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Abstract
Background: Since bacteria embedded in biofilms are far more difficult to eradicate than
planktonic infections, it would be useful to know whether certain Staphylococcus aureus lineages are
especially involved in strong biofilm formation. For this reason, in vitro biofilm formation of 228
clinical S. aureus isolates of distinct clonal lineages was investigated.

Results: At 0.1% glucose, more than 60% of the S. aureus strains associated with multilocus
sequence typing (MLST) clonal complex (CC)8 produced large amounts of biomass, compared to
0-7% for various other clonal lineages. Additionally, S. aureus bloodstream isolates associated with
MLST CC8 and CC7 had similar biofilm forming capacities as their commensal counterparts.
Furthermore, strong biofilm formation could not be attributed to a specific accessory gene
regulator (agr) genotype, as suggested previously. The agr genotypes were strictly associated with
the clonal lineages. Moreover, strong biofilm formation was not related to slime formation. Congo
red agar (CRA) screening is therefore not useful as a qualitative screening method for biofilm
formation.

Conclusion: The adherence to polystyrene surfaces under physiologic glucose concentration
(0.1%) was dependent on the clonal lineage. Strains associated with MLST CC8 were markedly
more often classified as strong biofilm former at glucose concentrations of 0%, 0.1% and 0.25%.

The present study reveals that the MLST CC8 associated genetic background was a predisposing 
factor for strong biofilm formation in vitro, under all tested glucose concentrations.

Background
One of the defense mechanisms of Staphylococcus aureus is
the capacity to form biofilms. Bacteria embedded in bio-
films are often difficult to eradicate with standard antibi-
otic regimens and inherently resistant to host immune

responses [1,2]. As a result, treatment of many chronic S.
aureus biofilm related infections, including endocarditis,
osteomyelitis and indwelling medical device infections is
hindered [3]. Biofilm formation is a multistep process,
starting with transient adherence to a surface. Subse-
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quently, specific bacterial adhesins, referred to as micro-
bial surface components recognizing adhesive matrix
molecules (MSCRAMMS) promote the actual attachment
[4]. Next, during the accumulation phase, bacteria stick to
each other and production of extracellular polymeric sub-
stances (EPS) and/or incorporation of host derived com-
ponents, such as platelets, takes place, resulting in a
mature biofilm. In circumstances of nutrient deprivation,
or under heavy shear forces, detachment of bacteria
appears through autonomous formation of autoinducing
peptides (AIP) [5], with release and dispersal of bacteria as
a consequence. It has been shown that expression of the
accessory gene regulator (agr) locus, encoding a quorum-
sensing system, results in expression of surfactant-like
molecules, such as δ-toxin [6], contributing to the detach-
ment.

Essential for biofilm development in S. aureus is the regu-
latory genetic locus staphylococcal accessory regulator
(sarA), which controls the intracellular adhesin (ica)
operon and agr regulated pathways [7]. It has been sug-
gested that biofilm formation in methicillin-resistant S.
aureus (MRSA) is predominantly regulated by surface
adhesins, which are repressed under agr expression, while
biofilm formation in methicillin-susceptible S. aureus
(MSSA) is more dependent on cell to cell adhesion by the
production of icaADBC-encoded polysaccharide intercel-
lular adhesin (PIA), also referred as poly-N-acetylglu-
cosamine (PNAG) or slime [8]. However a clear role for
the ica locus of S. aureus is not as evident as that of Staphy-
lococcus epidermidis [9].

In general, the presence of glucose represses the agr system
through the generation of a low pH [10,11]. So far, bio-
film development in physiologic glucose-supplemented
medium (1 g/L), corresponding to normal blood glucose
levels [12], has not been investigated. Biofilm formation
often occurs on medical devices, like catheters and heart
valves, which are in direct contact with normal (floating)
blood. Furthermore, since it has been shown that the reg-
ulatory pathways for biofilm formation vary between
strains [8], the question arose whether these strain-to-
strain differences could be attributed to different clonal
lineages.

The aim of the present study was to examine the contribu-
tion of the genetic background of both MRSA and MSSA
to biofilm formation under physiologic glucose concen-
tration. MRSA associated with the five major multilocus
sequence typing (MLST) clonal complexes (CCs), i.e.
CC5, CC8, CC22, CC30 and CC45 [13] and MSSA with
the same MLST CCs, and also CC1, were included in this
study, since it has been suggested that these lineages pos-
sess the ability to become MRSA [14]. The results were
compared with those obtained with lineages normally not

related to MRSA, i.e. CC7, CC12, CC15, CC25 and CC121
[15]. Furthermore, the aim was to evaluate whether slime
production is indicative for strong biofilm formation in S.
aureus.

Results
Characterization of the genetic background
The spa types and associated MLST CCs of all tested strains
are shown in Table 1. The results of spa typing/BURP and
MLST were in accordance for a representative set of 16
strains of each major spa type and associated MLST CC.

Phenotypic detection of slime producing ability onto 
Congo red agar
The different Congo red agar (CRA) screening methods
described in the literature were evaluated [16-18]. The
choice of the agar medium, either brain heart infusion or
trypticase soy, did not influence the morphology. The
majority of S. aureus strains (91%) displayed colonies
with a normal morphology (smooth round colonies),
indicating that most strains were low-slime producers.
Without sucrose, all colonies were colored (bright) red to
bordeaux red, irrespective of the agar medium used. Addi-
tion of sucrose to both agar media resulted in more dark
colonies and made the dry crystalline morphology harder
to recognize. With sucrose, all colonies on brain heart
infusion agar with Congo red were colored red to bor-
deaux red, while strains on trypticase soy agar with Congo
red displayed mostly purple to black colonies. Nuances in
color were not corresponding to differences in morphol-
ogy.

MSSA strains showed more often a deviant, dry crystalline
(rough) morphology (slime producing positive) than
MRSA isolates, 14% (22 of 156) and 0%, respectively. A
significant distinction in slime formation was observed
between MRSA and MSSA with MSSA associated MLST
CCs, i.e. CC7, CC12, CC15, CC25 and CC121, and with
MRSA associated MLST CCs, i.e. CC1, CC5, CC8, CC22,
CC30 and CC45 (P < 0.01), as shown in Figure 1a. MSSA
associated with MLST CC121 had the highest prevalence
of a deviant morphology, 67% (10 of 15) (Figure 1b).

Detection of biofilm biomass with crystal violet staining
Under physiologic glucose (0.1%) concentration, 13% (n
= 30) of all strains formed a strong biofilm and all these
strains were MRSA or had a MRSA associated MLST CC.
MRSA and MSSA with MRSA associated MLST CCs, i.e.
CC1, CC5, CC8, CC22, CC30 and CC45, were signifi-
cantly more capable than MSSA with MSSA associated
MLST CCs, i.e. CC7, CC12, CC15, CC25 and CC121, to
form strong biofilms in the presence of 0.1% glucose (P <
0.01), but not at glucose concentrations of 0.25% and
0.5% (Figure 2). The higher the glucose concentration, the
more strains produced biofilm above the A590 threshold
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value and were consequently classified as strong biofilm
former. At glucose concentrations of 0.25% and 0.5%, the
amount of biomass of the biofilms of strong biofilm
forming strains was still significantly more for MRSA com-
pared to MSSA irrespective of the MLST CCs (P < 0.01)
(Figure 3). Of all strains classified as strong biofilm pro-
ducers, MRSA and MSSA associated with MLST CC8 pro-
duced the most biomass under all tested glucose
concentrations (Figure 4a and 4b). Strains defined as
strong biofilm formers and associated with MLST CC5,
CC25 and CC30 approached approximately the same
level of biomass at the following glucose concentrations,
i.e. CC5 at 0.25%, CC 25 at 0.5% and CC30 at 0.5% glu-
cose, respectively.

The main contributors to the higher prevalence of MRSA
and MSSA with MRSA associated MLST CCs to produce
strong biofilms at 0.1% glucose were MLST CC8 isolates,
approximately 60% (26 of 41), (Figure 4c), especially
with a tendency towards MRSA (Figure 4d).

Additionally, blood stream isolates of MSSA associated
with MLST CC8 and MLST CC7 were included in the

study, to address the question whether the isolation site is
an (additional) predisposing factor for strong biofilm for-
mation. MSSA associated with MLST CC7 are one of the
main clonal lineages among blood stream isolates in our
hospital [19]. No differences in the ability to produce
strong biofilms were observed between bloodstream iso-
lates and isolates of commensal origin among MSSA asso-
ciated with MLST CC8 and CC7 (Figure 5a and 5b).
Furthermore, no significant differences in slime-forming
ability were observed (Figure 5c).

Correlation between slime formation and development of 
biofilm biomass
In order to investigate whether slime production is indic-
ative for strong biofilm formation, the correlation
between these two characteristics was addressed. Pheno-
typic detection of slime production on CRA was not
related to the quantitative detection of strong biofilms,
measured by crystal violet staining, which was used as a
gold standard. The sensitivity and specificity of the CRA
method for S. aureus was approximately 9% and 90%,
respectively (Table 2). Only a part of the slime producing
strains surpassed the A590 threshold value for strong bio-

Table 1: Distribution of spa types and associated MLST CCs among S. aureus strains included in this study

associated 
MLST CC

ST No. of MRSA 
strains

No. of MSSA 
strains

agr genotype spa types MRSA 
strains
(No.)

spa types MSSA 
strains
(No.)

1 ST1 NA# 16 III NA# t127 (15), t1787
5 ST5/ST5 15 15 II t002 (4), t003, t041, 

t045, t447 (8)
t002 (12), t179, t311, 
t2212

8 ST8/ST1411a 26 15 I t008 (12), t052 (6), 
t064, t068 (5), t303, 
t622

t008a (10), t190, t648, 
t701 (2), t2041

22 ST22/ST22 10 15 I t223 (10) t005 (9), t223, t474, t790, 
t1433, t1629, t2681

30 ST36/ST714b 10 15 III t012 (7), t253 (2), 
t1820

t012 (2), t021b (4), t238, 
t300, t318 (2), t438, 
t1130, t1504, t2572, 
t2854

45 ST45/ST45 11 15 I t038 (8), t445 (2), 
t740

t015 (2), t026, t050, t065, 
t102, t230 (3), t583, t589, 
t620 (2), t772 (2)

7 ST7 - 15 I - t091 (15)
12 ST12 - 10 II - t060, t156 (2), t160 (5), 

t213, t771
15 ST15 - 15 II - t084 (11), t085, t491 (2), 

t1716
25 ST25 - 10 I - t078 (4), t081, t087, t258, 

t353, t1671, t1898
121 ST720c - 15 IV - t159 (2), t171c (4), t284, 

t408 (4), t645 (2), t659, 
t2213

Total 72 156

# not available
Boldface indicates spa types on which multilocus sequence typing analysis was performed (ST, sequence type).
a The strain spa typed as t008 had ST1411, a double locus variant of ST8 at the gmk and tpi locus.
b The strain spa typed as t021 had ST714, a single locus variant of ST30 at the arcc locus.
c The strain spa typed as t171 had ST720, a single locus variant of ST121 at the yqil locus.
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film formation, namely 5%, 15%, 45% and 90% at 0%,
0.1%, 0.25 and 0.5% glucose, respectively.

Distribution of agr types
Clonal lineages MLST CC7, CC8, CC22, CC25 and CC45
harbored agr-I, all CC5, CC12 and CC15 were character-

ized by agr-II, while all CC1 and CC30 were detected as
agr-III. Furthermore, CC121 isolates carried agr-IV (Table
1). No consistent relationship was found between agr gen-
otype and the ability to produce biofilm.

Discussion
In vitro quantification of biofilm formation in distinct
clonal lineages of S. aureus was performed to investigate
whether there were differences in the capacity to form
fully established biofilms. This study revealed that at 0.1%
glucose, enhanced biofilm formation of S. aureus was
strongly associated with MLST CC8 and observed in 60%
of these isolates, while it varied between 0-7% for the
other clonal lineages tested.

A higher percentage of MSSA (14%) than MRSA (0%) was
found positive for slime producing ability, in concord-
ance to the more important role of PIA/PNAG in MSSA
than in MRSA biofilm development [8]. Addition of
sucrose to CRA did not influence slime formation, sug-
gesting that slime formation was carbohydrates independ-
ent. The results were consistent with previous findings in
MRSA and MSSA isolates of O'Neill et al. In MSSA isolates
increased ica expression and PIA/PNAG production (as

Congo Red Agar screening of S. aureus isolatesFigure 1
Congo Red Agar screening of S. aureus isolates. CRA 
screening for S. aureus with a dry crystalline colony morphol-
ogy, which was considered indicative for slime formation. (a) 
The black bar (not visible, 0%) represents MRSA (n = 72), the 
dark grey bar represents MSSA with MRSA associated MLST 
CCs (n = 75) and the light grey bar represents MSSA with 
MSSA associated MLST CCs (n = 81). Asterisks denote sta-
tistically significant difference P < 0.01 (a) and statistically sig-
nificant difference of individual CCs versus all other 
associated MLST CCs (b) P < 0.01.
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Quantification of strong biofilm formation in MSSA and MRSAFigure 2
Quantification of strong biofilm formation in MSSA 
and MRSA. Quantification of strains of the specified group 
defined as strong biofilm former at different glucose concen-
trations. Black bars represent MRSA, dark grey bars repre-
sent MSSA with MRSA associated MLST CCs and light grey 
bars represent MSSA with MSSA associated MLST CCs. 
Asterisks denote statistically significant difference, (*) P < 
0.05 and (**) P < 0.01.
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Biomass quantification of MSSA and MRSAFigure 3
Biomass quantification of MSSA and MRSA. Absorb-
ance (A590) of the crystal violet stained biofilm matrix for 
strong biofilm formers (with A590 above the threshold value 
of 0.374, represented by the horizontal dashed line) at differ-
ent glucose concentrations. Boxplots at the left show MRSA, 
in the middle MSSA with MRSA associated MLST CCs and at 
the right MSSA with MSSA associated MLST CCs. The lower 
and higher boundary of the box indicates the 25th and 75th 

percentile, respectively. The line within the box marks the 
median. Whiskers above and below the box indicate the 90th 

and 10th percentiles. Open circles indicate the 95th and 5th 

percentiles. Asterisks denote statistically significant differ-
ence, (*) P < 0.05 and (**) P < 0.01.
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determined with PIA/PNAG immunoblot) was correlated
with 4% NaCl-induced biofilm formation, but not with
glucose-induced biofilm production [8]. In addition, in
MRSA, ica operon transcription was more potently acti-
vated by NaCl than by glucose, but did not result in PIA/
PNAG formation [8]. Since it has recently been suggested
that, in general, PIA/PNAG is a minor matrix component
of S. aureus biofilms [5,9], and thus possibly hardly

detectable by CRA screening, a low prevalence of slime
producing strains was expected. Knobloch et al. and
Mathur et al. reported a positive CRA assay result in only
4-5% of the S. aureus strains tested, in relative accordance
with the results of this study, while Grinholc et al. men-
tioned 47% and 69% for MRSA and MSSA, respectively
[16-18]. Jain et al. reported differences between blood
stream isolates and commensal S. aureus isolates with

Biomass formation related to the genetic background of S. aureusFigure 4
Biomass formation related to the genetic background of S. aureus. Absorbance (A590) of the crystal violet stained bio-
film matrix of strong biofilm forming S. aureus strains in relation to different associated MLST CCs (a) and of strong biofilm 
forming strains associated with MLST CC1, CC5, CC8, CC22, CC30 and CC45 (b). R in the legend represents MRSA and S 
represents MSSA. Quantification of strains of the specified genetic background defined as strong biofilm former at different glu-
cose concentrations, (c) and (d). Asterisks denote statistically significant difference, (b) and (d), and statistical significant differ-
ence of individual CCs versus all other associated MLST CCs, (a) and (c), except #, (*) P < 0.05 and (**) P < 0.01.
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regard to positive CRA screening, 75% and 20%, respec-
tively [20]. The variations could be due to differences in
genetic backgrounds of the strains used, or to differences
in interpretation of the colonies. The definition of slime-
forming strains used by Grinholc et al. and Jain et al. was
based on the color of the colonies and not on the mor-
phology. Furthermore, they both found a high consist-
ency (96% and 91%, respectively) between CRA screening
and biofilm biomass crystal violet staining [17,20]. In
contrast, both in this study, as well in the studies by Kno-
bloch et al., Rode et al., and Mathur et al. [16,18,21], no
correlation was found between slime producing MRSA
and MSSA isolates and an enhanced tendency to form
large amounts of biomass. These studies strongly suggest
that CRA screening forms no alternative for crystal violet
staining to detect biofilm formation. Probably, the cell to
cell adhesion, stimulated by the formation of PIA/PNAG,
is less efficient than the expression of surface adhesins, in
their contribution to produce more biomass.

As described before, the agr genotypes were strictly associ-
ated with the clonal lineages [22,23]. However, excep-
tions have been observed [24-27] which might be due to
interstrain recombination and intrastrain rearrangements
[28]. The association between agr genotypes and the
genetic background explains the absence of a relationship
between the enhanced ability to form biofilm and specific
agr genotype(s). Although, there was a tendency that the
agr-I genotype was associated with an enhanced capacity
to form strong biofilms (data not shown), this was a
reflection of the biofilm-forming capacity of strains asso-
ciated with MLST CC8. In contrast to our results, Cafiso et
al. described a link between agr-II genotype and the capac-
ity to form strong biofilms, since all strains with agr-II
genotype were associated with strong biofilm formation
at 0.25% glucose. However, the genetic background was
not taken into consideration [29]. Our findings revealed
that strains associated with MLST CC5, CC12 and CC15
(all harboring agr-II) were classified as strong biofilm
formers in only 21%, 9% and 53% of the cases at 0.25%

Biofilm formation in S. aureus isolates of bloodstream infections and commensal originFigure 5
Biofilm formation in S. aureus isolates of bloodstream infections and commensal origin. Biofilm formation between 
S. aureus isolates of the same clonal lineage from blood stream infections (CC8 n = 15, CC7 n = 11) and of commensal origin 
(CC8 n = 15, CC7 n = 15), no significant differences were found (a). S in the legend represents MSSA, BSI represents blood-
stream isolates and C represents commensal isolates. Number on each bar refers to number of isolates. Absorbance (A590) of 
the crystal violet stained biofilm matrix of strong biofilm formers at different glucose concentrations (b). CRA screening for 
colonies with a dry crystalline morphology (c).
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Table 2: Correlation between slime formation (Congo red agar screening) and development of biofilm biomass (crystal violet 
staining).

Glucose Sensitivity Specificity PPV NPV CRA+/CV+ CRA-/CV+ CRA+/CV- CRA-/CV-
(%) (%) (%) (%) (%) Number of S. aureus strains

0 6.3 91.0 5.0 92.8 1 15 19 193
0.1 9.7 91.3 15.0 86.5 3 28 17 180
0.25 11.6 93.0 45.0 63.5 11 76 9 132
0.5 8.3 80.0 90.0 3.9 18 200 2 8

(PPV) positive predictive value (NPV) negative predictive value (CRA) Congo red agar screening (CV) crystal violet staining
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glucose, respectively. Furthermore, the agr-II genotype
encompass diverse strains, not including strains associ-
ated with MLST CC8 [22,23].

Biofilm formation was induced by increasing glucose con-
centrations up to 0.5% in both MRSA and MSSA isolates,
which is entirely consistent with previously reported data
[8,21]. However, MRSA produced significantly more bio-
mass than MSSA with MSSA associated MLST CCs, under
all tested glucose conditions. Especially strains associated
with MLST CC8 contributed to this phenomenon. Fur-
thermore, MSSA with MRSA associated MLST CCs were
also capable to produce more biomass than MSSA with
MSSA associated MLST CCs at 0.1% glucose. Variations in
biofilm forming capacities in clonal lineages of S. aureus
could be explained by unique combinations of surface-
associated and regulatory genes [23] or by different
expression levels of genes that regulate the different
phases of biofilm formation. Since this study showed that
the biofilm formation on polystyrene surfaces was the
strongest for the MLST CC8 associated genetic back-
ground, further studies with other material or tissue are
warranted. Recently, differences in adhesion to human
airway epithelial cells have been observed between strains
belonging to MLST CC8 and CC5, the latter demonstrat-
ing a generally lower adherence in both representatives of
MRSA and MSSA [30]. An enhanced ability to adhere and
invade these cells have also been shown for MRSA associ-
ated with the Brazilian/Hungarian clone, which belongs
to MLST CC8 [15], compared to a population of MSSA
with an unknown genetic background [31]. Furthermore,
strains associated with the same clone were not included
among our MLST CC8 isolates, but were previously classi-
fied as strong biofilm producers and designated superior
in their ability to produce biofilm compared to isolates
associated with the Pediatric clone (MLST CC5) [32].

To analyse possible other predisposing factors besides the
MLST CC8 associated genetic background, bloodstream
and commensal isolates of the same clonal lineage were
compared. The biofilm forming capacity between MSSA
bloodstream and commensal isolates, associated with
MLST CC8 and CC7, was similar and consistent with the
findings of Smith et al., who compared the biofilm form-
ing capacity of Scottish clinical S. aureus strains collected
from different isolation sites [33]. In contrast, Jain et al.
described more frequently strong biofilm formers among
S. aureus bloodstream isolates than commensal [20]. A
possible explanation might be that all bloodstream iso-
lates came from patients with peripheral intravenous
devices, while this was not an inclusion criterion in the
study by Smith et al. Peripheral or central line intralumi-
nal colonization might be associated with strains that eas-
ily attach to (catheter) surfaces and as a consequence these
strains could be dominant in leading to bloodstream
infections.

Conclusion
In summary, the present study reveals that the MLST CC8
associated genetic background was a predisposing factor
for strong biofilm formation in vitro, under all tested glu-
cose concentrations, i.e. 0%, 0.1%, 0.25% and 0.5%. At
physiologic glucose concentration (0.1%), 0-7% of S.
aureus from various clonal lineages were defined as strong
biofilm former, compared to 60% for the S. aureus associ-
ated MLST CC8.

Methods
Bacterial strains
S. aureus strains (72 MRSA and 156 MSSA) investigated
were isolated during 2005 to 2008 in the Maastricht Uni-
versity Medical Center, a tertiary 715-bed hospital, and
originate from surveillance cultures (commensal flora)
from individual patients, recovered from nasal swabs.
MRSA and/or MSSA strains associated with MLST CC1,
CC5, CC8, CC22, CC30, CC45, CC7, CC12, CC15, CC25
and CC121, were randomly selected from our institu-
tional collection (Table 1). All MRSA strains were tested
positive for the MRSA-specific mecA gene, by real-time
PCR [34]. Additionally, 26 MSSA blood stream isolates
from individual patients and associated with either MLST
CC8 or CC7 were tested. These isolates were considered
invasive.

Characterization of the genetic background
Typing of the spa locus was carried out as described previ-
ously [19]. The spa types were assigned through the Ridom
SpaServer http://spaserver.ridom.de and clustered into
spa-CCs using the algorithm based upon repeat pattern
(BURP) with Ridom StaphType 1.4 using the default set-
tings [35,36]. Although, spa typing alone sometimes lacks
discriminatory power, due to related spa repeat patterns
within different clonal lineages and the emergence of
homoplasies among spa sequences [37], it has been
shown that spa typing/BURP results are often in agree-
ment with results obtained by MLST [36,38]. Therefore,
the associated MLST CCs were allocated through the
SpaServer. To confirm the association between MLST and
spa typing, in combination with BURP, MLST was per-
formed on a representative set of 16 strains of each major
spa type and associated MLST CC [39,40].

Phenotypic detection of slime producing ability onto 
Congo red agar
MRSA (n = 72), MSSA with MRSA associated MLST CCs (n
= 75), i.e. CC1, CC5, CC8, CC22, CC30 and CC45, and
MSSA with MSSA associated MLST CCs (n = 81), i.e. CC7,
CC12, CC15, CC25 and CC121, were cultured on Congo
red agar (CRA) plates, either consisting of trypticase soy or
brain heart infusion agar (both from Becton Dickinson)
with 0.8 g/L Congo red (Prolabo, Leuven, Belgium) and
without or with 5% sucrose (Merck, Darmstadt, Ger-
many). Colony morphology and color were evaluated
Page 7 of 9
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after incubation at 37°C for 24 h. Colonies with a dry
crystalline (rough) morphology were considered deviant
and slime producing positive [16], smooth round colo-
nies were classified as low-slime producers.

Detection of biofilm biomass with crystal violet staining
The polystyrene crystal violet adherence assay was carried
out as described previously [41], with some modifica-
tions. Briefly, overnight cultures in Trypticase Soy Broth
(TSB) without dextrose (Becton Dickinson, Le pont de
Claix, France) were diluted until 108 CFU/mL in TSB con-
taining 0%, 0.1%, 0.25% and 0.5% glucose. Individual
wells of polystyrene, flat-bottomed 96-well plates
(Greiner Bio-One, Frickenhausen, Germany) were filled
with 100-μL aliquots of the cultures. As a negative control,
uninoculated medium was used. S. aureus ATCC 25923
and one clinical S. aureus isolate from our collection,
known to form fully established biofilms (A590 values
within the highest range and stable) as observed during a
pilot experiment, were added to each plate as reference
standard [17] and positive control, respectively. After 4 h
of adhesion at 37°C on a rocking platform at 25 oscilla-
tions min-1, the medium containing non-adhered cells,
was replaced by 100 μL fresh broth and the plates were
further incubated for 24 h. Next, the wells were washed
three times with 200 μL 0.9% NaCl. Biofilms were fixed at
60°C during 1 h. Subsequently, 100 μl crystal violet solu-
tion (0.3% wt/vol) was added to all wells. After 15 min,
the excess crystal violet was rinsed off by placing the plates
under running tap water. Finally, after drying the plates,
bound crystal violet was released by adding 100 μl 70%
(vol/vol) ethanol with 10% isopropyl alcohol (vol/vol).
Absorbance was measured spectrophotometrically at 590
nm (A590) and was proportional to biofilm biomass. All
assays were performed in triplicate, and repeated on three
occasions. The intra- and interday coefficients of variation
for the assay were 14% and 23%, respectively. To obtain a
threshold A590 value for which strong biofilm formation
commences, the A590 values of all strains at the different
glucose concentrations were sorted in ascending order
and divided into quartiles. The distribution of A590 values
in the lower three quartiles was similar at glucose concen-
trations of 0%, 0.1% and 0.25% and therefore used to
determine the cut-off value (two standard deviations
above the mean A590 value). The threshold A590 value was
0.374. Bacteria with A590 values above this value were con-
sidered strong biofilm formers.

Determination of the agr type
The agr types were determined by a real-time multiplex
PCR assay, as described previously [42].

Statistical analysis
SPSS version 15.0 (SPSS Inc., Chicago, IL, USA) was used
for statistical analyses. Chi-square analysis was used for

comparison of the prevalence of strong biofilm formation
or slime formation between the specified groups. Mann-
Whitney U analysis was used to compare the A590 values
between groups of strong biofilm formers. A P value of <
0.05 was considered to be statistically significant.
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