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Abstract

Background: Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB)
through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable
environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a
pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in
human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our
previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of
MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis,
and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells.

Results: Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific
inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were
quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected
with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using
siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the
IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected
macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous
IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity
in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not
induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or
absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB.

Conclusions: The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as
well as caspase-3-independent apoptosis.
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Background
Interleukin-32 (IL-32) is a pro-inflammatory cytokine
with pleiotropic functions [1]. IL-32 has at least six iso-
forms (α, β, γ, δ, ε, and ζ) due to alternative mRNA splice
variants [2]. IL-32γ is considered the most biologically ac-
tive isoform with regards to induction of pro-inflammatory
cytokines, perhaps because it has no exonic deletions
[2]. Previously, we found that apoptosis – which en-
hances killing of intracellular Mycobacterium tubercu-
losis (MTB) in phagocytes [3-8] – was a mechanism by
which IL-32γ reduced the intracellular burden of MTB
in THP-1 macrophages [9]. However, IL-32γ-induced
apoptosis and control of MTB infection were only par-
tially abrogated by inhibition of caspase-3, indicating
that other cell death pathway (s) may also be involved in
the anti-MTB effects of IL-32γ [9]. Caspase-3-independent
forms of apoptosis have received increasing recognition,
including those triggered by lysosome proteases known as
cathepsins and by apoptosis-inducing factor (AIF). Al-
though AIF is a flavoprotein normally found in mitochon-
dria, it mediates apoptosis by a caspase-independent
mechanism [10,11]. Importantly, both these alternative
apoptotic pathways have been implicated in controlling
mycobacterial infections in vitro [5,6,12-14], making them
candidate pathways for mediating the anti-MTB effects
of IL-32γ.
A more recently described form of programmed cell

death is one that is mediated by inflammasome-
associated caspase-1 [15,16]. This form of cell death is
inflammatory in nature and is known as pyroptosis (“the
falling of fire”) because it is associated with caspase-1 in-
duction of active IL-1β and IL-18 [15]. While pyroptosis
has some molecular signatures in common with apop-
tosis, there are also distinct differences such as require-
ment of functional caspase-1 with pyroptosis [15,16].
Thus, we investigated whether any of these three
caspase-3-independent pathways contribute to the pro-
tective effect of IL-32γ against MTB in differentiated
THP-1 macrophages.

Methods
Materials
The human promonocytic cell line THP-1 (TIB-202)
was obtained from the American Type Culture Collec-
tion (Manassas, VA). PMA was purchased from Sigma-
Aldrich (St. Louis, MO). RPMI 1640 cell culture medium
was obtained from Cambrex (East Rutherford, NJ). Fetal
bovine serum (FBS) was purchased from Atlanta Biologi-
cals (Norcross, GA) and heat-inactivated at 56°C for one
hour. THP-1 cells were cultured in RPMI 1640 supple-
mented with 10% FBS and 2 mM glutamine and were
maintained at a concentration of 2–10 ×105 cells/mL.
Apoptosis in Situ Detection Kit was purchased from
Roche Diagnostic Systems (Indianapolis, IN). Recombinant
IL-32γ (confirmed to be LPS-free) and caspase-1 inhibi-
tor (z-WEHD-fmk) were purchased from R&D System,
Inc. (Minneapolis, MN). The cathepsin B inhibitor [L-3-
trans-(propylcarbamoyl) oxirane-2-carbonyl]-L-isoleucyl-
L-proline methyl ester (CA-074-Me)], the cathepsin D
inhibitor pepstatin A, and the cathepsin L inhibitor
[benzyloxycarbonyl-Leu-Leu-Tyr-fluoromethylketone (z-
LLY-fmk)] were purchased from Calbiochem-EMD
Millipore (Billerica, Massachusetts). The AIF-siRNA kit
was purchased from Santa Cruz Biotechnology (Dallas,
TX). Polyclonal antibody to AIF and secondary antibody
IgG-HRP for Phototope-Western Blot Detection System
were purchased from Cell Signaling, Inc (Beverly, MA).
ProLong® Gold antifade reagent with DAPI was purchased
from Invitrogen (Eugene, OR).

Mycobacterial culture and reagents
MTB H37Rv was obtained from the American Type Cul-
ture Collection (27294) and grown to log phase at 37°C
in Difco Middlebrook 7H9 Medium (Becton Dickinson,
MD) enriched with 10% stock ADC Enrichment (Remel,
Lenexa, KS) which contains 5% (w/v) BSA fraction V, 2%
(w/v) glucose, 0.87% (w/v) NaCl, and 0.004% (w/v) cata-
lase. In addition, 0.05% (v/v) Tween 80 and 0.2% (v/v)
glycerol were added to the growth medium. After cul-
ture of the mycobacteria under aeration, the culture was
diluted to a concentration of 1.0 McFarland standard
(~108 bacilli/mL) and stored at −80°C.

Infection of macrophages, culture of MTB, and
microscopy of GFP-MTB
Differentiated THP-1 human macrophages were infected
with MTB H37Rv at a multiplicity-of-infection (MOI) of
10 bacilli to 1 macrophage, and washed after one hour
of infection. For the one hour infection time point, the
cells were lysed, serial dilution performed, and the ly-
sates were cultured for MTB and the colony forming
units (CFU) quantified as described [17]. For the two
and four day time points, following washing the cells
after the one hour infection, fresh medium was added,
cultures were incubated for the indicated time points,
and cells lysed for quantitation of MTB.
To independently validate the CFU data, we also in-

fected THP-1 cells with GFP-labeled MTB H37Rv under
various experimental conditions and quantified the pro-
portion of THP-1 cells infected with GFP-MTB by fluor-
escent microscopy [17]. Differentiated THP-1 cells (0.4 ×
105 cells/well) were infected with GFP-MTB H37Rv at an
MOI of 10 on four-well chamber slides. After one hour,
the cells were washed, cultured for four days at 37°C in
5% ambient CO2, and then fixed with 4% paraformalde-
hyde. The cells were then stained and mounted with
ProLong® Gold antifade reagent with DAPI. The images
were captured using an inverted Zeiss 200 M
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microscope (Carl Zeiss, Thornwood, CA). The number
of THP-1 cells with internalized GFP-MTB was quanti-
fied by microscopy, counting at least 300 consecutive
macrophages and calculating the percentages of macro-
phages that contained GFP-MTB.

Tunel assay
Cell suspensions (0.4 × 105 cells in 0.5 mL) were grown
on four-chamber well slides, pre-incubated with or with-
out inhibitors to caspase-1 or cathepsins, and then in-
fected with MTB H37Rv at an MOI of 10. Scrambled
siRNA- or AIF siRNA-transfected THP-1 cells were in-
cubated on chamber slides and then infected with MTB.
Slides were prepared in triplicate for each condition.
The medium was removed at 2 days following infection
and the cells were fixed in 4% paraformaldehyde solution
(pH 7.4). The cells were then stained with an Apoptosis
In Situ Detection Kit according to the manufacturer’s in-
structions. The number of TUNEL positive cells was re-
ported as percent of total number of cells counted as
previously described [17].

Silencing of AIF and Western blot analysis
THP-1 cells were seeded at a density of 1 × 105 cells per
well in 12-well plates, differentiated with 15 ng/mL
PMA overnight, and then incubated with fresh medium
without PMA. Either 50 pmol of scrambled siRNA or
AIF siRNA (in 100 μL siRNA Transfection Medium +
100 μL siRNA Transfection Reagents) was transfected
into THP-1 cells according to the manufacturer’s in-
structions. After transfection, the cells were washed with
1:1 solution of PBS: medium buffer. To confirm inhib-
ition of AIF expression, whole cell lysates were prepared
and western blot performed using polyclonal AIF anti-
body (1:1000 in TBS buffer with 5% BSA) and secondary
IgG-HRP (1:2000) as previously reported [9].

Statistical analysis
Replicate experiments were performed independently,
and where appropriate, summary results are presented
as means ± SEM. Differences were considered significant
for p < 0.05, and all reported p-values used a two-sided
test. For most experiments, group means were compared
by ANOVA using Fisher’s least significant difference
procedure.

Results
IL-32-induced pyroptosis reduces intracellular burden of
MTB
In order to determine whether caspase-1-dependent pyr-
optosis contributes to the antagonistic effects of IL-32γ
against MTB in macrophages, a specific pharmacologic
inhibitor to caspase-1 (z-WEHD-fmk) was utilized.
THP-1 cells were left untreated or treated with 20 μM
or 50 μM z-WEHD-fmk for one hour, then stimulated
with 50 ng/mL of recombinant IL-32γ and infected with
MTB H37Rv. After one hour, two days, and four days of
infection, MTB was quantified. Compared to control
cells, IL-32γ significantly reduced the number of MTB
recovered at two and four days after infection. With
20 μM caspase-1 inhibitor, there was a partial, insignifi-
cant abrogation of IL-32-mediated reduction of MTB;
however, with 50 μM z-WEHD-fmk, there was a signifi-
cant abrogation of IL-32γ-mediated reduction of intra-
cellular MTB (Figure 1A). Additionally, IL-32-induced
apoptosis of MTB-infected macrophages was signifi-
cantly inhibited by the caspase-1 inhibitor (Figure 1B).

Lysosomal cathepsin-induced apoptosis modestly
contributes to IL-32γ antagonism of MTB
To determine the contribution of lysosomal cathepsin-
induced apoptosis to the inhibitory effect of IL-32γ
against MTB, we used potent and selective inhibitors to
cathepsin B (CA-074Me), cathepsin D (pepstatin A), and
cathepsin L (z-LLY-fmk). Since cathepsin B and D are
functionally related [18-20], THP-1 cells were pre-
incubated with combined CA-074Me and pepstatin A
(50 μM or 100 μM of each) for one hour to inhibit ca-
thepsin B and D simultaneously or with 5 μM of z-LLY-
fmk to inhibit cathepsin L, and then stimulated with
50 ng/mL IL-32γ and infected with MTB H37Rv [21-23].
In the presence of combined cathepsin B and D inhibi-
tors at 100 μM but not at 50 μM, there was significant
abrogation of the IL-32γ-induced reduction of intracellu-
lar burden at four days after infection (Figure 2A). With
inhibition of cathepsin L, there was also abrogation of
the IL-32γ-mediated reduction in MTB that nearly
reached significance (Figure 2A). Inhibition of cathepsin
B/D or cathepsin L also significantly reduced the num-
ber of TUNEL positive cells induced by IL-32γ and
MTB (Figure 2B).

Inhibition of caspase-1, cathepsin B/D, or cathepsin L
increased the proportion of MTB-infected THP-1 cells
To validate the CFU findings, we infected THP-1 cells
with GFP-labeled MTB H37Rv in medium alone, 50 ng/
mL IL-32γ, or IL-32γ with caspase-1 inhibitor, cathepsin
B/D inhibitors, or cathepsin L inhibitor. After four days
of incubation, the percentages of GFP-MTB infected
cells were quantified by microscopy (Figure 3A). As
shown in Figure 3B, IL-32γ reduced the percentage of
MTB-infected macrophages and caspase-1 inhibition (z-
WEHD-fmk) significantly abrogated this. Similarly, in-
hibition of cathepsin B/D (CA-074Me and pepstatin A)
or of cathepsin L (z-LLY-fmk) partially abrogated IL-
32γ-mediated reduction in MTB-infected macrophages.
Incubation of GFP-MTB-infected macrophages with
the inhibitors but without addition of IL-32γ showed a
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trend toward increase percentage of MTB-infected
cells (Figure 3B, compare bar 1 with bars 6, 7, and 8).

AIF is not induced by IL-32γ but its inhibition increases
intracellular MTB
In order to study the role of AIF in IL-32γ-stimulated,
MTB-infected macrophages, siRNA technology was
employed to silence AIF expression in THP-1 cells.
Western blot analysis confirmed that AIF expression
was down-regulated by siRNA-AIF compared to cells
transfected with scrambled siRNA (Figure 4A). MTB in-
fection of THP-1 cells transfected with the scrambled
siRNA increased the number of TUNEL positive cells
(Figure 4B, compare bars 1 and 3). However, this induc-
tion was significantly abrogated when THP-1 cells were
A)

Figure 2 Cathepsins contribute to the anti-MTB effects of IL-32γ. A) T
pre-incubated with combined cathepsin B and D inhibitors or with cathep
Intracellular CFU were quantified in one hour, two days, and four days afte
MTB infection ± IL-32γ (50 ng/mL) with and without cathepsin B/D inhibit
independent experiments. *p < 0.05, **p < 0.01.
knocked-down for AIF, indicating that MTB-induced
apoptosis is partly mediated by AIF (Figure 4B, compare
bars 3 and 4). In control THP-1 cells exposed to both
MTB and IL-32γ, there was a further increase in apoptosis
but with AIF inhibition, the reduction in apoptosis was
similar in the presence or absence of IL-32γ, indicating
that AIF does not significantly contribute to IL-32γ-
induced apoptosis (Figure 4B, compare relative difference
of bars 3 and 4 vs. bars 5 and 6). Indeed, this finding is
supported by the fact that AIF is not induced by IL-32γ
(Figure 4C).
Since knocking down AIF in THP-1 cells did not

significantly abrogate the reduction in CFU by IL-
32γ (Figure 4D, compare bars 3 and 4), it further in-
dicated that AIF does not significantly mediate the
B)

HP-1 cells were infected with MTB alone, MTB + IL-32γ (50 ng/mL), or
sin L inhibitor for one hour and then incubated with MTB + IL-32γ.
r infection. B) TUNEL positive cells were quantified two days after
ors or cathepsin L inhibitor. Data shown are the mean ± SEM of four
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anti-MTB activity of IL-32γ in human macrophages.
Reduction of apoptosis with inhibition of AIF in
MTB-infected cells suggested that MTB itself could
induce AIF expression. To validate this qualitatively,
THP-1 cells were infected with MTB for two to
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Discussion
Macrophages kill intracellular MTB through a variety
of mechanisms, including phagosome-lysosome fusion,
autophagy, and apoptosis [3,5-7,24-28]. Subsequent in-
gestion of apoptotic bodies that contain mycobacteria
can further enhance antigen presentation to T cells [13].
Phagocytosis of Mycobacterium avium-infected apoptotic
bodies has also been shown to decrease mycobacterial via-
bility [29]. In addition to caspase-3-mediated apoptosis,
other forms of programmed cell death may be utilized by
MTB-infected macrophages, including apoptosis mediated
by caspase-1, cathepsins, and AIF [5,6,12-14].
Previously, we found that IL-32γ reduced the burden

of intracellular MTB in macrophages through induction
of caspase-3-dependent apoptosis. However, since inhib-
ition of caspase-3 only partially abrogated the increased
number of TUNEL positive cells induced by IL-32γ, it
indicated that caspase-3-independent pathway (s) may
also contribute to IL-32γ-induced apoptosis and subse-
quent control of MTB.
IL-32 induces caspase-1 activation and IL-1β produc-

tion in human macrophages [9]. Since we previously
showed that MTB-induced caspase-1 activation plays an
important role in the production of various inflammatory
cytokines including IL-32 [30,31], we used a pharmaco-
logical inhibitor of caspase-1 to determine whether this
key enzyme of inflammasomes also mediates the anti-
MTB effects of IL-32γ. We found that inhibiting caspase-1
activity significantly abrogated the IL-32γ-mediated reduc-
tion in the number of viable MTB as well as reduced the
amount of programmed cell death. These findings indicate
that caspase-1-mediated pyroptosis is a mechanism that
contributes to the anti-MTB effect of IL-32γ. Caspase-1
inhibition alone (without addition of exogenous IL-32γ)
showed a trend toward an increased proportion of THP-1
macrophages infected with GFP-MTB, supporting our
finding that caspase-1 activation and pyroptosis contribute
to macrophage control of MTB. Indeed, there is increasing
evidence that pyroptosis plays an important role in host
defense against intracellular pathogens such as Salmon-
ella, Shigella, Legionella, Francisella, and Listeria [15].
Another possible non-mutually exclusive mechanism is
that caspase-1 induced IL-1β expression activated macro-
phages to control MTB more effectively [9]. Ciaramella
and co-workers also found that infection of human mono-
cytes with MTB induced caspase-1-mediated apoptosis as
well as TNFα and IL-1β production [32]. The same group
of investigators noted that with a high MOI infection
(MOI 20), the cell death seen was not associated with re-
duced MTB viability; however, another interpretation is
that the high death rate of monocytes at 48 hours is actu-
ally protective since 48 hours of unrestricted growth
should result in ~ four-fold increase in CFU but instead
the total MTB burden per well was unchanged compare
to the initial Day 0 (three hour) time point [33]. While
Master et al. [34] showed that MTB inhibited the
NLRC4 inflammasome, it is clear that other types of
inflammasome complexes must be activated due to the
production or activation of inflammasome-dependent
IL-1β, IL-18, and caspase-1 by macrophages following
MTB infection [9,30,31,35,36]. Indeed, ESAT-6, a pro-
tein secreted by MTB, can induce the transcription of
caspase-1 [35] and activate the NLRP3 inflammasome
[37]. Furthermore, exogenous ATP, a potent activator of
the inflammasome and pyroptosis, induces human mac-
rophages to kill intracellular MTB [38].
Lysosomes contain many different types of proteases

collectively called cathepsins [5]. Many cathepsins are
stored as pro-enzymes that only become activated at low
pH in phagolysosomes. When released into the cyto-
plasm, the cathepsin proteases have been shown to me-
diate both propidium iodide-positive cell death and
apoptosis in macrophages following MTB infection
[5,6,13]. While Lee and colleagues showed that MTB
Erdman could trigger cell death in murine macrophages
that was mediated by cathepsins B and L and that this
form of apoptosis did not directly reduce mycobacterial
viability, these experiments used a very high MOI of 25
[6]. Nevertheless, when fresh macrophages were added
to these MTB-infected macrophages early in the apop-
totic process, they enhanced killing of MTB whereas
when fresh macrophages were added to MTB-infected
macrophages late, when the latter dying cells were
undergoing necrosis, increased MTB killing was not seen
[6]. These findings implicate that in vivo, cathepsin-
mediated cell death could be host-protective since there
would be a steady influx of monocytes and macrophages
to the site of the infection. The same investigators also
showed that a high inoculum of virulent MTB (MOI 25)
in murine macrophages induced an atypical form of cell
death that displayed ultrastructural features consistent
with both apoptosis and necrosis; this form of cell death
was independent of caspase-3, caspase-1, and cathepsins
but dependent on the PhoPR sensor kinase, and allowed
extracellular spread of viable MTB [23]. O’Sullivan and
colleagues showed in THP-1 cells infected with a less
virulent strain of MTB (H37Ra) that DNA fragmentation
was partially dependent on cathepsin L but not cathep-
sin B [13]. Furthermore, MTB H37Ra infection led to an
apoptosis-like cell death that was caspase-independent
but mediated by a serine protease [13]. On the other
hand, infection with the more virulent MTB H37Rv at
an MOI of 10–20 induced a form of cell death that was
dependent on both caspase and serine proteases [13].
We found that inhibition of cathepsin B/D or cathepsin
L modestly abrogated the number of TUNEL positive
cells (by ~30 to 40%) induced by IL-32γ and MTB, as
well as partially reversed the anti-MTB effect of IL-32γ.
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Inhibition of cathepsin B/D or cathepsin L in the absence
of exogenous IL-32γ showed a trend toward increased
proportion of macrophages infected with GFP-MTB, sup-
porting the CFU data that cathepsin activation modestly
contributes to macrophage control of MTB. These find-
ings indicate that IL-32γ-induced apoptosis is at least par-
tially dependent on the release of lysosomal proteases that
augment apoptosis rather than simple facilitation of sec-
ondary necrosis. While apoptotic cells eventually undergo
necrosis and it is difficult to reliably distinguish this form
of secondary necrosis from primary necrosis, we believe
that we are measuring mainly apoptosis since the TUNEL
assay was performed relatively soon after infection. Col-
lectively, these findings would indicate that a high burden
of intracellular MTB is more likely to induce a form of cell
death that is not host-protective. Our findings would also
implicate that IL-32γ is capable of inducing cell death
phenotypes (classical apoptosis, pyroptosis, and cathepsin-
mediated cell death) that enhanced macrophage control of
Caspase-3-dependent
apoptosis
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apoptosis in cells knocked-down for AIF with either
exposure to MTB alone or to MTB plus IL-32 suggests IL-
32-induction of apoptosis is not through AIF. Second,
inhibiting AIF expression did not significantly abrogate
either IL-32 increase in apoptosis or IL-32-induced reduc-
tion in CFU. Third, IL-32γ did not induce AIF expression.

Conclusions
In conclusion, we determined that in addition to caspase-
3-dependent apoptosis, IL-32γ also induces apoptosis of
MTB-infected macrophages through other mechanisms
including those mediated by caspase-1 and lysosomal ca-
thepsins (Figure 5). Although AIF-mediated apoptosis was
also identified to be an important anti-MTB mechanism,
AIF does not appear to mediate the anti-MTB effects of
IL-32γ. Our findings contribute to the increasing recogni-
tion that apoptosis of MTB-infected macrophages plays an
important host-defense role against MTB.
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