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Background: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk
oligosaccharides (HMO). Two predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve)
and Bifidobacterium longum subsp. infantis (B. infantis), both of which include avid HMO-consumer strains. Our
laboratory has previously shown that B. infantis, when grown on HMO, increases adhesion to intestinal cells and
increases the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to
investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere
to and affect the transcription of intestinal epithelial cells on a genome-wide basis.

Results: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown
on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability,
both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or
lactose grown controls. HMO-grown B. breve and B. infantis both downregulated genes in Caco-2 cells associated with

Conclusion: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells.
HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria.
In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately

Background

Milk is a unique biological fluid consumed by mammalian
infants. It contains many macro- and micro-nutrients that
are essential for the growth and development of the new-
born [1, 2]. In addition, a diverse cocktail of bioactive fac-
tors, such as oligosaccharides, antibodies and nucleotides
in milk, play immune, prebiotic and protective functions
in the infant gut [2-4]. Oligosaccharides are the third
most abundant component in human milk and they are
present as lactose-derived free forms and protein and lipid
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bound glycoconjugates [5]. Milk oligosaccharides can
withstand the pH of the stomach and virtually all of them
resist enzymatic digestion in the gastro-intestinal tract [6].
Recent studies on human milk oligosaccharides (HMO)
and glycoconjugates demonstrate both local and systemic
beneficial effects to the suckling neonate [7-9]. Milk
oligosaccharides provide protection against enteric patho-
gen infections by antibacterial activity, competing with
pathogen binding sites and enhancing the binding of IgA
with pathogens [10]. Another protective function of milk
oligosaccharides is that the intact oligosaccharides serve
as a prebiotic substrate enabling enrichment of Bifidobac-
terium species in the infant gut thereby consuming avail-
able nutrients and lowering the gut pH [11].
Bifidobacterium species were first observed over
100 years ago in feces of breastfed infants and later
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research suggested breast milk contains special mole-
cules defined as “bifidus factors” that stimulate the
growth of bifidobacteria [12, 13]. Culture-based studies
over the years and high-throughput metagenomic studies
have demonstrated that Bifidobacterium is a commonly
enriched member of the intestinal microbiota of breastfed
infants [14, 15]. Research in the last decade has provided a
mechanistic basis for that enrichment whereby HMOs
and glycoconjugates serve as prebiotics selectively pro-
moting bifidobacteria [16]. Indeed, genomic analysis of a
prototypical infant borne bifidobacteria, Bifidobacterium
longum subsp. infantis (B. infantis) which grows well on
HMO, revealed a single cluster of genes encoding milk
oligosaccharide metabolism suggesting co-evolution of
this strain with human milk [17, 18]. Analysis of other
infant-borne strains of B. bifidum, B. longum subsp.
longum (B. longum) and B. breve shown to grow on HMO
[19, 20] also possessed specific milk glycan transporters
and glycosyl hydrolases linked to milk glycan consump-
tion [16, 19].

The ability of bifidobacteria to bind and interact with
the intestinal epithelium plays an important role in gut
colonization and modulation of host immune system
[21, 22]. Previous research has proven that different spe-
cies of bifidobacteria exhibit different capacities to ad-
here to the intestinal epithelium and to stimulate the
gastrointestinal immunity [23-25]. Our research group
recently showed that the adhesion rate of bifidobacteria
to the intestinal epithelial cells (IECs) changes according
to the carbon source supplied in their growth medium
[26]. When comparing B. infantis ATCC 15697 grown in
HMO and lactose, the HMO grown B. infantis had a sig-
nificantly higher rate of adhesion to both Caco-2 and
HT-29 cells [26]. This work was subsequently confirmed
by Kavanaugh et al. showing that growth of B. infantis
ATCC 15697 on 6’ialyllactose (an HMO component
structure) also resulted in increased adherence to cul-
tured IECs [25]. Previous research also showed the abil-
ity of bifidobacteria to induce the anti-inflammatory
capacity of IECs. For example, colon organ cultures ex-
posed to B. infantis showed reduced production of pro-
inflammatory cytokine IL-17 [27]. In another study,
interferon gamma was reduced in the Peyer’s patches of
mice fed B. longum [28].

There are few documented studies on changes in the
interaction between bifidobacteria and IECs as a func-
tion of the carbon source of the bacterial growth
medium. Microarray studies in our laboratory have pre-
viously shown that incubation of HMO with B. infantis
altered gene expresssion in Caco-2 cells [29]. Chi-
chlowski et al. observed that HMO-fed B. infantis
tightens cell-cell junctions, increases the level of cytokine
IL-10 while decreasing the level of pro-inflammatory
TNFa in Caco-2 cells [26].
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In the current study, we sought to understand the
effects of HMO-fed bifidobacteria on the gene expres-
sion of intestinal cells on a genome-wide basis. We in-
vestigated the effects of two bifidobacterial strains fed
different carbon sources—HMO, glucose (GLU), or lac-
tose (LAC)—on the gene expression of Caco-2 cells
using RNA sequencing (RNA-Seq). Due to their domin-
ance in breastfed infant feces [30] and efficient con-
sumption of HMOs, B. infantis and B. breve were
selected for the study. The two strains selected were
B. infantis ATCC 15697, which is the current model
to study genetic adaptations to growth on human
milk [31] and B. breve SC95, a strain that also grows
vigorously on HMOs [19]. Our group has also shown
that HMO consumption by B. infantis triggers ex-
pression of surface binding proteins that interact
with intestinal cell surface structures [32]. We hy-
pothesized that HMO-grown bifidobacteria, relative
to those grown on LAC or GLU will have enhanced
adhesion and will alter gene expression in Caco-2
cells consistent with a protective modulatory mech-
anism in the host intestine.

Results

Adhesion of bifidobacteria grown in different carbon
sources to Caco-2 cells

Several studies have demonstrated the ability of B. infantis
strains to grow on HMO as the sole carbon source [33]
and a recent study in our laboratory identified three
strains of B. breve (SC95, SC154, and ATCC 1570) that
can also efficiently consume HMO [19]. Based on the
results of this study and their exclusive presence in in-
fant feces, B. breve SC95 was selected for the adhesion
assay. Different adhesion percentages were observed
between the two bifidobacterial species. The levels of
adhesion in B. infantis ATCC 15697 ranged from 1.1 to
9.6 % and in B. breve SC95 it ranged from 0.9 to 1.3 %
(Fig. 1). Binding percentages obtained for B. infantis
ATCC 15697 were very similar to that reported previ-
ously [25, 26]. However, the current study included the
GLU-grown B. infantis ATCC 15697, which showed the
lowest percentage of adhesion. Compared to B. infantis
ATCC 15697, B. breve SC95 presented lower binding ef-
ficiency to Caco-2 cells. The highest binding percentage
(1.3 %) of B. breve SC95 was observed for LAC-grown
bacteria and there were numerical trends among treat-
ments and the adhesion efficiency, however no statis-
tical significant differences were observed among them.
Studies of different B. breve strains grown in MRS
media have shown very low adhesion percentages to
Caco-2 cells [34]. In the current study, we have ob-
served lower binding of B. breve SC95, regardless of the
carbon source.
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Fig. 1 Binding of B. breve SC95 and B. infantis ATCC 15697 to Caco-2 cell monolayers, expressed as percentage of initial bacterial input. Statistical
analysis was performed by ANOVA, and binding percentages were compared to LAC. * P < 0.01
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Gene expression analysis of Caco-2 cells in response to
bifidobacteria grown on different substrates

In order to examine if bifidobacteria grown in different
carbon sources elicit a change in the intestinal cellular
responses, we examined the transcriptome of the Caco-2
cells using RNA-Seq. This resulted in 20-32 million
reads per sample and only uniquely mapped reads were
considered in the analysis. As described by Bentley et al.
[35] and Ramskold et al. [36] a threshold RPKM (reads
per kilo base per million mapped reads) value of 0.1
RPKM was established to balance the number of false
positives and false negatives and to define potential
meaningful gene expression. There were 15,613, 15,574,
and 15,520 genes expressed in Caco-2 cells exposed to
B. breve SC95 grown in GLU, HMO and LAC respectively.
Caco-2 cells exposed to B. infantis grown in GLU, HMO
and LAC had 15,561, 15,468 and 15,516 expressed genes
respectively. Summaries of gene expression intensities for
all transcripts in all samples are provided in the NCBI
GEO repository, accessions GSE63950 and GSE64017.

Effect of carbon source consumption by bifidobacteria on
Caco-2 gene expression

To determine the specific effect of carbon source on
Caco-2 gene expression, differential expression between
carbon sources were analyzed individually in each bifido-
bacteria strain experiment. As expected, bifidobacteria
grown in different carbon sources elicited significant
changes (p-value <0.05, FDR q<0.5, fold change >2) in

expression of genes in Caco-2 cells. The number of dif-
ferentially expressed genes in Caco-2 cells as a function
of carbon source is summarized in Table 1. During co-
incubation with B. breve SC95, the expression of 12
Caco-2 cell genes was upregulated and 61 genes were
downregulated by HMO compared to GLU, while 196
genes were upregulated and 144 genes were downregu-
lated by HMO compared to LAC. Comparison between
GLU vs LAC grown samples of B. breve SC95 yielded 96
up-regulated genes and 426 downregulated genes by LAC.

Co-incubation of Caco-2 cells with B. infantis ATCC
15697 also modified Caco-2 gene expression as a function
of carbon source (Table 1). There were 107 genes upregu-
lated and 178 genes downregulated by HMO compared to
GLU and upregulation of 21 genes and downregulation of
37 genes by HMO compared to LAC. When comparing
GLU vs LAC grown B. infantis ATCC 15697, 148 genes
were upregulated and 97 genes were downregulated by
LAC (Table 1). List of these genes with significant changes
in expression and their RPKM values are provided in
Additional file 1 and Additional file 2.

To compare the differential effects of bifidobacterial
strain and carbon source on the Caco-2 cell transcrip-
tome, between-strain differential gene expression was
examined for each of the three carbon sources. The
number of Caco-2 genes differentially expressed in re-
sponse to co-incubation with B. infantis compared with
B. breve for each carbon source is listed in Fig. 2. For
example, there are 2596 Caco-2 genes that are
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Table 1 Summary of the RNA-Seq gene expression analysis. Numbers of genes that had significant expression changes in Caco-2

cells

Strain Comparison Expression change®

B. breve SC95 GLU vs HMO 12 genes upregulated and 61 genes downregulated by HMO
LAC vs HMO 196 genes upregulated and 144 genes downregulated by HMO
GLU vs LAC 96 genes upregulated and 426 genes downregulated by LAC

B. infantis ATCC 15697 GLU vs HMO 107 genes upregulated and 178 genes downregulated by HMO
LAC vs HMO 21 genes upregulated and 37 genes downregulated by HMO
GLU vs LAC 97 genes upregulated and 48 genes downregulated by LAC

2Genes with statistically significant changes in expression

differentially expressed in response to GLU-fed B. infan-
tis compared to GLU-fed B. breve that are not also dif-
ferentially expressed in response to HMO- or LAC-fed
strains. The carbon source of glucose elicits the biggest
bifidobacteria strain effect on Caco-2 gene expression.
Meanwhile, the use of HMO as a carbon source appears
to reduce the difference between strains. If the choice of
carbon source were unimportant, the intersection of the
gene expression results (Fig. 2) should be quite high.
However, that is not the case. The intersection of the
three carbon sources is rather small (Fig. 2), suggesting
that the choice of carbon source definitively affects Caco-
2 response to different bifidobacteria strains. Thus, the dif-
ferential response of Caco-2 cells to the two different bifi-
dobacteria strains is highly dependent on the carbon
source.

Predicted consequences of bifidobacterial carbon source
on Caco-2 function

To investigate the functional consequences of bifidobac-
teria carbon source on Caco-2 cell gene expression,
functional annotation clustering was performed using

DAVID [37] for each input gene list (Table 1). These re-
sults were filtered to obtain terms with statistically signifi-
cant enrichment for each comparison (Tables 2 and 3). In
the co-incubation of B. breve SC95 with Caco-2 cells
(Table 2), genes that were downregulated by HMO, rela-
tive to GLU, were enriched with the annotation term
GO:0008009 ~ chemokine activity. Several other annota-
tion terms related to inflammation and immunity were
also significantly enriched among genes downregulated by
HMO grown B. breve SC95 (Table 2). There was no sig-
nificant enrichment of annotation terms for genes up-
regulated by HMO grown, relative to GLU grown, B. breve
SC95. Likewise, genes downregulated by HMO-fed B.
breve SC95, relative to LAC-fed, were also enriched with
the annotation term “chemokine activity.”

Functional enrichment analysis of the Caco-2 cell
genes modulated by B. infantis (Table 3) also showed the
modulation of “chemokine activity” by HMO. Relative to
LAC-fed B. infantis, HMO-fed B. infantis downregulated
Caco-2 cell genes associated with “chemokine activity.”
However, this difference was not seen in the comparison
between HMO-fed and GLU-fed B. infantis. There was

2596

GLU

82

Fig. 2 Number of Caco-2 genes differentially expressed between B. infantis ATCC 15697 and B. breve SC95 in response to different substrates
(GLU =glucose, LAC = lactose, HMO = human milk oligosaccharides). Venn diagram prepared using EulerAPE [62]

HMO

663
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Table 2 Enriched annotation terms with significant changes in Caco-2 cells exposed to B. breve SC95 grown on different carbon

sources

GLU vs HMO comparison: cluster annotation of genes downregulated by HMO

Enrichment score Term' Gene count
88 GO:0008009 ~ chemokine activity 9
4.2 GO:0005576 ~ extracellular region 19
38 GO:0050900 ~ leukocyte migration 5
29 GO:0048514 ~ blood vessel morphogenesis 6
2.8 GO:0006915 ~ apoptosis 9
2.7 GO:0051101 ~ regulation of DNA binding 5
2.7 GO:0031328 ~ positive regulation cellular biosynthetic process 10
23 GO:0043066 ~ negative regulation of apoptosis 7
2.1 G0:0031349 ~ positive regulation of defense response 4
19 G0:0002763 ~ positive regulation myeloid leukocyte differentiation 3
HMO vs LAC comparison: cluster annotation

of genes upregulated by HMO

Enrichment score Term' Gene count
9.5 GO:0045449 ~ regulation of transcription 58
46 IPRO15880:Zinc finger, C2H2-like 24
28 IPRO12287:Homeodomain-related 10
HMO vs LAC comparison: cluster annotation

of genes downregulated by HMO

Enrichment score Term' Gene count
64 GO:0008009 ~ chemokine activity 8
59 G0:0042981 ~ regulation of apoptosis 21
50 GO:0043066 ~ negative regulation of apoptosis 13
4.2 G0:0031328 ~ positive regulation cellular biosynthetic process 18
33 IPR0O04827:Basic-leucine zipper (bZIP) transcription factor 6
3.1 GO:0051272 ~ positive regulation of cell motion 7
3.1 GO:0051674 ~ localization of cell 10
27 GO:0005840 ~ ribosome 8
2.7 GO:0051090 ~ regulation of transcription factor activity 6
26 GO:0001525 ~ angiogenesis 7
24 GO:0010557 ~ positive regulation macromolecule biosynthesis 14

Term': Annotation terms with enrichment score >1.3, p value (EASE score) <0.05 and globally corrected enrichment Benjamini p-value (to control family-wide false

discovery rate) <0.05 were selected

no significant enrichment of annotation terms for genes
upregulated by HMO-fed B. infantis compared to either
GLU- or LAC-fed. In summary, consumption of HMO
by two different bifidobacterial strains was associated
with downregulation of inflammation-related signaling
in Caco-2 cells.

Expression of inflammation related genes is reduced by
HMO-grown bifidobacteria

Heat maps summarizing significantly differentially
expressed inflammation-related genes in Caco-2 cells
co-incubated with B. infantis and B. breve are shown in
Figs. 3 and 4, respectively. Nearly all of these genes are

downregulated by HMO feeding relative to either GLU
or LAC or both.

Necrotizing enterocolitis (NEC) is a very common
emergency occurring in pre-term infants. Previous studies
have shown that NEC can be prevented by probiotics per-
haps in part because they modulate the immune mediated
gene expression in enterocytes [38]. Given that the func-
tional enrichment analyses and the heat maps (Figs. 3 and
4) pointed to chemokine-related changes in gene expres-
sion in the Caco-2 cells exposed to bifidobacteria grown
in different carbon sources, we specifically investigated
genes involved in inflammation. Expression of CXCLI,
CXCL2 and CXCL3 were downregulated by HMO feeding
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Table 3 Enriched annotation terms with significant changes in
Caco-2 cells exposed to B. infantis ATCC 15697 grown on
different carbon sources

GLU vs HMO cluster annotation of genes downregulated by HMO

Enrichment score  Term Gene count
351 IPRO00558Histone H2B 4

3.16 GO:0032993 ~ protein-DNA complex 8

307 GO0:0003677 ~ DNA binding 33

HMO vs LAC cluster annotation

of genes downregulated by HMO

Enrichment score ~ Term Gene count
5.68 GO:0008009 ~ chemokine activity 6

263 GO:0005615 ~ extracellular space 8

of both strains of bifidobacteria (Fig. 5a and b). Another
cell adhesion and chemotaxis target gene that has shown
higher expression in NEC is ICAM1 [39] and interestingly
this gene was significantly downregulated in Caco-2 cells
exposed to both B. infantis ATCC 15697 and B. breve
SC95 grown in HMO (Figs. 3 and 4).

Aberrant modulation of gut bacteria, such as bifido-
bacteria, has been implicated in inflammatory bowel
disease (IBD) [40, 41]. Therefore, we screened candidate
genes for ulcerative colitis (UC) and Crohn’s disease for
significant changes in expression in the RNA-Seq data.
Numerous candidate genes were downregulated in
Caco-2 cells exposed to B. infantis ATCC 15697 and/or
B. breve SC95 grown on HMO (Table 4). ICAM 1, which
is known to be highly expressed in both Crohn’s disease
and UC relative to controls [42], was downregulated in
Caco-2 cells exposed to either HMO-fed bifidobacterial
strain.

Discussion

Commensal bifidobacteria have been associated with regu-
lation of intestinal inflammation [38, 43, 44]. Bifidobacteria
are normal residents of the human intestine, commonly
found in the infant gut and particularly enriched in the in-
testine of breastfed infants [14]. B. infantis and B. breve are
often dominant members of the breastfed infant gut micro-
biota [30] and have been linked to a modulatory role in in-
testinal inflammation and regulation of the immune
response at the gut associated lymphoid tissue [45]. It is
well accepted that bifidobacteria overrepresentation in
nursing infants brings benefits to the neonate [17].

One of the major driving forces that underlie bifidobac-
terial predominance in infants is the ability to consume
HMOs. In a previous study, we demonstrated that growth
on HMOs significantly increased the binding of B. infantis,
but not B. bifidum, to intestinal cells [26]. Consistent with
that study, we found that HMO-grown B. infantis showed
significant adherence to Caco-2 cells. More recently, we
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have characterized unique strains of B. breve that grow well
on HMO [19] which led us to hypothesize that these strains
might also exhibit an HMO-induced binding phenotype.
However, unlike B. infantis, B. breve SC95 showed low per-
centage of binding with Caco-2 cells, regardless of the
growth medium. Previous studies demonstrate that the ad-
herence of B. breve to Caco-2 cells is strain-specific and
that adherence of a high-adhering strain of B. breve is al-
most totally abolished with trypsin or pronase treatment of
the culture [46]. In the current protocol we have discarded
the spent culture and this may explain the low binding per-
centage of B. breve SC95. An interesting future study design
would be to include the spent culture of bifidobacteria in
Caco-2 binding assays. The transcriptomic changes of
Caco-2 cells evoked by B. breve may result from the consti-
tutive expression of surface structures or the production of
soluble factors. There is evidence that bifidobacteria exert
an indirect effect on intestinal inflammation, due to the re-
lease of soluble factors that reduce inflammation [38].

Taken together, both strain and carbon source affect the
binding affinity of bifidobacteria to IECs. In a previous
study, we found that HMO-grown B. infantis increased the
expression of genes involved in promoting integrity of the
barrier function [26]. However, that study was a targeted
approach in which only a few genes were probed. Here, we
employed a high-throughput sequencing method to obtain
an overview of all gene expression in Caco-2 cells upon in-
cubation with B. infantis ATCC 15697 and B. breve SC 95
grown in different carbon sources. With each bifidobacter-
ial strain, the supplied carbon source—GLU, LAC, or
HMO-—significantly affected gene expression in Caco-2
cells. Interestingly, even though the adhesive ability of B.
breve was low, it still elicited a significant transcriptional
response in Caco-2 cells, altering even more genes than B.
infantis. These observations suggest that mechanisms add-
itional to that of direct binding of B. breve are important to
promote gene expression changes in Caco-2 cells. Indirect
mechanisms, such as the production of soluble factors by
B. breve during interaction with IECs, may underlie the
gene expression changes and it should be investigated.

In a non-hypothesis driven assessment of Caco-2 gene
expression in response to bifidobacteria grown on different
carbon sources, we found that growth on HMOs substrate
reduced inflammation-related signaling. The reduced ex-
pression of genes related to chemokine activity in the pres-
ence of HMO-grown bifidobacteria occurred independent
of bifidobacterial strain, suggesting that prebiotic HMO
primes bifidobacteria to elicit an anti-inflammatory state in
IECs. RNA-Seq analysis showed significant downregulation
of three chemokines in CXCL family: CXCL1, CXCL2 and
CXCL3. These chemokines play an active role in develop-
ment of gastrointestinal diseases marked by inflammatory
response such as gastritis, necrotizing enterocolitis (NEC),
ileitis, ulcerative colitis [47] and inflammatory bowel
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diseases (IBD) [48]. Mouse studies have showed an associ-
ation between higher incidence of necrotizing enterocolitis
and elevated intestinal expression of CXCLI mRNA [49]. A
recent study where B. infantis was administered to mouse
pups that are prone to NEC has shown significant down-
regulation of CXCLI gene in the intestinal epithelium [43].
The in vivo blocking of CXCL2 has been shown to alleviate
inflammation related bowel injuries [50]. CXCL1, CXCL2
and CXCL3 are positively associated with tumor associated
angiogenesis and depletion of these three chemokine fac-
tors have inhibited the tumor growth in mice [51].

Given the effect of HMO-grown bifidobacteria on in-
flammatory related signaling in Caco-2 cells in this

study, we specifically reviewed the Caco-2 transcriptome
data in the context of known candidate genes associated
with NEC, Crohn’s diseases and ulcerative colitis. Several
candidate genes associated with these bowel diseases are
significantly regulated by HMO-grown bifidobacteria
(Table 4). Expression of intracellular adhesion molecule-
1 (ICAM1I) was significantly downregulated by B. breve
and B. infantis grown in HMO. ICAMI, located in the
luminal surface of the intestinal epithelium, is a ligand
for neutrophils. ICAM]1 facilitates the transepithelial mi-
gration of neutrophils and their accumulation in the
luminal surface of the intestine, which contributes to
mucosal injury leading to conditions such as ulcerative
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Fig. 4 Heat map of inflammation related genes with significant changes in expression in Caco2 cells exposed B.breve SC95 grown in GLU, HMO
or LAC. Three replicates are shown for each sugar

colitis [52]. Therefore the decreased expression of
ICAMI by B. breve and B. infantis grown in HMO may
aid to reduce the risk of NEC in infants and inflamma-
tory bowel disease in adults. These results highlight the
therapeutic potential to prevent or possibly ameliorate
IBD with synbiotics that include both bifidobacteria and
milk oligosaccharides.

Conclusions

This study presents an initial assessment of the transcrip-
tomic changes of intestinal epithelial cells evoked by com-
mensal bifidobacteria grown on different sugars. We
provide evidence that consumption of HMOs, which are
abundant in the gastrointestinal tract of nursing infants,

promotes a beneficial interaction between bifidobacteria
and the intestinal epithelium. Consumption of free
milk glycans by bifidobacteria leads to reduced expres-
sion of inflammatory genes, contributing to mainten-
ance of the integrity of the intestinal mucosa. Our study
represents a major step towards a better understanding of
bifidobacteria-host interactions that take place in the in-
fant gut, which can be applied to the use of bifidobacteria
as probiotics to promote gut health. Moreover, the results
presented herein provide support for the use of prebiotic
HMOs as the best growth substrate for bifidobacteria, not
only by supporting their growth to high densities and con-
tributing to niche occupation, but also by inducing pro-
tective responses in the host.



Wickramasinghe et al. BMC Microbiology (2015) 15:172

a
100 1
S
&
£ 80 1
£
c 60 T
2 B HMO
o 40 -
E_ OGLu
o 20 A
e " :ﬁ -l"'r_l e
c
8 0 T T T 1
CXCL1 cxcL2 CXCL3
Gene symbol
b
100 A
=
2 =
2 80 -
£
c 60
2 EHMO
o 40
;.'_ OoGLu
o 20
g m e
c
3 0 T T 1
CXCL1 cXxXcL2 CXCL3
Gene symbol
Fig. 5 Expression of CXCL1, CXCL2 and CXCL3 genes in a B. infantis
ATCC 15697 grown on HMO, GLU or LAC, and b B. breve SC95 grown
on HMO, GLU or LAC. Expression of these genes were significantly
downregulated by HMO grown bifidobacteria

Methods

Bacterial strains and culture conditions

Bifidobacterium longum subsp. infantis ATCC 15697
and B. breve SC95 were routinely grown for 48 h anaer-
obically at 37 °C in the semisynthetic de Man-Rogosa-
Sharpe (MRS) broth or MRS agar (Becton Dickinson)
supplemented with 1 % (wt/vol) L-cysteine. Single colony
isolates were inoculated into modified MRS (mMRS) with-
out sugar supplemented with 2 % of filter-sterilized (wt/vol)
lactose (LAC) (Sigma Aldrich), 2 % glucose (GLU) (Fisher)
or 2 % purified human milk oligosaccharide mixture
(HMO) as the sole carbon source. HMO was kindly pro-
vided by the laboratory of Dr. Bruce German (Department
of Food Science and Technology, University of California,
Davis) and purified according to the method described in
Gnoth et al. [53].

Caco-2 cell culture

Enterocyte-like human colon adenocarcinoma (Caco-2)
cells were obtained from the American Type Culture Col-
lection (ATCC® HTB37™). These cells undergo spontaneous
differentiation during culture, expressing some transporters
and metabolic enzymes normally present in the gut [54].
Caco-2 cells were routinely cultured in 75-cm” flasks at
37 °C in a 5 % CO, constant-humidity environment with
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medium replaced every 2—3 days. Caco-2 cells were grown
using in Dulbecco’s modified Eagle medium (DMEM) con-
taining 20 % heat-inactivated fetal calf serum (FBS), 1 %
nonessential amino acids, 50 IU/mL penicillin, and 50 pg/
mL streptomycin. Cells were subcultured at 80 % conflu-
ence by adding 0.25 % trypsin/0.9 mM EDTA solution
(Invitrogen, CA). For adhesion and gene expression assays,
Caco-2 cells were seeded in 24-well plate (2 cm?/well; BD
Falcon, Franklin Lakes, NJ) at 1 x 10°cells per well. The vi-
able cell number was obtained using a trypan blue and
TC20 automated cell counter. Caco-2 cell monolayers were
used fifteen days after confluence, a time when morpho-
logical and functional differentiation is complete [55].

Adhesion assay

B. infantis ATCC 15697 and B. breve SC95 from the ex-
ponentially grown 48 h-old cultures supplemented with
HMO, GLU or LAC were collected by centrifugation
(4000 g for 10 min), washed with sterile phosphate-
buffered saline (PBS; pH 7.3), and resuspended in
DMEM at approximately 1 x 10°® cells/mL. For reference
purposes (100 % values), 1 ml aliquots of the original
bacterial cell suspensions used in the adhesion assay
were centrifuged, the cells resuspended in 200 pl tryp-
sin/EDTA plus 200 pl PBS and then frozen and stored at
-20 °C until quantification of the bacteria. B. infantis
ATCC 15697 and B. breve SC95 bacterial suspensions
were incubated with a monolayer of fully differentiated
Caco-2 cells at 37 °C, 5 % CO, for 2 h. All incubations
were performed in biologically independent triplicates.
After 2 h of incubation, cell monolayers were gently
washed three times with PBS, to remove unbound bac-
teria, and then detached from the plastic surface by in-
cubation with 200 pl trypsin/EDTA per well (10 min,
37 °C). To perform quantification of adherent bacteria, cell
suspensions were incubated at 37 °C for 30 min in Gram-
positive lysis buffer (20 mM Tris—HCl, 2 mM sodium
EDTA, 1.2 % Triton X-100 and 20 mg/ml lysozyme). Quan-
tification of adherent bacteria was performed by quantita-
tive PCR targeting the 16S rRNA gene. The primers
employed were as follows: Bif F (5'-TCGCGTCTGGTGTG
AAAG-3’) and Bif R (5'-CCACATCCAGCGTCCAC-3")
for B. infantis [26]. B. breve was analyzed using primers
BiBRE-F (5'- CCGGATGCTCCATCACAC-3") and BiBRE
R (5'- ACAAAGTGCCTTGCTCCCT-3"). A standard
curve for quantification of bifidobacterial strains was gener-
ated from serial dilutions of bacterial DNA and used to cal-
culate numbers of bacterial copies. Estimates of the
number of bifidobacterial genome copies in the standard
were based on a genome size (1.75-2.8 Mb) of the
individual strain. Quantitative PCR was performed in a
7500 Fast Real-Time PCR System (Applied Biosystems,
CA) using SYBR Green fluorophore. The PCR reactions
and melting curves were performed in 20 pl containing 1 pl
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Table 4 Known candidate genes for Crohn's disease and IBD
with significant changes of expression in Caco-2 cells exposed
to bifidobacteria strains grown on different carbon sources

Comparison B. infantis B. breve
GLU vs HMO
Upregulated by HMO LTB None
TNNI2
Downregulated by HMO LRRK2 FOS
SOCS1 ICAM1
TNFAIP3
TNFRSF18
LAC vs HMO
Upregulated by HMO None DOK3
LAT
MUCT
RASIP1
Downregulated by HMO ICAM1 FOS
LRRK2 ICAM1
LTB
MAP3K8
TNF
TNFAIP3
TNFRSF18

Candidate genes for Crohn’s disease: LTB, LRRK2, ICAM1, LAT, MUCI,

RASIP1, TNF

Candidate genes for Ulcerative colitis: TNNI2, SOCS1, FOS, TNFAIP3, TNFRSF18,
DOK3, MUCT1, MAP3K8

of each primer, 10 ul SYBR Green PCR Master Mix 2x
(Applied Biosystems, CA), and 2 pl of bacterial DNA. The
PCR reaction was incubated at 95 °C for 10 min, followed
by 40 cycles consisting of 20 s at 95 °C, 20 s 56 °C, and 30 s
at 60 °C. Bacterial adhesion was expressed as the number
of adherent bacteria divided by total number of bacteria
added, multiplied by 100 [26].

RNA-Seq experiment and data analysis

B. infantis ATCC 15697 and B. breve SC95 cells were in-
cubated with fully differentiated Caco-2 cell monolayers
as described above for the adhesion assay. All incuba-
tions were performed in biologically independent tripli-
cates that consisted of independent bacterial cultures
and Caco-2 cells that are of different passages. After 2 h
of incubation, Caco-2 cell monolayers were gently washed
three times with PBS and RNA was extracted from Caco-
2 cells using the Trizol method according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA). RNA was
quantified by an ND-1000 spectrophotometer (Fisher
Thermo, Wilmington, MA), and the quality and integrity
was assessed by the spectrophotometer 260/280 ratio, gel
electrophoresis and capillary electrophoresis with an
Experion bio-analyzer (Bio-Rad, Hercules, CA).
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Gene expression analysis was conducted using Illu-
mina RNA-Seq technology. Messenger RNA was isolated
and purified using a TruSeq RNA Sample Prep Kit v2
(Illumina, San Diego, CA). The fragments were se-
quenced at Vincent J. Coates Genomics Sequencing
Laboratory of University of California Berkeley using the
Ilumina HiSeq2000. Sequence reads of 100 bp were
assembled and analyzed in RNA-Seq and expression
analysis application of CLC Genomics Workbench 5.5.1
(CLC Bio, Aarhus, Denmark). The human genome, H.
sapiens Build 37.1 (ftp://ftp.ncbi.nih.gov/genomes/H_sapi-
ens/ARCHIVE/BUILD.37.1/) was utilized as the reference
genome for the assembly. The following criteria were used
to filter the unique sequence reads: minimum length frac-
tion of 0.9; minimum similarity fraction of 0.8; maximum
number of two mismatches. Data were normalized by cal-
culating the reads per kilo base per million mapped reads
(RPKM = total exon reads/mapped reads in millions x
exon length in kb) [56] for each gene and annotated with
Ensembl human genome assembly GRCh37.p11 (57,412
total genes).

Significant gene expression changes in Caco-2 cells ex-
posed to B. infantis ATCC 15697 or B. breve SC95 grown
in HMO, GLU or LAC were analyzed using t-tests on log,
transformed data (0.5 was added to each number before
log transformation to deal with zero counts). Analyses
were conducted, 1) on the same strain grown on different
sugars 2) between the two strains grown on same sugars.
Genes with p-value <0.05, FDR q < 0.5 and fold change >2
were considered to be statistically significant.

Genes with significant change in expression levels were
further analyzed using the functional analysis clustering
tool of The Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) v6.7 [57]. High classification
stringency, enrichment score >1.3, p-value (EASE score)
<0.05 and globally corrected enrichment Benjamini p-value
(to control for family-wide false discovery rate) <0.05 were
the statistical parameters used to cluster functionally similar
annotation terms associated with the input gene list.

Inflammation is a valuable protection system in the
body against harmful external and internal stimuli [58].
However the dysfunctional regulation of the intestinal
immune system is a contributory factor to many diseases
such as necrotizing enterocolitis (NEC) [39], inflamma-
tory bowel disease (IBD) [59], celiac disease, and Crohn’s
disease [60]. Loza et al. assembled 1027 inflammation re-
lated genes using literature survey and Ingenuity path-
way analysis [58]. This gene list was used to extract the
inflammation related genes that showed significant
changes in expression in our RNA-Seq analysis. Genes
with significant changes in expression in the RNA-Seq
experiment were also compared to lists of genes associated
with Crohn’s disease [61], inflammatory bowel disease and
ulcerative colitis [41].
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Availability of supporting data

The raw sequencing data and processed data have been
deposited in NCBI's GEO database. The RNA-Seq exper-
iments involving the co-incubation of Caco-2 cells with
B. infantis and B. breve are deposited as accessions
GSE63950 and GSE64017, respectively.
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