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Abstract

Background: Streptomyces lividans has demonstrated its value as an efficient host for protein production due to its
ability to secrete functional proteins directly to the media. Secretory proteins that use the major Sec route need to
be properly folded outside the cell, whereas secretory proteins using the Tat route appear outside the cell correctly
folded. This feature makes the Tat system very attractive for the production of natural or engineered Tat secretory
proteins. S. lividans cells are known to respond differently to overproduction and secretion of Tat versus Sec
proteins. Increased understanding of the impact of protein secretion through the Tat route can be obtained by a
deeper analysis of the metabolic impact associated with protein production, and its dependence on protein origin,
composition, secretion mechanisms, growth phases and nutrients. Flux Balance Analysis of Genome-Scale Metabolic
Network models provides a theoretical framework to investigate cell metabolism under different constraints.

Results: We have built new models for various S. lividans strains to better understand the mechanisms associated with
overproduction of proteins secreted through the Tat route. We compare models of an S. lividans Tat-dependent agarase
overproducing strain with those of the S. lividans wild-type, an S. lividans strain carrying the multi-copy plasmid vector and
an α-amylase Sec-dependent overproducing strain. Using updated genomic, transcriptomic and experimental data we
could extend existing S. lividans models and produce a new model which produces improved results largely extending the
coverage of S. lividans strains, the number of genes and reactions being considered, the predictive behaviour and the
dependence on specification of exchange constraints. Comparison of the optimized solutions obtained highlights
numerous changes between Tat- and Sec-dependent protein secreting strains affecting the metabolism of carbon, amino
acids, nucleotides, lipids and cofactors, and variability analysis predicts a large potential for protein overproduction.

Conclusions: This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion
reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a
novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic
engineering of protein overproduction in S. lividans.
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Background
Streptomyces are non-pathogenic gram-positive soil bac-
teria, members of the Actinobacteria phylum, displaying
mycelial growth, and involved in the breakdown of soil
material. They are well known for their ability to
synthesize antibiotics and other compounds of biotech-
nological interest, as well as to produce large quantities
of extracellular proteins. This last characteristic, coupled
to a relatively low endogenous protease activity, makes
them attractive for the production of extracellular en-
zymes of industrial application [1].
The genomes of key Streptomyces (S.) strains have

been compared in detail, and in some cases, completely
sequenced [2–4]. A recent genome comparison of 31
known Streptomyces genomes found S. coelicolor to be
the most similar to S. lividans [5]. Hybridizations of the
genomes of various strains of S. lividans (66, TK21,
TK24) among themselves and with those of S. coelicolor
A3(2) and M145, have shown a considerable genome
plasticity, accommodating large deletions and extensive
amplifications, often linked to conjugative elements such
as SLP1 or SLP3 [6–8].
Streptomycetes have a linear genome of approximately

6–12 Mb with a strong G + C bias (~ 72–75%) [9, 10].
Among streptomycetes, S. lividans is a preferred host
for protein production because it may be efficiently
transformed, due to a relaxed exogenous deoxyreibonu-
cleic acid (DNA) restriction system, facilitating the use
of functional plasmids and propagation of heterologous
DNA sequences [1, 5].
Bacterial protein production studies have shown that

secretory proteins are efficiently secreted when overpro-
duced in S. lividans [1, 11]. Protein secretion in S. livi-
dans makes use of two pathways: the twin-arginine
translocation (Tat) route, which secretes folded proteins
using proton motive force (PMF) or ΔpH, and the
ATP-dependent major secretion (Sec) route, which ex-
ports unfolded proteins that are to be folded outside the
cell [12]. The 6 kDa Early secretory antigenic target
(ESAT-6) secretion system 1 (ESX-1), a type VII secre-
tion system (T7SS) route, has been identified in S. livi-
dans but its importance is uncertain [13]. The cost of
protein secretion via the Tat route is difficult to measure:
it has been suggested that it might require up to 80.000
protons (H+) -equivalent to 104 molecules of ATP- per
protein as estimated in thylakoid Tat systems in vitro al-
though it might not require a ΔpH in vivo [14]. The en-
ergetic cost of secretion through the Sec route has been
variously estimated in E. coli as 500 ATP for each trans-
located 25 kDa polypeptide [14], 1 ATP per each 35–40
amino acids (a.a.) [15], 1 ATP per 25 a.a [16]. or 1 ATP
per ~ 5 kDa [17], with PMF being able to provide add-
itional driving force when SecA is not bound or in later
stages [18]. Although its cost may be higher, the ability

to export proteins already folded makes the Tat route very
attractive for its potential use in the overproduction and
secretion of specific proteins with industrial interest. Pre-
vious work has reported the existence of relevant differ-
ences in the cellular response to Sec- and Tat-dependent
protein secretion [19]. Hence, existing studies based on
Sec-mediated protein secretion are not directly applicable
to the Tat route.
Genome-scale metabolic networks (GSMNs) together

with Flux Balance Analysis (FBA) and the related Flux
Variability Analysis (FVA) and Minimization of the Total
Flux (MTF) methods, have been used to get a better un-
derstanding of the underlying metabolic effects associ-
ated with protein production [20–23]. Assuming that
metabolic steps are faster than cellular growth and envir-
onmental changes, these methods can treat metabolic
fluxes as quasi-steady state and compute a range of opti-
mal fluxes of intermediate metabolites under given con-
straints. The quality of the results will primarily depend
on the extension of the metabolic coverage of the model
and, secondarily on the quantity and quality of the refer-
ence data (expressed as forced flux limits) used to cover
up for model shortcomings. Typically, as models become
more comprehensive, they require coercion of less add-
itional flux limits and produce more accurate results.
The resulting flux distributions should describe the opti-
mal response of a cell within the limits chosen, allowing
the description of experimental results and the prediction
of adaptive changes, maximum allowable metabolic yields
and fluxes, and potential routes for optimization [20, 21].
Understanding the underlying metabolic mechanisms
facilitates the identification of potential bottlenecks and
targets for gene or gene-expression modification to modu-
late the yield of desired products [21].
To date, there are no metabolic models to study the

impact of protein secretion using the Tat route. In this
work we set out to develop such a model and use it to
study the differential aspects of metabolic response to
protein secretion through the Tat route, specifically
comparing S. lividans strains overproducing a model Tat
protein (agarase) with the S. lividans wild type strain, a
S. lividans strain carrying the multicopy vector plasmid
and an S. lividans strain overproducing a model Sec pro-
tein (α-amylase).
To model Tat-dependent protein secretion, we use ex-

perimental growth and secretion data from the overex-
pression in S. lividans TK21 of the S. coelicolor dagA
gene encoding agarase propagated in the multicopy plas-
mid pIJ486. S.lividans TK21 was selected because it is a
non-plasmid derivative of S. lividans 66, and has demon-
strated efficient secretion under diverse conditions in
our hands [11, 12, 19]. Overexpression of the S. lividans
TK21 α-amylase encoding gene propagated in the same
multicopy plasmid pIJ486 was used to compare Tat- to
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Sec-dependent protein secretion. The use of the same
strain and multicopy vector to propagate genes which
are phylogenetically very close to those of the host
strain, and the comparison with the wild-type and the
multicopy vector-carrying strains allowed us to reduce
potential biases in the comparisons.
There are, however, no GSMNs to model overproduc-

tion of either agarase or α-amylase in S. lividans TK21.
To model these, the most efficient approach is to start
from existing models of related organisms and extend
them to account for known genetic differences. The
closest existing model corresponds to the production of
mouse Tumor Necrosis Factor α (mTNF-α) in S. livi-
dans TK24 growing on a minimal medium [22–24]. This
model contains 705 reactions and 496 metabolites and
was derived from an earlier model for S. coelicolor A3(2)
developed by Borodina et al. (iIB711) [25]. There are
other S. lividans models that have been used to explore
the production of cellulase A through 13C-based meta-
bolic flux analysis (71 reactions, 35 metabolites) [26] and
of xyamenmycin (82 reactions, 86 metabolites) [27], but
they are much less detailed, and there is another,
iIB711-derived, model published on the web by the Sur-
reyFBA group [28]. A novel model for S. coelicolor
(iMK1208) [29] might also serve as the basis for a new,
better model for S. lividans. The availability of these
models, detailed genome comparison studies and the
complete sequences of S. lividans TK24 and S. lividans
66, facilitates the design of new models adapted to the
production of agarase and α-amylase by S. lividans
TK21. Additionally, there is information available on
amino acid uptake rates during heterologous protein
production in S. lividans TK24 that could be used as ref-
erence for adjusting other FBA models [22].
The closeness of our production systems to existing

models makes them especially attractive as a starting point.
However, given the large genome plasticity of Streptomyces,
and the access to new data not available at the time of their
design, existing models should be thoroughly reviewed and
adapted to ensure that they match all the novel informa-
tion currently available. In this manuscript, we analyse the
metabolic impact of Tat-mediated agarase secretion on S.
lividans TK21 developing new GSMN models.

Methods
Bacterial strains and culture medium
S. lividans TK21, a non-plasmid derivative from S. livi-
dans 66 (John Innes Center Collection, Norwich UK)
was a generous gift from D. A. Hopwood and was used
as the wild type strain [30]. Overproduction of agarase
and α-amylase was achieved using multicopy plasmids
carrying the corresponding genes. S. lividans TK21
(pAMI11) and S. lividans TK21 (pAGAs5) contain plas-
mids pAMI11 and pAGAs5 respectively. Plasmid

pAMI11 [31] and pAGAs5 are pIJ486 [32] derivative
multicopy propagated plasmids carrying the S. lividans
α-amylase encoding gene (amlB) and the S. coelicolor
agarase gene (dagA) under the control of their own pro-
moters, respectively [19, 33].
Mannitol was used as carbon source since glucose has

been shown to negatively affect agarase secretion [33, 34].
Mycelia stored at − 80 °C were cultured in flasks of 25 ml
with 5 ml of yeast extract-malt extract (YEME) liquid
medium with kanamycin at 10 μg·ml− 1 final concentration
at 30 °C and 250 rpm (rpm). After 72 h of incubation
0,5 ml of the first pre-cultures were grown in 25 ml flasks
for 24 h under the same conditions. After that, the second
pre-cultures were centrifugated and biomass collected and
used to inoculate cultures at an initial concentration of
0.1 g (wet weight) per L. Bacterial cells were grown in
400 ml of minimal liquid medium (NMMP): 1% mannitol,
2 g/L (NH4)2 SO4, 5 g/L Bacto™casamino acids, 0.6 g/L
MgSO4·7· H2O, 150 ml/L of 0.1 M Na H2PO4/K2HPO4

and 1 ml/L minor elements solution (containing 1 g/L
ZnSO4·7 H2O, 1 g/L FeSO4·7H2O, 1 g/L MnCl2·4 H2O
and 1 g/L anhydrous CaCl2), and were incubated in 2 L
regular flasks at 30 °C and 250 rpm. Biomass concentra-
tion was determined using the cell dry weight (DW). Mea-
surements were performed in triplicate.

Enzyme activities
To determine extracellular agarase and α-amylase activ-
ities, samples were taken from the supernatants of the
different bacterial cell cultures at each time and proteins
present in the samples were concentrated by precipi-
tation with ammonium sulphate brought to 80% sat-
uration; the precipitated protein was collected by
centrifugation at 13,000 g for 30 min. and dissolved
in 20 mM phosphate buffer (pH 7.0) for α-amylase
and in 50 mM imidazole-HCl (pH 6.5) for agarase.
The amount of agarase and α-amylase (mmol) was cal-

culated using purified agarase [35] and commercial
α-amylase from Bacillus amyloliquefaciens (Sigma ref.
A7595) as references to perform standard titration
curves at different known concentrations. The protein
concentration in the various samples was determined
using the BCA protein assay kit (Pierce), as indicated by
the supplier. Activities were determined as previously
described [33, 36] using supernatants from three inde-
pendent cultures grown under identical conditions.

Metabolic models
Initial models for wild-type S. lividans TK21 were based
on published data for S. lividans TK24 [24], which will
be hereinafter referred to as iIL708, and on the model
iMK1208 published by Kim et al. for S. coelicolorA3(2)
[29]. The iIL708 model was reconstructed from the pub-
lished data and verified to reproduce the original results.
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The existing models were updated to account for new
information not available at the time of their respective
publication. The genome sequences of the S. coelicolor
and S. lividans strains were retrieved from the European
Nucleotide Archive (ENA), and compared against each
other at the coding sequence level using Blast-based
RATT [37] to verify and complete the annotation, match
gene identifiers, confirm missing genes, and search for
isozymes that could provide functional alternatives to
missing genes.
The newly generated models for the wild type S. lividans

TK21 were subsequently modified to include reactions for
the pIJ486-carrying strain and for strains producing agarase
or α-amylase following a procedure based on that of Lule
et al. [24], using a plasmid copy number Pn = 100 and an
efficiency Pc = 4000, and defining a lump reaction for mes-
senger RNA (mRNA) transcription and translation into
protein with several modifications. We used an estimated
cost of 4 high-energy bonds per amino acid and 2 per
mRNA nucleotide (nt), expressed as ATP, and an mRNA
yield of 30 [38] or 4000 (see below) proteins per mRNA.
We also modified the protein production lump reac-

tion so that the ADP produced is the result of energy
consumption, that phosphate (Pi) also includes the Pi re-
leased when NTPs are incorporated into mRNA (2 Pi
per nt), and that the mRNA is included as a product.
We have used more precise data for mRNA and en-
ergy consumption needs in the case of agarase and
α-amylase. Two mRNA degradation lump reactions
for each mRNA were added to allow the cell to re-
cover the nucleotides used in mRNA production after
mRNA decay either through hydrolysis to NMPs or
through phosphorylation to NDPs. Secretion via the
Tat route was modelled as an export reaction since
the cost of the PMF or of ΔpH is not well character-
ized [14], while secretion through the Sec route was
added as a separate ATP-dependent reaction. Add-
itional exchange reactions for each recombinant pro-
tein were added as well.
We have also built models using a cost of 8·104 H+ /

protein for Tat secretion and compared the results with
the default model.

Constrained-based modelling
We used both the Matlab-based OpenCobra toolkit [39]
and the R-based Sybil package [40] to run FBA, MTF
and FVA calculations on each of the models. Initial con-
straints used were derived from experimental data for
biomass, agarase and α-amylase and from known uptake
rates for heterologous protein production in S. lividans
TK24 [22]. The wild-type and the derived strains were
modelled using mannitol as the main carbon source.
Additional models employing reduced (using only the
lower bounds for mannitol and amino acid exchange) or

minimal (limiting only biomass and protein production)
exchange rate constraints were also tested to allow for
strain differences and to test the predictive power of the
model.
The optimal flux distributions computed using the

MTF were compared using the Kolmogorov-Smirnov
and Wilcoxon tests on flux values and on normalized
vector differences (δƒ) of the active metabolic networks
(AMN), defined as the set of reactions that were active
in any of the strains being compared, using the R statis-
tical package.

Results
Biomass and protein production quantification
Experimental measurements are shown in Fig. 1 and are
available as an additional file (see Additional file 1) (ex-
perimental growth and secretion data) and show that
each protein displays a different temporal secretion pat-
tern. There may be some Sec-dependent agarase secre-
tion during the exponential growth phase, until the
switch to Tat-dependent production of extracellular
agarase occurs at about 24 h, which reaches a maximum
at 60 h. In the case of α-amylase, measured extracellular
protein production is maximal at 24 h, corresponding to
late exponential growth, and decreases afterwards [19, 41].
To simplify comparisons and maximize differences,

we have chosen to analyse the models at the time
points of maximal protein secretion in each case: for
agarase, 60 h (biomass 0.065 gDW/h and protein se-
cretion 6.552·10− 4 mmol/gDW/h), and for α-amylase
24 h (biomass 0.135 gDW/h and protein secretion
4.5887·10− 5 mmol/gDW/h).

Metabolic models
We have revised the existing S. lividans models based
on iIB711 to integrate the newly available experimental
and genome sequence data. As of today, the largest S.
lividans models are iIL708 and a web-published model
from SurreyFBA. A comparison of the models shows
that SurreyFBA differs from iIB711 only in the removal
of nine TK24 genes deemed missing, while iIL708
removes only four genes and modifies various reactions,
including 4 reactions not present in the SurreyFBA
model and one not present in iIB711. Additional
sequence-level comparisons of the various genomes
available for S. coelicolor and S. lividans allowed us to
further correct the model identifying additional isozymes
for deleted or previously considered missing genes. Since
iIL708 does not contain gene information, we only con-
sidered the metabolic reactions in its derivative model.
We have also investigated models of S. coelicolor more

recent than iIB711 that might serve as a foundation for
improved S. lividans models. We have chosen iMK1208
which incorporates numerous enhancements as the basis
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for a new S. lividans TK21 model. References to S.
coelicolor genes missing in S. lividans were removed
together with the corresponding reaction whenever no
alternative enzyme could be identified in S. lividans
genomes. For comparative purposes, we have con-
served the S. coelicolor gene name until an annotated
genome for TK21 providing definitive names is
available.
The only known difference of metabolic interest be-

tween the TK24 and TK21 strains corresponds to
gene SCO0984 which encodes 3-hydroxybutyryl-CoA
dehydrogenase (EC 1.1.1.157) in S. coelicolor. S. livi-
dans TK24 and S. lividans 66 contain alternative
genes that can provide for the same function. Since
these other genes have also been identified in S. livi-
dans TK21, it seems reasonable to assume that the
function of SCO0984 is also present in TK21. Since
the model derived from iIL708 lacks gene information
and the model derived from iMK1028 does not make
use of that gene, it should be possible to apply the
new models without modifications to S. lividans
TK21, S. lividans TK24 and S. lividans 66.

In order to study the impact of protein overproduc-
tion and secretion through the Tat route, we added
support for the use of pIJ486 as a vector for heterol-
ogous protein production and suitable reactions to
model agarase production and secretion. To better
understand the aspects of protein secretion in S. livi-
dans TK21 that are specific of the Tat route, we also
modelled production of α-amylase and its secretion
through the Sec route using data obtained in S. livi-
dans TK21 for comparison.
To estimate protein production costs, the sequences

for agarase and α-amylase were retrieved from the
EMBL database (entries X05811 and Z85949) and
used to derive protein and mRNA composition. The
sequence for the agarase encoding gene (dagA) docu-
ments four promoters that are functional in S. livi-
dans TK21 [42]. Although these promoters may not
be equally effective, we used them to calculate an
average metabolic cost of dagA mRNA transcription.
The mRNA from amlB is known to be at least
1925 nt long that were used to estimate transcription
costs. Translation costs were calculated for their

Fig. 1 Experimental growth and secretion curves. Logarithmic growth curves of the S. lividans TK21 strain secreting agarase using the Tat route
and of the S. lividans TK21 strain secreting α-amylase are shown in panels a and b respectively and are expressed in grams of dry weight mass
per liter. Agarase secreted through the Tat route and α-amylase secreted through the Sec route as a function of time are shown in panels c and
d respectively and are expressed in milli-mols per gram of dry weight. Time is expressed in hours in all cases. Bars show the standard deviation
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corresponding pre-proteins including their signal pep-
tides, 309 a.a. for agarase and 573 a.a. for α-amylase.
As a result of these modifications, we have constructed

two new models for the simulation of protein produc-
tion by S. lividans. Model iJV710 derives from iIL708
and model iJV1220 is based on iMK1208 modified for S.
lividans and protein secretion. Both new models include
additional support for plasmid propagation, protein pro-
duction, mRNA degradation and overproduction of agar-
ase secreted through the Tat route and of α-amylase
secreted through the Sec route.
Both models are deemed suitable for modelling either

the S. lividans TK21, S. lividans TK24 or S. lividans 66
strains, whether wild-type, plasmid-carrying or extracel-
lular protein-producing. All the models generated have
been tested to be compatible with the OpenCobra Tool-
kit and the R Sybil package and are provided separately
(Additional file 2) (GSMN models). The main differ-
ences between the models are summarized in Table 1.

Modelling results
We used model iJV710 to compare the wild-type and
plasmid-carrying strains with those producing Tat-secreted
agarase and Sec-secreted α-amylase using mannitol as car-
bon source. To model mannitol consumption, the uptake
of glucose was set to zero, the flux of reaction R147 (ATP
+GLC→ADP +G6P) which had been coerced in iIL708
to force all glucose consumption to follow this route, was
freed to use bounds 0–1000, and the uptake of mannitol
was set to the reference value of glucose uptake. The re-
sults of the FBA calculations are included as a separate file
(Additional file 3) (MTF and FVA results for iJV710) and
relevant changes are summarised in Table 2 and detailed in
(Additional file 4).

Before comparing Sec- and Tat-dependent results, we
checked the relative impact of plasmid expression and of
changing the carbon source to define their relative
contribution to the changes observed. A detailed
comparison of the wild-type and plasmid-carrying
strains grown with glucose or mannitol, shows only
minor nutrient-related differences, while forcing pro-
duction of the plasmid at 100 copies per cell has a
relatively small impact (likely due to the small pro-
portion of plasmid and marker protein produced).
The overall differences between the distributions of
the wild-type and plasmid-carrying strain were not
statistically significant (See Additional file 4).
Global comparison of the flux distributions showed that

Tat-dependent protein secretion was statistically signifi-
cant with respect to the Sec-secreting, plasmid-carrying
and wild-type strains (P < 0.05). After a detailed analysis of
the differences, besides the effects due to mannitol usage
and plasmid production, we identified differences between
the protein producing and the reference plasmid-carrying
strains that affect the usage of amino acids, reflected both
in the uptake and metabolic (catabolism and biosynthesis)
rates, carbon metabolism (due to the substitution of glu-
cose by mannitol, but also affecting glycolysis and the cit-
rate and pentose phosphate routes), energy metabolism,
nucleotide, and metabolite transport. Many of these
changes showed a differential behaviour depending on
whether the strain was using the Tat (agarase) or the Sec
(α-amylase) secretion route: synthesis of macromolecules,
cofactors, fatty acids, nucleotides, amino acids, energy
production and glycolysis was generally smaller in the
Tat-secreting, agarase producing, strain (Additional file 4).
The iJV1220 model provides a more complete view of

the metabolism including additional and important
routes. The simulation results obtained with iJV1220 are
provided separately (Additional file 5) (MTF and FVA
results for iJV1220) and broadly summarised in Table 3
and detailed in (Additional file 6). By including numer-
ous additional reactions, the iJV1220 model also permits
the identification of additional, previously not consid-
ered, fluxes, such as secondary metabolism, ion trans-
port and exchange rates.
Global differences among the AMN flux distributions are

confirmed when using the iJV1220 model, with increased
statistical significance (probability P = 2.2·10− 16). Detailed
inspection of the individual reactions (Additional file 6)
provides additional information regarding the differences
among the Tat- and Sec-secreting strains: the Tat-secreting,
agarase producing, strain shows reductions in the flux of
specific reactions in the cell envelope, glycolysis, oxidative
phosphorylation, cofactor biosynthesis, methionine metab-
olism and nucleotide metabolism with an unbalance in nu-
cleotide diphosphate kinase (SCO2612) towards increased
production of NTPs and reduced production of dNTPs,

Table 1 Summary comparison of the models designed for S.
lividans

iJV710 iJV1220

Number of genes 0 (710)a 1220b

Number of reactions 713 1446

Number of metabolites 502 1867

Mass balanced No Yes

Amylase Yes Yes

Agarase Yes Yes

mRNA decay No Yes

Branched-chain fatty acids No Yes

Menaquinone biosynthesis No Yes

Updated biomass equation No Yes

Updated energy parameters No Yes
aThe model contains no gene information, 710 genes are assumed since it is
based on iIL708 and adds reactions corresponding to 2 new genes
biJV1220 is based on iMK1208, removing 4 genes, and adding genes for amlB,
dagA, RNAse, PNPase and the secretion complexes
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and increased fluxes in the pentose phosphate pathway
(PPP) and the metabolism of several amino acids.
Previous models containing less reactions required

supplementary experimental information provided as
additional flux limits to produce sensible results, and ig-
nored metabolite exchange fluxes that had not been ex-
plicitly measured experimentally [24].

We checked the dependency of the model on the spe-
cification of metabolite exchange fluxes by loosening the
flux limits: we run calculations using relaxed (defining
only the lower bounds on mannitol and amino acid ex-
change) or minimal (allowing free exchange of any me-
tabolite and limiting only biomass and minimal protein
production) constraints. Using these less-constrained

Table 2 Summary of changes in the Tat-secreting strain observed using model iJV710

Pathway Tat-secreting vs. Sec-secreting Tat-secreting vs. Plasmid-bearing

N NAMN P alt = Tat < Sec P alt = Tat > Sec N NAMN Palt = Tat < pIJ486 Palt = Tat > piJ486

Carbon sources 138 26 0.540 0.021 138 29 0.110 0.733

Sulphate metabolism 5 4 0.105 1 5 4 0.779 0.105

Glycolysis 23 13 0.0004 0.9259 23 13 0.002 0.926

TCA cycle 34 18 0.233 0.777 34 19 0.289 0.721

PPP 16 9 0.046 0.962 16 9 0.0002 0.999

Anaplerosis 13 5 0.147 0.896 13 5 0.264 0.799

Energy metabolism 9 6 0.409 0.650 9 6 0.591 0.469

Amino acid biosynthesis 90 56 0.168 0.417 90 64 0.0001 1

Nucleotide biosynthesis 81 45 0.00014 0.978 81 46 0.0004 0.916

Lipid biosynthesis 49 36 0.0001 1 49 37 0.0004 0.973

Cofactor biosynthesis 54 41 0 0.976 54 42 0 0.976

Macromol. biosynthesis 10 10 0.095 0.917 10 10 0.109 0.905

Comparisons of the Tat-secreting strain using the model iJV710 based on MTF analysis of the AMN with pathways grouped in broad subsystems. N is the number
of reactions in the subsystem, NAMN is the number of subsystem reactions that are active in either of the two strains being compared, P is the P value obtained
using the specified alternative hypothesis (i.e. when P < 0.05 the specified alternative hypothesis cannot be rejected). Only subsystems with NAMN > 4 are reported
Abbreviations: TCA cycle tricaboxylic acid (Krebs) cycle, PPP pentose phosphate pathway

Table 3 summary of changes observed in the Tat-secreting strain using model iJV1220

Subsystem Tat-secreting vs. Sec-secreting Tat-secreting vs. Plasmid-bearing

N NAMN P alt = Tat < Sec P alt = Tat > Sec N NAMN Palt = Tat < pIJ486 Palt = Tat > pIJ486

Amino acid metabolism 187 81 0.228 0.773 187 82 0.044 0.956

Carbon metabolism 131 17 0.333 0.679 131 18 0.419 0.594

Cell envelope 577 292 0.000 1.000 577 292 0.000 1.000

TCA 17 11 0.179 0.838 17 10 0.153 0.864

Cofactor biosynthesis 214 148 0.000 1.000 214 148 0.000 1.000

Exchange 216 43 0.646 0.357 216 45 0.578 0.425

Glycolysis and gluconeogenesis 21 13 0.185 0.829 21 12 0.397 0.625

Inorganic Ion Transport and Metabolism 59 15 0.270 0.744 59 15 0.230 0.782

Nucleotide metabolism 125 47 0.023 0.978 125 47 0.023 0.978

Oxidative Phosphorylation 17 7 0.185 0.847 17 6 0.188 0.852

PPP 15 10 0.741 0.285 15 8 0.604 0.437

Transport, Membrane 167 22 0.500 0.509 167 25 0.431 0.577

Unassigned 16 4 0.500 0.614 16 4 0.500 0.614

Amylase secretion 5 4 0.009 0.996 5 0 NA NA

Agarase secretion 5 4 0.996 0.009 5 4 0.996 0.009

Comparisons of the Tat-secreting strain using the model iJV1220 based on MTF analysis of the AMN with pathways grouped in broad subsystems. N is the
number of reactions in the subsystem, NAMN is the number of subsystem reactions that are active in either of the two strains being compared, P is the P value
obtained using the specified alternative hypothesis (i.e. when P < 0.05 the specified alternative hypothesis cannot be rejected). Only subsystems with NAMN > 4
are reported
Abbreviations: TCA cycle tricaboxylic acid (Krebs) cycle, PPP pentose phosphate pathway, NA not applicable
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models, we could monitor the uptake and excretion
rates of numerous metabolites whose exchange could
not be considered in previous simulations (see Add-
itional file 5, MTF and FVA results for iJV1220). The re-
sults agree with observations from growth in minimal
medium: besides numerous ions not considered in
previous models, the model identified amino acids as
the preferred nutrients, in agreement with experimen-
tal observations (when grown with casamino acids,
amino acids are the preferred carbon sources, and as
they start to diminish, the cells start using other car-
bon sources [19, 22, 43]). Overall, the computed MTF
fluxes and their respective FVA limits were remark-
ably similar irrespective of whether they were com-
puted with extensive experimental constraints, with
relaxed or even with no constrains at all (other than
biomass and minimal secreted protein production)
(See Additional file 5, MTF and FVA results for iJV1220)
and agreed with experimentally observed exchange rates,
which were within the predicted FVA limits.
We have also used model iJV1220 to explore the po-

tential impact of using a secretion cost as high as that
proposed for in vitro chloroplast thylakoid systems by
setting the cost to 8·104 H+ per protein. The results
(provided as Additional file 7) indicate that the theoret-
ical maximum secretion of heterologous protein is not
affected, and the associated flux changes may be inter-
preted as leading to maintain the pool of free H+ (in-
creased glycolysis and associated pathways, pyruvate
metabolism, nucleotide salvage, membrane transport,
and decrease of oxidative phosphorylation, PPP, TCA
-which produce NADPH reducing the H+ pool- and ex-
change reactions). Simulations using 104 ATP (data not
shown) led to a different flux distribution showing that
the two costs are not metabolically equivalent.

Discussion
In this work we describe the utilization of metabolic
models to describe the experimental growth and secre-
tion rates of Tat-secreted agarase and Sec-secreted
α-amylase overproduced in S. lividans TK21. Our ex-
perimental measures confirm previous observations
[19, 33–35, 42]. To facilitate identification of the ef-
fects due to protein production, we restrict compari-
sons to maximal production phases using the same
medium, host strain and vector.
We present here two new metabolic models, iJV710,

which may be used to obtain comparisons with previ-
ously published data, and iJV1220 which largely extends
existing S. lividans models. Previous models for S. livi-
dans TK24 were adapted from iIB711 for S. coelicolor,
using hybridization comparison data [6–8]. Due to the
large genome plasticity of streptomycetes, we updated
this model using newly published data, most notably the

genome sequences of S. lividans TK24 and S. lividans 66
[2, 3], to identify any potential changes specific to S. livi-
dans TK21. Our comparative analyses suggest that, al-
though we were initially interested in modelling S.
lividans TK21, and according to available information at
the time of writing, our metabolic models should also be
valid at least for S. lividans 66 and S. lividans TK24 (ex-
cept that iJV1220 uses S. coelicolor gene names). We ex-
tended our models to add plasmid propagation and
protein production reactions. Thus, the same model may
be used to simulate the wild-type, plasmid-carrying and
protein producing strains by simply setting the flux limits
of the corresponding reactions to appropriate values.
Although we have used the best data available to

maximize model accuracy, we still had to approximate
some reaction costs: plasmid and indicator protein pro-
duction is approximate since the plasmid sequence is
not available; although the translation process consumes
actually both ATP and GTP as energy sources, the cost
of protein translation was expressed in terms of summa-
rized high-energy phosphate bonds of ATP for simpli-
city, considering them metabolically inter-convertible
and following common practice (e.g. [24, 38, 44]); se-
creted protein and mRNA composition ignores potential
leading or trailing sequences or preferences for mRNA
isoforms; mRNA decay is much more complex than
expressed and is included mainly to allow the cell to re-
cover mRNA nucleotides; and protein secretion cost is
based on average estimates (as it is not currently pos-
sible to determine it with more precision). The potential
effect of PMF or ΔpH in either the Tat or the Sec routes is
ill-defined and has not been considered in the current
models, pending availability of additional information.
Additional reactions might be included in more de-

tailed models, such as the removal of the signal peptide
by signal peptidases, glucose inhibition of Tat-secretion,
intracellular protein accumulation and extra- and
intra-cellular protein degradation would be needed to
model other observed changes in protein secretion, but
there is currently not enough information to model
these steps properly.
FBA and associated methods have been previously ap-

plied to batch culture data (e.g. [44, 45]) in other organ-
isms. While previous S. lividans models were derived for
fed-batch cultures, we successfully used our models for
batch and fed-batch cultures (data not shown), support-
ing their utility in a broader range of situations.
These models enabled us to explore the potential

metabolic costs of Tat-mediated protein secretion in
batch cultures using the best data available to date.
Overall model predictions agree with experimental ob-
servations [23, 24, 26]. The metabolic differences be-
tween the plasmid-bearing and wild type strains are
small, as is the case between the use of glucose or
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mannitol as carbon sources. The latter is to be expected
since mannitol should readily be converted to D-manni-
tol-1P and subsequently β-D-fructose-6P, but fails to ex-
plain the experimentally observed negative effect of
glucose on growth and protein secretion suggesting it may
be exerted through non-metabolic mechanisms. While the
differences between the wild type, the pIJ486 bearing and
the Sec- secreting strains are easy to interpret, it is more
difficult to assert the relative importance of the high
number of differences observed when comparing Tat
(agarase) and Sec (α-amylase) results. Most differ-
ences agree with the experimental observations that
Tat-mediated protein production is associated to slo-
wed cell growth at all stages. The metabolic predic-
tions identify too the metabolic trends corresponding
to differential gene expression data [19]. However, it
is difficult to draw clear conclusions: maximum secre-
tion is observed at different growth rates, the produc-
tion of proteins with different size, composition and
yields might be affected by amino acid usage, some
gene clusters containing different enzymes may be
co-regulated, and alternative isozymes may be subject to
differential expression, hence the model may potentially
show a behaviour that may seem occasionally inconsistent
with expression microarrays, especially since Streptomyces
spp. has many duplicated genes [6, 8, 45].
The predictions obtained with iJV710 permit direct com-

parison with those obtained by previous S. lividans models
and show reduced fluxes in glycolysis, lipid, nucleotide and
cofactor metabolism in Tat versus Sec-dependent secretion.
The fluxes computed with the more complete model,

iJV1220 show statistically significant changes related to
cell envelope, cofactor and nucleotide biosynthesis simi-
larly to iJV710, with differences that can be ascribed to
the inclusion of previously unconsidered relevant routes.
Being more comprehensive, iJV1220 provides additional
details and reproduces better the known experimental
behaviour [11, 19, 22, 26, 43]. The iJV1220 model dis-
played a better predictive behaviour, reproducing
microarray expression data [19] and experimental ob-
servations of metabolite exchange rates when most
constraints on exchange flux limits were relaxed or
removed. Since iJV1220 is more comprehensive, pro-
duces better results, and should be valid too for S.
lividans TK24 and S. lividans 66, we favour its use.
Since it has been shown that S. lividans may effi-
ciently produce heterologous proteins with a different
codon usage bias [46], the availability of this new, im-
proved metabolic model offers the possibility of using
it to study protein production in S. lividans with
minimal assumptions. Additionally, iJV1220 also adds
gene information and, therefore, may be used to ex-
plore the potential effect of genetic modifications and
to identify potentially interesting target genes

controlling protein overproduction and secretion. The
upper limits of protein secretion predicted by FVA
and by setting maximal protein secretion as the ob-
jective suggest that there could be room for increas-
ing heterologous protein production using either the
Tat or the Sec route (see Additional files 3 and 5).
Future work to improve protein production should
exploit comprehensive modelling and address the in-
fluence of non-metabolic factors, which are currently
difficult to incorporate into FBA models.

Conclusions
Modeling of Tat-dependent protein secretion identifies a
large number of changes with respect to Sec-dependent
protein secretion or the plasmid-bearing and wild-type
strains, both at the subsystem level and at the level of in-
dividual reactions. These changes can be related to ob-
served behaviour and reproduce experimental results.
Variability analysis shows that there is ample room for
improvement in protein secretion until the protein pro-
duction limits of the system are reached, opening the
possibility of using these models in protein secretion
bioengineering of S. lividans.
Both, iJV710 and iJV1220 have proven useful to obtain

insights into the metabolism associated with wild-type,
plasmid-carrying and extracellular protein-production
either via the Tat or Sec routes using S. lividans, irre-
spective of the host strain. Since iJV1220 provides more
information and has demonstrated to respond well when
using relaxed or minimal exchange limits, it provides the
best existing option for metabolic modelling in S. livi-
dans, especially when limited information is available on
potential metabolic constraints. The availability of
iJV1220, a more extensive model that may be valid for S.
lividans TK21, S. lividans TK24 and S. lividans 66, and
supports secretion through the Tat and/or Sec routes,
should facilitate future metabolic models of protein se-
cretion, leaving selection of the secretion route or host
strain as choices to be decided on a case-by-case basis
considering additional factors.

Additional files

Additional file 1: Experimental growth and secretion data. Excel file
containing experimentally determined biomass and protein secretion
data for the agarase and α-amylase producing strains. (XLS 11 kb)

Additional file 2: GSMN models. Zip file containing the new models,
iJV710 and iJV1220 in SBML format. As shipped, the models represent the
wild-type strain but contain support for the plasmid-carrying and various
protein overproducer strains. In order to model these other strains, the
limits of the corresponding reactions should be set to appropriate values.
(ZIP 389 kb)

Additional file 3: MTF and FVA results for iJV710. Excel file containing:
the list of metabolites and reactions considered in the model, the results
obtained with the model subject to lower and upper bound constraints
using reference values and optimizing for (constrained) biomass
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production, the results obtained releasing the upper bounds on protein
production and optimizing for protein secretion (to maximize the effect
of protein production and secretion). (XLS 500 kb)

Additional file 4: Comparison tables for iJV710. Tables comparing
results obtained using model iJV710 for the protein secreting strains to
those of the wild-type and the plasmid carrying strains. (XLS 4108 kb)

Additional file 5: MTF and FVA results for iJV1220. Excel file containing
the list of metabolites and reactions in model iJV1220, together with the
results of MTF and FVA calculations using reference, relaxed and minimal
constraints. Relaxed constraints consist in setting the larger exchange
limit to 1000 and the minor exchange limit to the reference value, or to
the reference value minus one or two standard deviations. Minimal
constraints consist in using no limits for exchange reactions except for
biomass production and protein secretion). (XLS 2141 kb)

Additional file 6: Comparison tables for iJV1220. Tables comparing the
results obtained using the iJV1220 model for the protein secreting strains
with those of the plasmid bearing and wild-type strains. (XLS 11751 kb)

Additional file 7: Comparison tables and MTF results of simulating Tat
secretion using a cost of 80,000 protons per protein. (XLS 3191 kb)
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