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Abstract

Background: Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant
synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the

modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully
knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method.

Results: Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These
surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin,
[ALeu’]surfactin and [ALeu®lsurfactin showed evidence of reduced toxicity, while [AAsp”Isurfactin showed stronger
inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum
inhibitory concentration of [ALeu®lsurfactin for Fusarium moniliforme was 50 pg/mL, such that [ALeu®lsurfactin could
lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to

stimulating apoptosis in F. moniliforme.

Conclusions: The present results revealed that [ALeu®]surfactin showed a significant antifungal activity against F.
moniliforme and might successfully be employed to control fungal food contamination and improve food safety.
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Background

Fusarium moniliforme mainly contaminates maize, sor-
ghum, wheat, cotton, beans, tomatoes, peanuts, bananas,
beans, peppers, and some feeds. Among these materials,
maize is the most prone to fungal infection, accounting
for almost 90 % of all types of food pollution [1, 2]. As one
of the most common fungi, Fusarium mycotoxin re-
searchers are currently most concerned about F. monili-
Jforme. Currently, surfactins are used for their antibacterial,
antiviral, anti-tumor, and hemolytic activities [3—6]. How-
ever, surfactins do not only inhibit filamentous fungi, but
C15 surfactin has a synergistic inhibition effect on filament-
ous fungi. The lipopeptide surfactin family has a ring
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structure peptide chain and possesses a P-hydroxy fatty
acid chain (typically C;3—Cs¢) containing seven amino acids
formed by crosslinking [7]. There has been great interest in
these compounds because of their potential biological ac-
tivities as well as economic value. Lipopeptides are often
composed of seven or fewer modules composed of amino
acids components. Surfactin consists of a Glu-Leu-Leu-Val-
Asp-Leu-Leu peptide, synthesized by large multifunctional
nonribosomal peptide synthetases (NRPSs) via the multiple
thiotemplate mechanism [8, 9]. The composite module can
be modified by epimerization, methylation, acylation, or
cyclization. The final lipopeptide products can have linear,
cyclic, or branched peptide backbones [10].

In this study, a procedure is described that allows for
efficient and relatively fast inactivation of a Bacillus sub-
tilis gene to create new, biotechnologically interesting
products. The approach is the same as developed has
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been for some other Gram-positive strains [11, 12] and
uses a high temperature-sensitive, shuttle plasmid based
on the pKS2 replication origin. Plasmid pKS2 replicates
at 30 °C, but 37 °C is nonpermissive for plasmid replica-
tion. This method is different from the traditional two-
step knockout method [13] and can quickly knock out a
module with precision. In contrast, the two-step method
usually cannot avoid the impact of an exogenous anti-
biotic resistance gene.

B. subtilis strain BP2-L1 produces surfactin following
the integration of genes sfp and degQ into the B. subtilis
BP2 chromosome [14]. For knock out of the modules SrfA-
A-Leu, SrfA-B-Asp, and SrfA-B-Leu of surfactin NRPSs in
B. subtilis BP2-L1, the pKS2-mediated, temperature-
sensitive, homologous recombination method was used.
The structures of the resulting novel surfactins were identi-
fied and isolated to develop new antibacterial lipopeptides
with stronger antimicrobial activity and more beneficial
characteristics.

Methods

Strains, plasmids, and media

Strains and plasmids used in this study are listed in
Table 1. B. subtilis strain PB2-L1, a derivative of B. subti-
lis 168 (trpC2) developed to produce surfactin [14], was
used as the source of surfactin synthetase genes and for
engineering surfactin synthetase. B. subtilis PB2 was a
model strain of Bacillus subtilis from Chester Price’ lab
of UCDavis. pMD19T-simple vector was a commercial
carrier and pKS2 vector was temperature sensitive vec-
tor for gene deletion. Escherichia coli DH5a was used
for cloning procedures and propagation of plasmids;
pKS2-based vectors can be replicated at 30 °C in E. coli.
Before transforming B. subtilis, plasmids were purified
from E. coli strain JM110 to obtain the unmethylated
forms. Bacterial cells were cultivated in Luria broth (LB,
5 g yeast extract/L, 10 g peptone/L, and 10 g NaCl/L) or
in Landy medium [15] supplemented with 0.1 % yeast
extract and 2 mg/L phenylalanine [16], at temperatures
of 28 or 37 °C. Ampicillin was added to 100 pg/mL.

Plasmid construction

The 0.59-kb fragment of the upstream SrfA-A-Leu mod-
ule and 0.51-kb fragment of the downstream SrfA-A-
Leu module were amplified using the primer pairs, 5’
srfA-A-ALeu-up-F/3 'srfA-A-ALeu—SOE-up-R  and 5’
srfA-A-ALeu—SOE-down-F/3 srfA-A-ALeu-down-R, re-
spectively. Because of the 15 bp overlapping fragment in
3'srfA-A-ALeu—SOE-up-R and 5'srfA-A-ALeu—SOE-
down-F, these two fragments were used as templates for
overlapping PCR with the primers 5'srfA-A-ALeu-up-F
and 3'srfA-A-ALeu-down-R [17]. The 1107 bp upstream
and downstream fragments of SrfA-A-Leu module
were modified with Kpnl and Xhol and ligated with

Page 2 of 14

Table 1 Bacterial strains and plasmids used in this study

Strain/plasmid ~ Relevant genotype/description  Reference

E. coli

DH5a recAl, endA1, lacZDM15 New England

Biolabs

JM110 F'traD36proA B lacilacZAM15/ Transgen Biolabs
damdcmsupE44hsdR17 thi leu
thr rpsL lacY galK galT ara
tonA tsxA (lac-proAB)

B. subtilis

B. subtilis PB2 B. subtilis 168 trpC2 Chester Price’ lab

(UCDavis, USA)

B. subtilis PB2-  Derivative of B. subtilis Our labs

L1 PB2 Produces surfactin

B. subtilis LS1 Lacking the third D-leucine This work
module from B. subtilis PB2-11

B. subtilis LS6 Lacking the fifth L-aspartate This work
module from B. subtilis PB2-1.1

B. subtilis LS9 Lacking the sixth D-leucine This work
module from B. subtilis PB2-L1

Plasmids

PMD19T-simple  TA cloning vector; Amp® TAKARA

pKS2 Thermosensitive vector; Our labs
KanR,ErmR

PKS2-srfA- Third D-leucine module This work

C-Aleu knock-out vector; Kan" Erm®

PKS2-srfA- Fifth L-aspartate module This work

B-AAsp knock-out vector: Kan® Erm®

PKS2-srfA- Sixth D-leucine module This work

B-Aleu knock-out vector: Kan® Erm”

similarly treated E. coli and B. subtilis shuttle vector
pKS2 to yield pKS2-srfA-C-ALeu (Table 1). The con-
struction of pKS2-srfA-B-AAsp and pKS2-srfA-B-
ALeu used similar methods. The Accession Numbers
of all nucleic acid primers is NC_000964.3 from
NCBI database.

B. subtilis strain construction
Traditional chemical transformation was used in B. sub-
tilis strain construction. The genotypes of new transfor-
mants were identified via PCR. B. subtilis PB2-L1
transformed with the temperature-sensitive vectors
pKS2-srfA-C-ALeu, pKS2-srfA-B-AAsp, and pKS2-srfA-
B-ALeu. The host strain E. coli J]M110 can modify the
shuttle vector pKS2 by demethylation and, by modifying
demethylation, the rate of B. subtilis transformation can
be highly improved. New transformants possess erythro-
mycin resistance, such that these transformants were se-
lected on LB medium agar plates with 10 pg/mL
erythromycin [18].

Surfactin is a lipopeptide of seven modules that are as-
sembled by NRPS A-, PCP-, C-, and modifying domains
(Fig. 1). This antibacterial lipopeptide must be linearly
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Fig. 1 the surfactin A biosynthesis gene cluster. The surfactin synthetases A is composed of SrfA-A, SrfA-B, SrfA-C and SrfA-TE, respectively (a). The
assembly line of surfactin in the genome consists of three polycistronic genes srfA-ABC (b) which can be further subdivided into five functional
domains (c). The dotted boxes indicate the three modules we deleted in this work

. thioesterase domain

arranged, synthesized, and cyclized into the final as-
sembly of seven amino acids and a PB-hydroxy fatty
acid chain. Knocking out one of the modules in
NRPS gene clusters produces a lipopeptide lacking
one amino acid.

Gene exchange is a two-step replacement procedure, as
described previously [19]. Resistance genes were replaced
in two steps and recombinant strains sensitive to antibi-
otics (Fig. 2). In the first step, the gene recombinant plas-
mid from B. subtilis strains was cultured in LB medium at
37 °C. The homologous sequences were within the target
gene plasmid and the entire plasmid inserted into the gen-
ome via a single crossover. In Fig. 2, crossed lines indicate
the position of a single crossover and the diagonal block
and little dots indicate homologous fragment positions. In
the second step, the above-described integrands took place
in a single exchange; the second exchange occurred on the
chromosome in a parental or homologous sequence at 30 °
C within 48 h and finally expelled the plasmid [20]. In
Fig. 2, the diagonal block on the plasmid and genome was
successfully integrated by the initial and second single
crossovers, such that the little dots in the block occurred
between the plasmid and genome. Colonies with deleted
surfactin modules exhibited the erythromycin sensitive
phenotype, which was then used to detect the de-
sired genotype. Finally, sensitive clones were ob-
tained and verified by PCR. These erythromycin
gene of knockout mutants could not amplify this re-
sistance gene but could amplify upstream and down-
stream sequences of homologous gene knockout
mutants (amplified sequence could not contain the
knockout gene sequence).

Culture conditions for obtaining surfactins

B. subtilis strains were inoculated into 250-mL flasks
containing 100 mL of LB medium and cultured at 37 °C
for 24 h with 180 rpm shaking as a preculture. A 5 %
(by vol) preculture was inoculated into a 500-mL flask
containing 200 mL of Landy medium [15], and the wild-
type and modified surfactin produced by culturing at
30 °C with 180 rpm shaking for 72 h.

Extraction of a novel surfactin

After cultivation, a culture was centrifuged at 11000 x g
for 15 min to remove bacterial cells. The supernatant
pH was adjusted to 2.0 by adding 6 N HCL until the
supernatant produced a precipitate. The supernatant
was then centrifuged at 11000 x g for 10 min and the
precipitate collected [21]. The precipitate was then re-
suspended in methanol several times with subsequent
centrifugation. Finally, the pH was adjusted to 7.0 using
6 N NaOH to obtain an extract dissolved in methanol.

Identification of a novel surfactin

A lipopeptide surfactin was extracted as described previ-
ously [22]. The extracts were analyzed by HPLC/MS
(Hewlett Packard 1100 Series C8 column, Hewlett-
Packard Co., Palo Alto, CA, USA) and monitored at
210 nm as well as in negative-ion mode over the m/z
range from 500 to 1200. The solvent gradient profile
used buffers A and B (0.05 % aqueous formic acid and
0.045 % methanolic formic acid, by vol, respectively) at a
flow rate of 0.3 mL/min, with sample elution starting
with 70 % buffer B, followed by a linear gradient to
100 % buffer B over 30 min.
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Fig. 2 Knockout strategy of marker-free gene. Note that recombination may occur, both at the upstream fragment of the target gene, as shown
below, and at the downstream fragment. In both cases, the final connection result of the chromosome is the same thing. All of intermediation

30°C

37°C
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All samples were analyzed by continuous infusion into
the LTQ® 7 Tesla FTICR mass spectrometry ion trap
(LTQ-FT, Thermo Fischer Scientific Inc., Waltham, MA,
USA) equipped with a Triversa Nanomate nanoESI ion
source (Advion Biosciences Corp., Ithaca, NY, USA)
[23]. Samples were detected under negative ion mode
(mass range, 150-1500) using the following parame-
ters: ion spray voltage at 2.5 kV, sheath gas at 20
units, capillary temperature at 300 °C, capillary volt-
age at 41 V, and tube lens at 110 V. Xcalibur soft-
ware was used for visualization of high-resolution
spectral profile data (Thermo Fischer Scientific, Inc.,
2nd Edition SP2) and the exact patterns of m/z values
obtained.

Biological activity analysis of novel surfactin

Surfactin hemolytic activity was analyzed using blood-agar
plates [24]. In brief, activity was detected on commercial
blood agar using the Oxford Cup for hemolytic activity de-
tection. The ability of products from bacterial strains to in-
hibit the growth of various indicator organisms by the agar
well diffusion method was a qualitative determination [25].
Pre-poured agar media plates were spread with 10’ CFU/
mL of the respective indicator organism and allowed to
dry. Wells of 6.8 mm diameter were cut in the plates using
a sterile steel borer and filled with 24 h LB culture filtrate

(60 pL) of each isolate. After incubation under appropriate
conditions, the diameter of the inhibition zone was mea-
sured by using calipers. B. pumilus strains were mixed in
LB agar plates, and surfactin A and one of three novel sur-
factin extracts added into the plates using the 6.8-mm
punch method to detect lipopeptide antibiotic activity.
Filamentous growth of F. moniliforme were mixed in po-
tato dextrose agar (PDA) plates, and antibacterial activity
measured as described previously. Biologically active
substances were isolated and purified by HPLC to
yield relatively pure products. Under vacuum condi-
tions, the same concentration ratio and sample con-
centration were obtained for these isolates and the
biological activity analyzed. The diameters of cleared
zones were measured and are shown in Table 3. Each
sample was treated in triplicate and the results
expressed as means * SD.

According to the National Committee for Clinical
Laboratory Standards (NCCLS), the minimum inhibi-
tory concentrations (MICs) of purified novel surfactin
were detected by the 96-plate microbroth method
[26]. Final concentrations of novel surfactin in mix-
tures ranged from 12.5 to 800 pg/mL. MICs were
measured using an ELISA analyzer after incubation of
bacteria at 37 °C for 20 h and the fungus at 28 °C
for 24 h.
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Inhibitory ability of [ALeu®]surfactin on F. moniliforme
hyphae and spores

Equal volumes of 6.25, 12.5, 25, 50, 100, 200, and
400 pg/mL of [ALeu®Jsurfactin were separately added
into PDA medium. Then, 5-mm hyphae discs of F. mon-
iliforme were placed at the PDA media centers. The di-
ameters of the hyphal extent were detected by the
decussation method after incubation for 7 d at 28 °C and
then the inhibition ability rate calculated. At the same
time, after washing hyphae of F. moniliforme using 10 mL
of saline solution containing Tween 20 (0.1 % by vol), the
spore numbers were detected using a hemocytometer. A
sample with sterile PBS was used as a control and each
group was evaluated in triplicate.

Influence of F. moniliforme hyphae by [ALeu®]surfactin
Cells at 1 x 10° cell/mL of F. moniliforme were cultured
on individual PDA culture plates at 28 °C for 5 d. Myce-
lia were harvested from cultures and prepared by wash-
ing with sterile saline solution (0.85 % NaCl, by wt) and
then centrifuged at 3,000 x g for 3 min. Then, hyphae
were picked from PDA plates, placed on the concave
side, and [ALeu®]surfactin solution added to a final con-
centration of 50 pg/mL. The hyphae were cultured in
moisturizing gauze on Petri dishes and, after incubation
for 1, 2, or 4 h at 28 °C, samples were collected for in-
spection by ordinary optical microscopy. Sterile PBS was
used as a control.

SEM and TEM

Hyphae were washed in 0.1 M phosphate buffered saline
(PBS, pH 7.2), and fixed using 2.5 % glutaraldehyde at
4 °C for 24 h. The resulting sediments were rinsed three
times with 0.02 M PBS, fixed with 2 % osmium tetraox-
ide for 2 h at room temperature, and dehydrated
through a sequence of 30, 50, 70, and 90 % aqueous
ethanol solutions. Morphological observations of sam-
ples were carried out using a scanning electron micro-
scope (Hitachi High Technologies America, Inc,
Shaumburg, IL, USA Inc.) operating at 30.0 kV.

A modified TEM method was used, as previously de-
scribed [27]. Hyphae were fixed using 2.5 % glutaralde-
hyde at 4 °C for 24 h and, after treatment with 2 %
osmium tetraoxide, ethanol, acetone, and epoxy, 100-
nm-thick specimens were cut using a microtome (HM
505E, Microm GmbH, Walldorf, Germany). Specimens
were then observed by TEM (JEM-1230, Jeol Ltd.,
Tokyo, Japan).

Spore analysis by flow cytometry

Spore suspensions of F. moniliforme at 1 x 10° cell/mL
were provided with [ALeu®]surfactin to a final concen-
tration of 12.5, 25, or 50 pg/m and cultured at 28 °C for
1-2 h. After incubation, the spores were collected,
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centrifuged (5000 x g for 3 min), and washed twice with
0.02 M PBS. The retrieved spores were suspended, ad-
justed to 1 x 10° cell/mL, dyed by adding 10 uL of 1 mg/
mL of propidium iodide solution, and then incubated at
4 °C in darkness for 15 min [28]. A Becton Dickinson
FACScalibur (BD Biosciences, Inc., San Jose, CA, USA)
was used for flow cytometry analysis and FCS Express 4
software used for data analysis. Counts of 10,000 per sam-
ple were obtained and each sample analyzed in triplicate.
The percentage of spore cell damage was calculated using
the following formula: Cell damage (%) = {(the number of
stained cells M2)/(the number of non-stained cells M1 +
the number of stained cells M2)} x 100 %.

Impact of [ALeu®]surfactin on F. moniliforme nucleic acids
and proteins

Spores of F. moniliforme at 1 x 10° cell/mL were treated
with 25 and 50 pg/mL of [ALeu®]surfactin and then in-
cubated in PDA medium at 28 °C for 1-4 hours. Spores
not treated with [ALeu®Jsurfactin served as controls.
After incubation, the supernatant was retrieved from
samples by centrifugation at 5000 x g for 3 min. Finally,
the samples’ OD,g and OD,g, levels were measured to
assess the leakage of nucleic acids and proteins from F.
moniliforme [29].

Table 2 Primers used in this study. Underlined sequences are
complementary sequences to adjacent segments

Oligonucleotide

Sequence

5'srfA-A-ALeu-up-F
3'sifA-A-ALeu—SOE-up-R

5'srfA-A-ALeu-SOE-down-F

3'srfA-A-ALeu-down-R
5'sifA-B-AAsp -up-F
3'srfA-B-AAsp-SOE-up-F

5'srfA-B-AAsp-SOE-down-F

3'srfA-B-AAsp-down-R
5'srfA-B-ALeu-up-F
3'srfA-B-ALeu—SOE-up-F

5'srfA-B-ALeu-SOE-down-R

3'srfA-B-ALeu-down-R
5'pKS-1058-ERM-F

3'pKS-1058-ERM-R

5-CAAGATACGTATCCT-3'

5-CAGCATTCCCTCCTGAG
TCGGAAGCGTCAG-3'

5-CTGACGCTTCCGACTC
AGGAGGGAATGCTG-3'

5-CCACTTGATGTAATC-3'
5-CAGCATTATCCTGTATC3"

5-AGCAGACGCCTCCATTG
GCCGCTCGAAATC-3

5-GATTTCGAGCGGCCAATG
GAGGCGTCTGCT-3

5-TTGCCAAACGGCG-3'
5-ATGGAGGCGTCTGCT-3'

5-GCTAAATTGACTCATTTG
CCAAACGGCGAA-3

5-TTCGCCGTTTGGCAAAT
GAGTCAATTTAGC-3'

5-CGGC GTTCGCG-3'

5-CTTTGGCGTGTTTCATT
GCTTG-3

5-GGTTCGTGTTCGTGCTG
ACTTG-3'
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B Proposed structure of engineered Surfactin A produced by B. subtilis.
Name Structure
Surfactin A FA-B-?H-L-Glu—L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-L?u
[ALeu’Jsurfactin FA-B-OH-L-Glu-L-Leu-L-Val-L-Asp-D-Leu-L-Leu
| |
[AAsp’Jsurfactin FA-B-?H-L-Glu-L-Leu-D-Leu-L—Val-D-Leu-L—Leu
|
[ALeu®]surfactin FA-B-(I)H-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-L-Lleu
Fig. 3 A. FTICR-MS of lipopeptides produced by B. subtilis. (A) B. subtilis PB2-L1, (B) B. subtilis LS1, (C) B. subtilis LS6 and (D) B. subtilis LS9. The values
10087, 1022.7 and 1036.7 correspond to the calculated H* adducts of surfactin A (A) with a fatty acid residue ranging from 13 to 15 carbon atoms. The
values 9096, 923.6 and 937.6 correspond to the calculated H* adducts of [ALeu’]surfactin (B) with fatty acid bodies ranging from 14 to 16 carbon atoms.
The values 9076, 921.7 and 935.7 correspond to the calculated H* adducts of [AAspﬂsurfactin (O with fatty acid bodies ranging from 14 to 16 carbon
atoms. The [ALeu®]surfactin values (D) are the same as the [ALeu’Jsurfactin values (B). The (b, ¢, d) shows FTICR-MS/MS of [ALeu®]surfactin,
[AAsp?Isurfactin, [ALeu®Isurfactin. B. The proposed structure of engineered Surfactin A produced by B. subtilis
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DNA binding assay by [ALeu®Jsurfactin

DNA binding was detected by gel retardation experi-
ments, as described previously [30]. F. moniliforme DNA
was mixed with different concentrations of [ALeu®]-
surfactin and surfactin with 10 pL of binding buffer
(10 mM Tris—HCl and 1 mM EDTA buffer, pH 8.0).
The mixed samples were incubated for 1 h and then
the mixtures assessed using 1.0 % agarose gel
electrophoresis.

Statistical analysis

Statistical analyses were determined using SPSS software
(SPSS version 17.0, IBM Corp., Armonk, NY, USA). All
experiments were performed in triplicate and data
expressed as mean + standard deviation (SD). A p value
of <0.05 was considered significant.

Results

Reconstitution of novel surfactin synthetase

The first step in SrfA-A and SrfA-B subunit re-
arrangement was the deletion of D-Leu-, Asp-, and
D-Leu- modules. Deletion of the SrfA-A-Leu, SrfA-
B-Asp, or SrfA-B-Leu modules in the srfA-A or
srfA-B subunit was completed using the marker-free
method (Fig. 2). In the first deletion, a 4.4 kb frag-
ment of SrfA-A-Leu was deleted with an upstream
and downstream integration by means of the
temperature sensitive shuttle plasmid pKS2-SrfA-A-
ALeu. The deleted fragment located between 1050
and 2090 (the deleted fragment of srfA-A subunit
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corresponding to amino acid positions) in the srfA-A
subunit. The second deletion mutant was produced
using the disruption plasmid pKS2-SrfA-B-AAsp.
This disruption plasmid deleted the SrfA-B-Asp
module from position 1196 to 2092, which encoded
an L-Asp-incorporating module in the srfA-B subunit.
The third module mutant introduced a deletion in
the SrfA-B-Leu module from position 2093 to 3574,
which encoded the D-Leu-incorporating module in
the srfA-B subunit.

The upstream and downstream sequences of the de-
leted fragment were amplified using PCR, using the cor-
responding primers, and the occurrence of homologous
recombination demonstrated. The resulting plasmid-less
clones were screened for the desired modifications using
colony PCR analysis. In deletion mutants, the erythro-
mycin resistance gene in the chromosome was removed
at the last step and, thus, the erythromycin resistance
gene could not be amplified from the deletion mutants
by PCR.

Using amplification primer pairs, 5'srfA-A-ALeu-up-F
and 3'srfA-A-ALeu-down-R, and 5 pKS-1058-ERM-F and
3'pKS-1058-ERM-R (Table 2), the target band was
1107 bp, which described mutants containing the up-
stream and downstream sequence of the Leu module.
PCR validation confirmed that, at the molecular level,
the deleted module sequence was indeed not in the
mutant genome. The deletion of SrfA-B-Asp and
SrfA-B-Leu modules was also in accordance with the
above methods.

-

[ALeu] surfactin [AAsp]surfactin

[ALeu]surfactin surfactin

" i
Fig. 4 Analysis of bioactivity activity of novel surfactins. a The activity of hemolysis after incubation on blood agar plates for 24 h at 37 °C. b Inhibition

of Bacillus pumilus after incubation on LB agar plates for 12 h at 37 °C. (Q) Inhibition of Fusarium moniliform after incubation on PDA plates for 48 h at
28 °C. a was the hemolysis test; (b) and (c) were the antibacterial and antifungal test
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Table 3 Diameter of cleared zones of surfactins exhibiting biological activity

The diameters of cleared zone(mm) [aLeu’Jsurfactin [AAspS]surfactin [aLeu®surfactin Surfactin
Hemolysis rings 829+0.28 11.75+037 787 +£0.17 11.62 £ 045
B. pumilus 17.14+0.16 19.71+£0.85 19.17£0.16 19.36+0.23
F. moniliforme 1068+ 0.50 704+022 13.12+£049 709+0.15

HPLC-MS analysis of novel surfactin production

Culture supernatants were acidified and the resulting
precipitates extracted with methanol and analyzed by
reverse-phase HPLC. Wild-type surfactin A was detected
as a group of four major peaks representing fatty acid
length polymorphism. Novel forms of surfactin, [ALeu®]-
surfactin, [AAsp°]surfactin, and [ALeu®]surfactin, were
observed with retention times of 17.3, 18.7, and
17.8 min, respectively. The final yield was ~0.82, 1.35,
and 0.96 mg/L, respectively. Because the novel surfactin
secretions by strain B. subtilis LS1 appeared to be more
hydrophobic than native surfactin A, in the LC atlas, the
LS6 retention time by comparison was later than the re-
tention time of LS1 and LS9.

The lipopeptide biosyntheses of mutant B. subtilis LS1,
LS6 and LS9 were compared and HPLC results showed
that the novel surfactin yields from these mutant strains
were relatively low. Thus, the three novel surfactin struc-
tures were analyzed and identified by FTICR-MS, a
highly sensitive detection method.

The molecular mass of surfactin A in the range m/z
1008-1036 was similar to previous published molecu-
lar masses (Fig. 3a) [31], and its fatty chain length
was 13-15 carbon atoms. The molecular mass of
[ALeu®]surfactin was in the range of m/z 909-937
(Fig. 3b). The other two novel surfactins, [AAsp’]sur-
factin and [ALeu®]surfactin, were also confirmed by
mass spectra of ions at m/z 907-935 and 909-937
(corresponding to H" adducts), respectively (Fig. 3c
and d). Overall the chain lengths of these three novel
surfactin derivatives were in the range of 14 to 16
carbon atoms, such that surfactin A and the three
novel surfactin derivatives showed different chain
lengths in their f-hydroxy fatty acids.

Figure 3b, ¢, and d show the fracture fragments from
[ALeu®]surfactin, [AAsp®]surfactin, and [ALeu®]surfactin.
[ALeu®]surfactin corresponded to [M + H]" ions of m/z
923.6 Da. A deduction of 18 Da occurred because of dehy-
dration by the FTICR-MS/MS conditions. Thus, the initial
molecular weight of [ALeu®]surfactin was [M +H]" ions
of m/z 905.6. The stepwise cleavage was L-leucine (810.4),
D-leucine (697.5), L-aspartic acid (582.6), L-valine (483.3),
L-leucine (370.1), and L-glutamic acid (241.2) from
[ALeu®|surfactin (Fig. 4b, arrows indicate fragment size
and theoretical molecular weight of each amino
acid). FTICR-MS/MS results for [AAsp’]surfactin
and [ALeu®]surfactin were marked in the same man-
ner as for [ALeu®]surfactin (Fig. 3¢ and d). FTICR-
MS/MS results indicated that fracture fragments of
these three novel surfactin were consistent with the
predicted patterns.

Bioactivity analysis of novel surfactins
Lipopeptide surfactin A causes hemolysis and inhibits a
broad range of microorganisms, but it does not inhibit
filamentous fungi. Blood agar plates and surfactin ex-
tracts from B. subtilis PB2-L1, LS1, LS6, and LS9 were
cocultured at 37 °C for 24 h. Hemolytic activity was de-
tected using the Oxford Cup method. [ALeu®]surfactin
produced a clear hemolytic zone surrounding extracts of
culture supernatants (Fig. 4a). In contrast, no hemolysis
was visible for [ALeu®|surfactin and [ALeu®]surfactin.
However, the hemolytic zone of methanol extracts from B.
subtilis 1.S6 was bigger than that for B. subtilis PB2-L1.
Growth inhibitions of microorganisms by the three
novel surfactins were compared by incubating the mix-
tures at 37 °C for 1 d. The inhibition zone of [AAsp®]sur-
factin was very obvious, presenting a clear, transparent

Table 4 The minimum inhibitory concentrations (MICs) of lipopeptide antibiotics produced by Bacillus subtilis

Indicator strain MIC (ug/mL)
[ALeu®Jsurfactin [AAsp’Isurfactin [ALeu®surfactin SurfactinA

Bacillus cereus AS1.1846 50 25 50 100
Staphylococcus aureus AS1.2465 50 25 50 50
Micrococcus luteus CMCC28000 200 50 400 200
Pseudomonas fluorescens AS1.1802 600 400 500 400
Salmonella enteritidis CICC21527 400 200 300 200
Bacillus subtilis ATCC9943 50 25 50 100
Fusarium moniliforme ATCC3893 200 ND 50 ND

ND means no detected of the minimum inhibitory concentrations for indicator strain
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Table 5 The inhibitory ability of [ALeu®Jsurfactin for hyphae and sporulation of Fusarium moniliforme

[ALeuSIsurfactin Colony diameter

Inhibition of hyphae

The number of Inhibition

concentration pg/mL (mm) growth (%) spores (x10%/ml) of spores (%)
K 39.58 +0.35° 0 300 +2° 0

6.25 3157 +022° 20.23 252+15° 1627

125 27.65+0.13° 30.14 225+1° 2524

25 2167 +0.36° 4525 203+ 06° 32,55

50 17.75+061¢ 55.15 107 024 6445

100 983 +0.37° 7516 35+05° 8837

200 163 +007° 95.88 05+0° 9833

400 ND 100 ND 100

ND means no detected of hyphae or sporulation for Fusarium moniliforme. a, b, ¢, d, e, f letters indicated significant differences (P value < 0.01)

circle around the hole (Fig. 4b). In contrast, surfactin A
caused less fungal inhibition. In fungal inhibition experi-
ments using the three novel surfactin derivatives, [ALeu®]-
surfactin and [ALeu®]surfactin exhibited the ability to
inhibit fungi, and surfactin A and [AAsp’]surfactin did
not show such ability. These results indicated that
[ALeu®surfactin and [ALeu®]surfactin possessed inhibi-
tory ability for F. moniliforme hyphae, compared with sur-
factin (Table 3). For example, the colony diameters of
Fusarium moniliforme were 13.12 + 0.49 mm for [ALeu®]-
surfactin, and the surfactin showed no inhibition of F.
moniliforme hyphae growth.

As it can be seen from Table 4, a molecular recombin-
ant method was employed to alter the surfactin gene
cluster, and the properties of the resulting novel surfac-
tins were found to be altered, after production by fer-
mentation. [ALeu®]surfactin exhibited the ability to
inhibit fungi, and the MIC of [AAspS]surfactin was
higher than surfactin A. The MIC of [ALeu®]surfactin
for F. moniliforme was 50 pg/mL. These results revealed
that the lack of leucine in surfactin reduced surfactin
hemolytic activity while retaining antibacterial activity.
At the same time, hemolytic and antibacterial activities
were increased because of the lack of aspartic acid in
surfactin.

Inhibitory ability of [ALeu®]surfactin for F. moniliforme
hyphae and spores

The results shown in Table 5 revealed that [ALeu®]-
surfactin’s inhibitory ability for F. moniliforme hyphae
and spores increased was concentration dependent.
[ALeu®]surfactin at 6.25 pg/mL exhibited 20.23 and
16.27 % (both p < 0.01) inhibitory ability for hyphae
and spores, respectively. However, 50 ug/mL of
[ALeu®]surfactin showed stronger inhibitory ability
(55.15 and 64.45 %, respectively). [ALeu®]surfactin at
400 ug/mL completely inhibited hypha and spore
growth. Thus, [ALeu®]surfactin significantly inhibited
F. moniliforme growth.

Influence of F. moniliforme hyphae by [ALeu®]surfactin

Compared with control hyphae, many small vesicles
were observed on numerous mycelia after treatment
with 50 pug/mL [ALeu®]surfactin for 1 h (Fig. 5b); there
were no observable vesicles in control hyphae. After

Fig. 5 800 x micrographs of optical microscope for hyphe of Fusarium
moniliforme treated by [ALeu®]surfactin. a the hypha treated without
[ALeu®Isurfactin; (b) the hypha treated with 50 pg/mL of [ALeuJsurfactin
for 1 h; (c) the hypha treated with 50 pg/mL of [ALeu®Jsurfactin for 2 b
(d) the hypha treated with 50 pg/mL of [ALeu®lsurfactin for 4 h

- J
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treatment for 2 h, vesicles on mycelia became large and
a relatively large projections emerged in the central re-
gions of mycelia. After treatment for 4 h (Fig. 5d), the
abnormal central mycelial enlargements were ruptured
and mycelia appeared as thin strips. This phenomenon
was not observed in controls (Fig. 6a).

F. moniliforme hyphal structures were observed by
SEM and TEM (Fig. 6). Hyphae treated without [ALeu®]-
surfactin grew normally with a straight, smooth appear-
ance (Fig. 6a), while bending and rough structures were
observed after treatment with 50 pg/mL of [ALeu®]surfac-
tin (Fig. 6b). TEM images of growing, healthy, and normal
hyphae, treated without [ALeu®]surfactin, showed smooth
surfaces and all cellular organelles were visible and in nor-
mal arrangements (Fig. 6¢). In contrast, although hyphal
structures remained intact when treated with 50 pg/mL
[ALeu®]surfactin, organelles were gathered in clumps and
some large vacuoles were noticeable in their central re-
gions (Fig. 6d). SEM and TEM observations indicated that
[ALeu®]surfactin clearly affected F. moniliforme growth.

Impact of [ALeu®lsurfactin on F. moniliforme spores
In samples treated for 1 h with a final concentration of
12.5 pg/mL [ALeu®Jsurfactin, a portion of F. spores were
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already stained with fluorescent dye (Fig. 7). With in-
creased surfactin concentration, fluorescent dye staining
rapidly increased. Two-hour samples treated with the same
concentration did not show increased fluorescent dye spore
staining. However, in 25 and 50 pg/mL [ALeu®]surfactin
treated samples, staining of spores increased significantly.
The increase in the number of spores was determined by
the intrusion of fluorescent dyes. Thus, these observations
revealed that [ALeu®|surfactin’s effects on F. moniliforme
spores also led to damage or apoptosis of spores.

Impact of [ALeu®]surfactin on the integrity of F.
moniliforme mycelia
The effects of a surfactin on mycelium integrity can be
reflected in the release of intracellular contents, such as
an increased release of nucleic acid and proteins
(assessed by changes in OD,gy and ODyg, respectively).
After treatment of F. moniliforme with 25 and 50 pg/
mL of [ALeu®|surfactin, F. cell nucleic acids and proteins
were rapidly released into the external bacterial body,
detected by spectroscopic absorption analysis of released
nucleic acids and proteins (Fig. 8). The OD,4, and
ODag of extracellular fluids increased rapidly in samples
treated for 2 h with 50 pg/mL [ALeu®]surfactin. After

WD20.9mm 7.00kV x2.0k 2

with 50 pg/mL of [2Leu®Jsurfactin (TEM)

Fig. 6 SEM and TEM micrographs of hyphae of Fusarium moniliforme treated by [2Leu®]surfactin. a, the hyphae treated without [2Leu®]surfactin
(SEM); b, the hyphae treated with 50 pg/mL of [2Leu®surfactin (SEM); ¢, the hyphae treated without [2Leu®Jsurfactin (TEM); d, the hyphae treated
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3 h of treatment, the OD,g, and OD,g, reached their
maxima and ceased to increase.

DNA binding assay

With increased antimicrobial lipopeptide concentrations,
the binding capacity of F. moniliforme DNA gradually
strengthened, indicating that [ALeu®]surfactin imposed a
certain effect on the fungal genome. As shown in Fig. 9,
treatment of fungal samples with 200 pg/mL [ALeu®]sur-
factin resulted in the Fusarium genome DNA showing
some dispersion. These results showed that surfactin
possessed the ability to bind to fungal DNA, with
[ALeu®]surfactin exhibiting the greatest such ability.

Discussion

In this study, a method for marker-free knockout of sur-
factin synthase was adopted and surfactin synthase suc-
cessfully altered in three different modules. These
modules were responsible for the synthesis of leucine
and aspartic acid. Some deletion module surfactin deriv-
atives have already been demonstrated, including ver-
sions in which the second and last modules of surfactin
synthetase were deleted [32, 33]. Schneider et al. have
previously reported a different modification method,
which relied on molecular surgery within the domains to
achieve an exchange of A- units [22]. This approach has
been successfully applied to position 7 in surfactin NRPS
[34]. From previous reports, the module containing the
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Fig. 8 Divulgation of nucleic acids and proteins of Fusarium moniliforme. CK, samples treated without surfactin. Divulgation of nucleic acids (OD-gp)
(@) and proteins (OD»g) (b) were calculated (*P value < 0.05, **P value < 0.01). The concentration of [ALeu®Jsurfactin was 25 and 50 pg/mL. The time of
treatment reached 3 hours
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Fig. 9 DNA binding assay by [ALeu®Jsurfactin and surfactin. CK, Fusarium moniliforme DNA was mixed with PBS as control. Fusarium moniliforme
DNA was mixed with different amounts of surfactin and [ALeu®Jsurfactin, and then the reaction mixtures after incubating for 1 h at room
temperature were performed to 1 % agarose gel electrophoresis
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epimerization domain has never before been removed.
The comS regulation factor is the key factor in forming
competent B. subtilis cells. As the comS regulatory fac-
tor is contained in the aspartate module, it is difficult to
delete this module. Here, it is reported for the first time
the complete deletion of this module containing this
regulatory factor.

The purification method for novel surfactins draws on
experience with a former method for surfactin extraction
and purification [35]. For detection of biological activity,
the hemolytic activity of [AAsp’]surfactin was found to
have strengthened antimicrobial activity. For filamentous
fungi, no inhibition zones have been discovered. These
results revealed that this method for structural trans-
formation of surfactin was feasible and practical.

However, biological activity tests for novel surfactins
lacking D-leucine showed that the hemolytic activities of
[ALeu®]surfactin and [ALeu®]surfactin were significantly
decreased compared with the original surfactin A.
[ALeu®]surfactin drastically inhibited the growth of F.
moniliforme hyphae and spores when the [ALeu®]surfac-
tin was at 50 pg/mL. Therefore, it was evident that
[ALeu®]surfactin significantly inhibited F. moniliforme
growth. Surfactin is a well-known lipopeptide biosurfac-
tant with antimicrobial activity, but there is little know-
ledge regarding surfactin’s antifungal activity [36].
Surfactins are not alone in inhibiting filamentous fungi,
but C15 surfactin and antifungal drugs have been re-
ported to have a synergistic effect. Surfactins have two
polar amino acid residues, such as Glu and Asp, and
have been concluded to bind with DNA via hydrogen
bonds [37, 38].

SEM and TEM observations indicated that [ALeu®]-
surfactin obviously affected F. moniliforme growth by
causing morphological changes in hyphae, suggesting
that [ALeu®Jsurfactin markedly contributed to inhibiting
fungal growth. DNA binding results indicated that
[ALeu®]surfactin negatively influenced the maintenance
of DNA integrity by binding to F. moniliforme DNA,
which might in turn genetically affect DNA function for
F. moniliforme growth.

This provides the possibility for a new surfactin with
potential for food industry applications. As the original
surfactin A has relatively strong hemolytic activity, its
use has been restricted in the food industry. The pur-
pose of this study was to develop a novel class of anti-
bacterial lipopeptides from surfactin that possessed
reduced cytotoxicity with no significant reduction in
antimicrobial activity.

The inhibitory ability of filamentous fungi by three
novel surfactins was examined here. Very interestingly,
[ALeu®]surfactin and [ALeu®]surfactin exhibited the abil-
ity to inhibit filamentous fungi. These findings extended
the known properties of surfactin derivatives as well as
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related changes in antifungal activity. Further research is
needed into the mechanism of this antifungal inhibition.

Conclusion

In this study, molecular biological tools were successfully
employed to transform surfactin synthase and produce
three new substances, [ALeu®]surfactin, [AAsp’]surfactin,
and [ALeu®]surfactin. Analyses of these substances’ bio-
logical activity showed that [ALeu’]surfactin and [ALeu®]-
surfactin possessed significantly reduced hemolytic activity
but with the concurrent appearance of inhibitory ability
for filamentous fungi.
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