence of oxidative and
acidic stress [32–35]. Newly formed phagosomes are im-
mature organelles that are unable to degrade and kill mi-
croorganisms. In macrophage and dendritic cells,
phagosomes mature overtime by fusing to endosomes
and lysosomes, which deliver various hydrolases and
proteases to the lumen of the phagosome [36, 37]. A
main event in phagosome maturation occurs when the
phagosomal lumen is acidified to pH 4 to 5 by
membrane-embedded ATP complexes, the vacuolar H+-
ATPases. This creates an environment that is able to de-
grade and kill most microbes [38].
Several intracellular pathogens utilize vacuolar acidifica-

tion as a cue for virulence gene expression. For example,
the salmonid pathogen Piscirickettsia salmonis, expresses
Dot/Icm T4SS genes at pH 4.0 [39]. Similar conditions are
required for Edwardsiella ictaluri expression of the T3SS
[40]; however, at the time points tested in the current
study, acidic pH failed to induced expression of the Fno
T6SS homologues. Although there was no evident trend
for repression, in some treatments the expression of iglA
and dotU was significantly lower at acidic conditions. Fu-
ture experiments evaluating more time points ideally with
addition of proteomic analysis of the putative proteins
could help clarify if the lower expression detected is asso-
ciated with repression or just time of collection.
Avoidance of, or resistance to the respiratory burst is

typically required for a successful intracellular life-style,
particularly in pathogens that reside in vacuoles and
don’t escape into the cytoplasm. Thus, it appears that in
order to establish an intracellular niche, Fno has to

overcome the effect of stress conditions encountered in
the hostile environment of the phagosome as it matu-
rates to a phagolysosome. Oxidative stress in the cell
arises when the concentration of pro-oxidants like H2O2

and superoxide anion (O2
−) increase to levels that

exceed the cells defense capacity. The production of re-
active oxygen (ROS) leads to the damage of intracellular
macromolecules such DNA, RNA, protein, and lipids in
the cell resulting in bacterial death or bacteriostasis,
however intracellular bacteria including Francisella have
developed oxidative stress defense systems that are
designed to detoxify ROS [41, 42] that are generated
following respiratory burst.

Fig. 3 Percent survival of Francisella noatunensis subsp. orientalis at
various hydrogen peroxide concentrations in broth. Percent survival
was calculated by comparing the number of bacteria in the test
wells to the number of bacteria incubated for the same period of
time at 0 mM concentration of hydrogen peroxide. The error bars
represent the standard deviation of twelve replicate wells from three
independent experiments. Statistically significant differences relative
to the same period of time at 0 mM are marked (*, P < 0.05)

Fig. 4 Expression profile of Francisella noatunensis subsp. orientalis
putative T6SS genes, iglA, iglB, pdpB, vgrG, and dotU when exposed
to different concentrations of hydrogen peroxide for 1 h (a), 6 h (b)
or 24 h (c). Gene expression was determined by qRT-PCR, using
relative quantification. Gene expression was normalized by the
housekeeping gene ftsZ. Zero hour of growth at 0 mM was used as
calibrator (value =1). The error bars represent the standard deviation
of nine replicate samples from three independent experiments.
Statistically significant differences relative to the same period of time
at 0 mM are marked (*, P < 0.05)
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Francisella tularensis LVS is known to survive expos-
ure to 5 mM H2O2 by induction of several chaperone
proteins [43] and IglC [44]. Our data suggest that during
oxidative stress, Fno T6SS-homologue genes are highly
induced, as significantly greater expression of most of
the putative Fno T6SS genes was detected when exposed
to H2O2 (Fig. 4). Overall our results suggest that the Fno
T6SS-homologues may play an important role particu-
larly during oxidative stress.
In vitro studies such as those presented in the current

study are particularly useful to begin understanding the
pathogenesis of important emergent diseases in which
methods to study host-pathogen interaction to the mo-
lecular or even protein level is hampered by lack of vali-
dated tools. However, further research is warranted to
clarify the role of pH, reactive oxygen species, and prote-
ases and other enzymes encountered in early and late
endosome and phagolysosome; particularly since in the
experiments presented in the current manuscript we
used them individually, and in-vivo the bacterium may
face these challenges simultaneously.

Conclusions
The results from this study indicate that the expression
of several T6SS putative genes in Fno changes when the
bacterium is exposed to low temperatures and oxidative
stress, which suggest a role in pathogenicity; however
further clarification of the mechanism used by Fno to
survive intracellularly is warranted to develop effective
therapeutic and prophylactic protocols.

Methods
Bacterial strains and growth conditions
Francisella noatunensis subsp. orientalis (LADL
07-285A) was isolated from naturally infected Nile
Tilapia (Oreochromis niloticus) in Costa Rica [10].
Bacteria were grown on modified Thayer-Martin agar
(Bencton Dickenson BD BBL, Sparks, MD, USA) for 96
h at 25 °C. Broth media (MMH) consisted of Mueller
Hinton II cation adjusted, supplemented with 2% IsoVi-
taleX (BD BBL, Sparks, MD, USA) and 0.1% glucose.
Cultures in broth were grown for 24 h in a shaking incu-
bator at 150 rpm and 25 °C.

Growth curves
Three to five colonies of Fno were harvested after incu-
bation on agar media and suspended in 1X phosphate
buffered saline (PBS) to achieve a turbidity equivalent to
that of a 0.5 McFarland standard. This suspension was
diluted 1000-fold (~ 105 CFU/mL) in MMH. One hun-
dred μL of inoculated MMH were added to 12 different
wells of a Nunc Edge untreated clear flat-bottom 96-well
plate with standard microplate lid (ThermoFisher). The
Cytation 5 (Biotek) 96-well plate reader was used to

obtain optical density measurements at 600 nm, every
hour for 96 h. Plates were incubated in the plate reader
at 25 °C or 30 °C using a double orbital continuous 3
mm shaking amplitude. Wells on the edges of the plate
were not used as experimental wells and were instead
filled with MMH as negative control.
In some experiments, Fno was collected from expo-

nential (48 h) or stationary (72 h) growth phases for gene
expression analysis. Bacteria were suspended in RNA-
Protect Bacteria Reagent (Qiagen) and nucleic acid was
extracted from 500 μL (exponential) or 250 μL (station-
ary) cultures.

Bacterial survival to oxidative or acidic stress
Francisella noatunensis subsp. orientalis culturability
under oxidative or acidic stress was investigated follow-
ing published protocols with modifications [44–46].
Briefly, bacteria was grown overnight in 10 mL of MMH
at 25 °C, and used to inoculate 200 mL of MMH. Bac-
teria were then incubated for another 24 h at the same
conditions until exponential phase. Bacteria were
washed (centrifugation at 3500 g/10 min and
re-suspension in 1XPBS) three times and the pellet sus-
pended in MMH at 0 mM, 0.1 mM, 1mM, and 5mM of
H2O2, or MMH at pH 4.0, 6.4, and 7.0. The cultures
were incubated statically for 1, 6, 12, and 24 h at 25 °C.
At each time point aliquots were removed, and ten-fold
dilutions were made in PBS. Different dilutions were
then inoculated on MTM II agar plates for CFU quanti-
fication. At 1, 6 and 24 h time points, bacterial aliquots
were pelleted and suspended in RNAProtect Bacteria Re-
agent (Qiagen) for gene expression studies.

Primer design and PCR efficiency
Reverse transcription quantitative PCR was done follow-
ing protocols by [47]. The sequences of all primers used
in this study are listed in Table 2. The Fno LADL se-
quenced pathogenicity island (NC_023029.1) was used
to designed primers of putative virulence genes with
homology to the F. tularensis T6SS, including vgrG, iglA,
iglB, pdpB, and dotU genes. Primer efficiencies were de-
termined using 10-fold dilution series of cDNA and gen-
omic DNA as template for qPCR reactions [44].

RNA extraction and gene expression
Total RNA was isolated using RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. A 15-min
on-column DNase digestion with RNase-Free DNase
(Qiagen) was performed to ensure removal of contamin-
ating genomic DNA as suggested by the manufacturer.
RNA concentration and purity, determined by 260/280,
were measured with a spectrophotometer (Cytation 5,
Biotek). Reverse transcription of one ug extracted RNA
in 20 μL reactions was performed using the Superscript
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III First Strand Synthesis System (Thermofisher) and
oligo dT primers according to the manufacturer’s in-
structions. A control with omitted reverse transcriptase
was performed for each extraction to check for the pres-
ence of contaminating genomic DNA. After reverse
transcription, the samples were used as templates for re-
verse transcription quantitative PCR.

Reverse transcription quantitative PCR (qRT-PCR)
In order to quantify and compare the expression levels
of the T6SS-homologue genes, relative quantification by
qRT-PCR was made using a reference gene (housekeep-
ing gene) ftsZ for the normalization [44] in a QuantStu-
dio 5 Real-Time PCR System (Thermofisher). The PCR
mixture contained 1 μL of template cDNA, 1X SYBR
Green PCR Master Mix (Applied Biosystems) and
20 μM of the appropriate forward and reverse primers
(Invitrogen). The thermal cycling conditions for the PCR
were as follows: 1 cycle at 95 °C 10min, 45 cycles of
amplification at 95 °C for 15 s and annealing at 60 °C for
1 min [44]. The data were collected during each elong-
ation step. Melting curve analysis consisting of 1 cycle at
95 °C for 30 s, 55 °C for 30 s, and 95 °C for 30 s was also
performed after SYBR Green PCR to check the specifi-
city of the amplification products [44]. Negative (DEPC--
treated H2O) and no-reverse transcriptase controls were
included in each run. All qPCR were assayed on every
biological replicate (n = 3) and each sample was run in
triplicate.
Relative gene expression of vgrG, iglA, iglB, pdpB, and

dotU was calculated using the values obtained from ftsZ
as a normalization factor. For the expression during
growth kinetics the exponential or stationary growth
phase at 25 °C/30 °C was used as a calibrator for all genes
using the 2-ΔΔCt method [48]. For expression during

oxidative and acidic stress, the 0 h of incubation at pH 7.0
and 0mM H2O2 were used as calibrator for all genes.

Statistical analysis
The SAS® (Version 9.4, SAS Institute, Cary NC) GLM
procedure was used to analyze the data. All comparisons
where considered significant at p ≤ 0.05.

Growth curve comparison at different temperatures
The SAS® Version 9.4 Proc Mixed was used to analyze the
data as a repeated measures analysis of variance. Factors
in the model included Temperature (25 °C, 30 °C), Time
(1 – 90 h), and the Temperature by Time interaction. The
random effect in the model was Replicate (n = 12) within
Temperature. The response variable was optical density
(OD). When terms were significant, post hoc analyses
were conducted with pairwise T-test comparisons of
least-squares means.

Gene expression at different temperatures and growth curve
A 2 X 2 factorial arrangement of treatments was used.
Factors in the model Growth (Exponential, Stationary)
and Temperature (25 °C, 30 °C). The Response variables
were ΔCt and ΔΔCt. To stabilize variance terms when
necessary, data were adjusted by adding constants to the
entire distribution in order to log-transform the data.
When overall significance was detected for main effects
or interaction effects, post hoc comparisons were con-
ducted with pairwise t tests of least-squares means.

Culturability at different pH’s
A 7 X 3 factorial arrangement of treatments was used.
Factors in the model included Time (0, 1, 6, 12, 24, 48, 96)
and pH (4, 6.4, 7). The response variable was percent sur-
vival. To stabilize variance terms when necessary, data

Table 2 Primers used in this study
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were adjusted by an arc sine (inverse sine) transformation.
When overall significance was detected for main effects or
interaction effects, post hoc comparisons were conducted
with pairwise t tests of least-squares means.

Gene expression at different pH’s
A 5 X 3 factorial arrangement of treatments was used.
Factors in the model included Time (0, 1, 6, 12, 24) and
pH (4, 6.4, 7). The Response variables were ΔCt and
ΔΔCt. To stabilize variance terms when necessary, data
were adjusted by adding constants to the entire distribu-
tion in order to log-transform the data. When overall
significance was detected for main effects or interaction
effects, post hoc comparisons were conducted with pair-
wise t tests of least-squares means.

Culturability at different concentrations of hydrogen peroxide
A 5 X 4 factorial arrangement of treatments was used.
Factors in the model included Time (0, 1, 6, 12, 24) and
H2O2 concentration (0, 0.1, 1, 5). The response variable
was percent survival. To stabilize variance terms when
necessary, data were adjusted by an arc sine (inverse
sine) transformation. When overall significance was de-
tected for main effects or interaction effects, post hoc
comparisons were conducted with pairwise t tests of
least-squares means.

Gene expression at different concentrations of H2O2

A 5 X 4 factorial arrangement of treatments was used.
Factors in the model included Time (0, 1, 6, 12, 24) and
H2O2 concentration (0, 0.1, 1, 5). The Response variables
were ΔCt and ΔΔCt. To stabilize variance terms when
necessary, data were adjusted by adding constants to the
entire distribution in order to log-transform the data.
When overall significance was detected for main effects
or interaction effects, post hoc comparisons were con-
ducted with pairwise t tests of least-squares means.

Additional file

Additional file 1: Figure S1. Growth curves for Francisella noatunensis
in broth incubated at 25 °C and 30 °C for 96 h. The error bars represent
the standard deviation of twelve replicate wells from three independent
experiments. (PDF 55 kb)
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