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Abstract
Background: mce3 is one of the four virulence-related mce operons of Mycobacterium tuberculosis.
In a previous work we showed that the overexpression of Mce3R in Mycobacterium smegmatis and
M. tuberculosis abolishes the expression of lacZ fused to the mce3 promoter, indicating that Mce3R
represses mce3 transcription.

Results: We obtained a knockout mutant strain of M. tuberculosis H37Rv by inserting a hygromycin
cassette into the mce3R gene. The mutation results in a significant increase in the expression of
mce3 genes either in vitro or in a murine cell macrophages line as it was determined using promoter-
lacZ fusions in M. tuberculosis. The abundance of mce1, mce2 and mce4 mRNAs was not affected by
this mutation as it was demonstrated by quantitative RT-PCR. The mce3R promoter activity in the
presence of Mce3R was significantly reduced compared with that in the absence of the regulator,
during the in vitro culture of M. tuberculosis.

Conclusion: Mce3R repress the transcription of mce3 operon and self regulates its own
expression but does not affect the transcription of mce1, mce2 and mce4 operons of M. tuberculosis.

Background
Tuberculosis (TB), a chronic illness caused by Mycobacte-
rium tuberculosis, is still a major worldwide disease. Patho-
genic mycobacteria species have demonstrated a
remarkable ability to survive in diverse conditions
encountered during the infection process. However, even
after decades of investigation, there is still little knowledge
about mycobacterial pathogenesis. Understanding the
infective process at the molecular and cellular levels will
lead to new strategies to control this disease and even to
the development of an effective vaccine.

The analysis of the complete sequence of the M. tuberculo-
sis H37Rv genome revealed the presence of four paralo-
gous mce genes, all encoded in an operon structure
consisting of eight genes [1]. The biological function of
Mce proteins is not known, but increasing evidence has
demonstrated that they are clearly related to the virulence
of Mycobacterium tuberculosis complex species [2-8].

Gene regulation is considered to play a central role in
host-microbe interactions, and many virulence genes are
regulated in response to the host. Casali and collaborators
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[9] identified a regulatory mechanism which controls
mce1 expression. They have demonstrated that a homo-
logue of the FadR subfamily of GntR transcriptional regu-
lators, Rv0165c (designated Mce1R), is a negative
regulator that intracellularly represses expression of the
mce1 operon. In addition, a gene encoding a putative tran-
scriptional factor, Rv0586, is located immediately
upstream of mce2 operon and it is transcribed in the same
direction as that of mce2 genes. Furthermore, it has been
found that there are growth phase and tissue specific dif-
ferences in the expression of mce operons in M. tuberculosis
[10-12] which is in agreement with the presence of regu-
latory mechanisms controlling mce transcription. In a pre-
vious work, we found evidence indicating that Mce3R, a
TetR family transcriptional regulator, down-regulates the
mce3 operon during the in vitro growing of M. tuberculosis
[13]. We have demonstrated that the overexpression of
Mce3R in both M. smegmatis and M. tuberculosis abolishes
the expression of a gene reporter fused to mce3 promoter.

TetR family members often regulate their own synthesis
[14-18]. The classic example of self regulation in members
of this family protein is a repressor involved in resistance
to tetracycline of Escherichia coli, which has given the
name TetR to the group [19]. In a number of TetR-autoreg-
ulated systems the regulator and the structural genes are
divergently transcribed and the region for protein binding
overlaps the promoters placed in the intergenic region
[15,18,20]. That is the case of mce3R, which is placed
upstream of mce3 operon, oriented in the opposite direc-
tion and separated from it by a region of 880 bp.

In this work we validate the role of Mce3R in repressing
the mce3 transcription in M. tuberculosis by analyzing gene
expression in a mce3R-knockout M. tuberculosis strain. We
also found that this regulation is exclusive for the mce3
operon among mce genes and that the Mce3R repressor
regulates its own expression.

Disruption of the mce3R gene of M. tuberculosis H37RvFigure 1
Disruption of the mce3R gene of M. tuberculosis H37Rv. (A) Southern blot analysis of chromosomal DNA from sucR 
counterselected tuberculosis clone (lane 3) and parental strain (lane 2). Genomic DNA was digested with EcoRI and hybridized 
to the mce3R probe. Arrows indicate position of hybridizing fragments. MWM 1 kb Promega is shown on the left (lane 1). (B) 
Restriction map of mutant and wild type strains. The insertion of hygromycin-resistant cassettes is indicated (hyg). Arrows rep-
resent the length of expected bands after digestion with EcoRI (E). Value on each arrow indicates the molecular weight of 
expected bands expressed in base pairs (bp).
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Results
Construction of a mce3R mutant in M. tuberculosis
As a first step to assess the mce3 operon expression in the
absence of Mce3R, we obtained a knockout mutant strain
of M. tuberculosis H37Rv by inserting a hygromycin cas-
sette into the mce3R gene. The site-directed mutant strain
of M. tuberculosis was obtained by two-step mutagenesis
strategy by using the p2NIL shuttle plasmid [21], which
carries the lacZ gene and the counter selectable marker
sacB. Allelic exchange was confirmed in the selected
clones (HyR, KmS, and SacR) by Southern blotting (Fig.
1A), since the mutant showed a hybridizing fragment of
about 1.5 kb absent in the wild-type strain. This polymor-
phism is due to the introduction of an extra EcoRI site
present in the hygromycin cassette (Fig. 1B). The mutant
strain was designated ∆mce3R. The mutation was comple-
mented by transforming the plasmid pSummce3R into
the mutant.

In vitro characterization of ∆mce3R
To determine whether mce3R disruption introduces alter-
ations during in vitro growth, growth curves of the ∆mce3R
mutant, complemented, and parental strains were com-
pared under standard culture conditions. All assayed
strains showed similar doubling time and growth charac-
teristics throughout the culture period (Fig. 2). This result
indicates that the mutation does not affect the in vitro
growth of M. tuberculosis.

mce3 operon expression is repressed by Mce3R during in 
vitro culture and inside murine macrophages
We have previously demonstrated that the mce3 promoter
allows the expression of the lacZ reporter gene in M. tuber-
culosis H37Rv but that this expression is completely abol-
ished when Mce3R is overexpressed in the H37Rv strain
from a multi-copy plasmid [13]. Although these findings
constitute initial evidence demonstrating the role of
Mce3R as a repressor of the mce3 operon transcription, the
presence of an endogenous copy of the mce3R gene in M.
tuberculosis did not enable us to determine the conditions
in which the regulator system operates.

Here, in order to compare the expression the mce3 operon
either in the absence or in the presence of Mce3R, DNA
fusions of the mce3 promoter to lacZ reporter, containing
or not containing mce3R were cloned within pYUB178-
lacZ. The resulting plasmids, pP3-mce3R and pP3 respec-
tively, were integrated into the chromosome of the
∆mce3R strain. The β-galactosidase activity was measured
at different points along cultures of M. tuberculosis grown
in vitro and in a macrophages cell line. Since transcription
of mce3 genes has previously shown to be increased when
M. tuberculosis was grown in rich media [10-12] the
expression of mce3 operon was assessed in both synthetic
(7H9) and rich (Dubos) media (Figure 3 and data not
shown).

While hardly any β-galactosidase activity was detected
either in in vitro cultures (Fig. 3) or in cell-line mice mac-
rophages (Table 1) in the presence of Mce3R
(∆mce3R::pP3-mce3R strain), the activity in the
∆mce3R::pP3 strain was remarkably high in all of the con-
ditions tested. The promoter activity increased along the
in vitro cultures of ∆mce3R:: pP3, and peaked at 24 h of
infection inside the cell. These results clearly indicate that
Mce3R represses the expression of mce3 operon in M.
tuberculosis in the growth conditions tested.

Assessment of the role of Mce3R in the transcription of the 
four mce operons
A number of reports indicate that the expression of all mce
genes depends on the growth conditions [10-12]. These
observations, together with the findings that regulatory
proteins are involved in the expression of the mce1 and
mce3 operons, suggested the idea of a broader regulatory
mechanism differentially controlling the expression of
mce genes. In order to test whether Mce3R is able to con-
trol the transcription of the other mce operons apart from
mce3, the expression of one gene from each mce operon in
the mutant strain was compared with that of the wild
type. Primers were designed to amplify a 189, 168, 234,
151 and 134 bp region on mce1D (Rv0172), mce2A
(Rv0589), mce3E (Rv1970), mce4A (Rv3499), and sigA

Effect of the mce3R mutation on in vitro growth of M. tubercu-losisFigure 2
Effect of the mce3R mutation on in vitro growth of M. 
tuberculosis. Cultures of the mutant [∆mce3R, square], the 
complemented [∆mce3R (pSummce3R), triangle] and the 
parental wild-type [H37Rv, rhombus] strains were grown to 
stationary phase and inoculated into fresh Dubos medium 
supplemented with 0.4% glucose at OD600nm 0.005 and the 
OD600nm was measured at various time points. It is shown a 
representative experiment from triplicate.
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respectively. Amplicons of expected size were obtained
with each pair of primers (data not shown).

Differences in relative gene expression between the wild
type and the mutant strains were assessed in group means
for statistical significance by a randomisation test (see
Materials and Methods). While the relative abundance of
mce3E mRNA was significantly higher (P < 0.030) in the
mutant than in the wild type strain in the conditions eval-
uated, no significant differences between both strains
were observed on the expression of mce1D (P < 0.74),
mce2A (P < 0.918) and mce4A (P < 0.511) (Fig 4).

To verify that RNA samples were not contaminated with
genomic DNA, RT-PCR reactions were performed without
the addition of reverse transcriptase. The lack of amplifi-
cation products verifies that the RT-PCR products were
amplified from RNA that had been reversely transcribed
into cDNA.

These results demonstrate that Mce3R regulates exclu-
sively the transcription of mce3 operon among mce genes
in the conditions tested

Mce3R expression is self regulated
To investigate whether mce3R is subject to transcriptional
autoregulation, a transcriptional fusion was constructed
between the mce3R promoter and the lacZ reporter. Since
mce3R is located adjacent to mce3 operon and divergently
oriented, the mce3R promoter is situated in mce3R-yrbE3A
intergenic region. The entire intergenic region was fused
to the lacZ gene within pYUB178-lacZ to create plasmid
pPR3-lacZ. The pPR3-lacZ plasmid was transformed into
the wild type M. tuberculosis H37Rv and the M. tuberculosis
∆mce3R mutant, and β-galactosidase activity was meas-
ured to assess the levels of mce3R promoter activity with
and without Mce3R regulator. As shown in figure 5, in the
presence of Mce3R (wild type H37Rv strain) the activity of
mce3R promoter is steadily and significantly reduced as
compared with that in the absence of the Mce3R regulator
(mutant ∆mce3R strain). This reduction in mce3R pro-
moter activity was more evident during the stationary
growth phase. These experiments demonstrate that the
Mce3R protein is able to transcriptionally repress expres-
sion of the mce3R promoter in M. tuberculosis during the in
vitro culture condition tested.

Discussion
Little is known about gene regulation of virulence factors
in M. tuberculosis due to its slow growth rate and the late
development of mycobacterial genetics. Prokaryotic tran-
scriptional regulators are classified in families on the basis
of sequence similarity and structural and functional crite-
ria. The TetR family, a family of transcriptional regulators
that is well represented and widely distributed among
bacteria, has a helix turn-helix (HTH) signature, the most
recurrent DNA binding motif, to bind its target DNA.
Members of the TetR family of repressors control tran-
scription of proteins involved in multidrug resistance,

Effect of Mce3R on mce3 promoter activity during the growth of M. tuberculosisFigure 3
Effect of Mce3R on mce3 promoter activity during 
the growth of M. tuberculosis. Comparison of mce3 pro-
moter activity during the growth of ∆mce3R (pP3-mce3R-
lacZ) (grey bars) and ∆mce3R (pP3-lacZ) (white bars) strains 
in M7H9-AD-G medium. The results are presented as β-
galactosidase activity expressed as Miller units ± S.D. of 
duplicate in three time points (1 early exponential phase, 2 
exponential phase and 3 stationary phase). Growth curves of 
∆mce3R (pP3-lacZ) (square) and ∆mce3R (pP3-mce3RlacZ) 
(circle) strains are shown and the OD 600nm values are indi-
cated on the right. Results represent one of at least three 
independent experiments.
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Table 1: Effect of MceR on mce3 promoter activity in M. tuberculosis during infection of J774 Macrophage-like cell line.

β-galactosidase activityain J774 cell line

Strain 4 h 24 h 72 h
∆mce3R (pP3-mce3R) 0 0 0
∆mce3R (pP3) 114+/-5 2571+/-172 2162+/-92

a calculated as: arbitrary β-galactosidase units/number of bacteria (CFU)/100000.
Values are presented as the mean and standard deviation (SD) of reactions performed in triplicate.
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enzymes implicated in different catabolic pathways, bio-
synthesis of antibiotics, osmotic stress, and pathogenicity
of gram-negative and gram-positive bacteria. At least 40
putative TetR-family regulator genes are spread on the M.
tuberculosis genome. Most of them are similar to the TetR/
AcrR family, but just a few have been characterized.
Mce3R was the first TetR-like regulator studied in M. tuber-
culosis [13]. Then, Engohang-Ndong et al. [22] found that
a member of the TetR/CamR family represses the expres-
sion of ethA that encodes a protein that catalyses the acti-
vation of ethionamide (ETH). ETH is an important
second-line anti TB drug used for the treatment of patients
infected with multidrug-resistant strains.

The transcription profile of the mce3 operon in different in
vitro growth conditions of M. tuberculosis has been
addressed by RT-PCR in a number of publications and
transcription of mce3 genes has been found when bacteria
were cultured both on LJ and Dubos media [11,12] but
not in 7H9 synthetic medium in both exponential and
stationary growth phases [10]. Using similar methodol-
ogy we detected mRNA of mce3 operon during in vitro cul-
ture of M. tuberculosis either in synthetic or in rich (data
not shown) media. However, transcription from the mce3
promoter, measured as β-galacosidase activity, was com-
pletely absent in the presence of Mce3R both in in vitro

conditions and inside a murine macrophages cell line.
These last results, together with the finding that the elim-
ination of Mce3R significantly increases mce3 transcrip-
tion, indicate that the potential level of mce3 expression is
repressed in the conditions of growth assayed.

Interestingly, the high homology among mce operons is
not conserved among their regulator genes, since Mce1R,
the other mce regulator described, as well as the putative
regulator of the mce2 operon, belong to the GntR family
[9,1]. In addition, no putative regulatory gene is placed in
the vicinity of the mce4 operon; however, it was recently
proposed Rv3574, a TetR-type regulator, as represor of
mce4 operon expression [23].

Here it was demonstrated that mce3R is not involved in
the expression of mce1, mce2 nor mce4 operons. Therefore,
it is tempting to speculate that both facts, i.e. gene redun-
dancy and differential regulation, ensure the production
of Mce proteins in different environments.

Here we demonstrated that mce3 promoter is stronger
than mce3R promoter, and mce3 expression seems to be

Effect of Mce3R on its own transcription during in vitro growth of M.tuberculosisFigure 5
Effect of Mce3R on its own transcription during in 
vitro growth of M.tuberculosis. Comparison of mce3R 
promoter activity during the growth of ∆mce3R (pPR3-lacZ) 
(white bars) and H37Rv (pPR3-lacZ- Mce3R endogenous) 
(grey bars) strains in M7H9-AD-G medium. The results are 
presented as β-galactosidase activity expressed as Miller units 
± S.D. of duplicate in three time points (1 early exponential 
phase, 2 exponential phase and 3 stationary phase). Growth 
curves of ∆mce3R (pPR3-lacZ) (circle) and H37Rv (pPR3-
lacZ- Mce3R endogenous) (rhombus) strains are shown and 
the OD 600nm values are indicated on the right. Results rep-
resent one of three independent experiments.
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Effect of Mce3R on transcription of mce operons during in vitro growth of M. tuberculosisFigure 4
Effect of Mce3R on transcription of mce operons dur-
ing in vitro growth of M. tuberculosis. The data are pre-
sented as the fold change in gene expression in mutant 
∆mce3R strain normalized to sigA endogenous reference 
gene and relative to the wild type H37Rv strain +/- SD of 
derived results from four independent experiments. *Signifi-
cant differences (P < 0.05) of gene expression in both strains 
as calculated by Pair Wise Fixed Reallocation Randomisation.
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mostly shut down during in vitro growth, but it is also
likely that under unknown particular conditions of
growth it would turn on.

As it happens to many other proteins of the TetR family,
we found that Mce3R negatively regulates its own expres-
sion. The experiments with the mce3R promoter indicate
that there is in average ten folds decreased in transcrip-
tional activity when the Mce3R is provided. In this condi-
tion, the activity of mce3 promoter is sixty times repressed.
Since the mce3R – yrbE3A intergenic region spans 880 bp,
it is likely that Mce3R binds to consensus motifs located
between the divergent genes in both promoter regions.

Although this study provides more insights to the role of
Mce3R in the regulation of the mce operons, the informa-
tion is still limited and further studies are necessary to
detect any other gene regulated by this system. Elucida-
tion of other promoters targeted by Mce3R will lead to the
definition of a consensus mce3R-binding site and the pos-
sibility of define the Mce3R-regulon. Thus, one could
hope to decipher the function of mce3 genes by the iden-
tification of the Mce3R regulon.

Conclusion
The available evidence demonstrates that while Mce3R
represses powerfully the transcription of mce3 operon in
vitro and inside macrophages, it does not affect the tran-
scription of mce1, mce2 and mce4 operons during in vitro
culture of M. tuberculosis. It was also demonstrated that
Mce3R negatively regulates its own expression but the
level of expression is lower than that observed for mce3
operon.

Methods
Bacterial strains and culture media
All cloning steps were performed in Escherichia coli DH5α.
Regulation studies were performed in M. tuberculosis
H37Rv. E. coli was grown in Luria-Bertani (LB) broth or on
LB agar. M. tuberculosis strains were grown in Middlebrook
7H9 medium supplemented with 0.05% Tween 80,
Dubos and Middlebrook 7H11, all supplemented with
albumin 0.5%, dextrose 0.4%), and 0.5% glycerol
(M7H9-AD-G). When necessary, 20 µg kanamycin ml-1

and 50 µg hygromycin ml-1 were added to the media.

General DNA methodology
PCR amplifications from genomic DNA templates were
performed as previously described [13]. Each primer con-
tained base mismatches that introduced a restriction site
suitable for directional cloning (Table 2). Chromosomal
DNA samples were obtained as described vanSoolingen
[24]. Purification of plasmids and DNA fragments were
performed using the GFX Micro Plasmid Prep Kit (GE
Healthcare) and DNA and Gel Band Purification Kit (GE

Healthcare), respectively, according to the manufacturer's
instructions. Plasmid pYUB178-lacZ was created by inser-
tion of the β-galactosidase gene from plasmid pMC1871
(AmershamPharmacia) into HindIII and NheI sites of
pYUB178 mycobacterial integrative vector [25]. M. tuber-
culosis H37Rv and M. tuberculosis ∆mce3R (see below)
were transformed by electroporation, as described by Par-
ish and Stoker [26].

Construction of M. tuberculosis ∆mce3R mutant strain
A genomic region containing mce3R and about 2 kb flank-
ing 5' and 3' regions was obtained by PCR from M. tuber-
culosis H37Rv total DNA by using primers: upMutReg and
lowMutReg. The amplified fragment was cloned in site
NotI of p2NIL plasmid [21] and the mutant allele of
mce3R was generated by inserting a cassette conferring
hygromycin resistance from pUC-Hy7 (AmershamPhar-
macia) into a unique HindIII site internal to mce3R. The
final delivery vector was generated by incorporation of the
PacI cassette from pGOAL 17 into this last p2NIL recom-
binant vector. Mutants were constructed using a two-step
strategy as described previously [21]. Chromosomal DNA
was prepared from the selected clones and digested with
EcoRI and then analyzed by Southern blotting by using the
wild-type gene as probe. The mutant strain resulting from
allelic exchange was designated M. tuberculosis ∆mce3R.

DNA fragment encompassing mce3R and the intergenic
region between mce3R and Rv1964 was PCR amplified
with primers: mce3R-P3up and P3rev and cloned into
TOPO 2.1 vector (Invitrogen). A fragment containing

Table 2: Primer sequences used in this study.

Primer Sequence*

P3rev ggatccggcgcggcgcaccagctggattcga
mce3R-P3up ggatccggacacctcattcacaccgataatg
upMutReg gcggccgcgagcgggaggtgaccaaggc
lowMutReg gcggccgcgaagaaggccgacgcgaagc
upP3mce3Rint tcatgaggacacctcattcacaccgataat
P3mce3Rrevint tcatgaaccatggcgcggcgcaccagctggat
upP3int aagcttttgcgcaccggaatcacaaatc
P3revint aagcttaccatggcgcggcgcaccagctggat
mce3Eup gacaccttcaccgcatacct
mce3Elow ggtggtcttgttgaccgagt
sigA1 ggccagccgcgcacccttgac
sigA2 gtccaggtagtcgcgcaggacc
mce1Dup ggcaagggtaagcaaatcaa
mce1Dlow ggtcaacctgtcggtgaact
mce2Aup gaagaccgagctgactatgg
mce2Alow atgtagcgaggattcacgtc
mce4Aup ggtaggcaaggtcacggata
mce4Alow aatgaattccaccgatttgg
P3anti up aagcttggcgcggcgcaccagctgga
P3anti low aagcttaccatttgcgcaccggaatcaca

* Restriction enzyme site added at the end of each primer is 
underlined.
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mce3R and its promoter was released from this last plas-
mid by digestion with EcoRI and BamHI and cloned into
pSUM41 [27] to produce plasmid pSummce3R. This plas-
mid was used to transform M. tuberculosis ∆mce3R strain
by electroporation. The resulting complemented strain
was referred to as ∆mce3R::mce3R.

RNA preparation
Culture pellets of 50 ml were resuspended in 1 ml of TRI-
zol (Invitrogen). Cells were disrupted using a Fastprep
FP120 bead-beater (Savant) for 20 s at a speed of 6.0 m s-

1 with Lysing Matrix B (Q-Biogene). Then, 200 µl of chlo-
roform (Merck) was added, and the mixture was incu-
bated for 15 min at room temperature. Tubes were
centrifuged at 10,000 × g for 15 min at 4°C, and the super-
natant was extracted again with 100 µl of chloroform and
alcohol precipitated with 600 µl of isopropanol and 60 µl
of 3 M ammonium acetate (pH 5.3) at -70°C overnight.
Pellets were washed with 75% ethanol and resuspended
in 50 µl of diethyl pyrocarbonate-treated water (Sigma-
Aldrich). The RNA preparations were treated with DNase
amplified grade (Invitrogen).

RT-Q-PCR
DNA-free RNA (1 µg) extracted from middle logarithmic-
phase culture of either M. tuberculosis H37Rv or ∆mce3R
was mixed with 50 ng of random primers (Invitrogen) in
20 µl of final volume and reversely transcribed to total
cDNA with SuperScript III reverse Transcriptase (Invitro-
gen) following the manufacturer's instructions. Identical
reactions lacking reverse transcriptase were also per-
formed to confirm the absence of genomic DNA in all
samples.

Q-PCR was performed in the Applied Biosystems 7000
DNA sequence detection system (Perkin-Elmer Corp.), by
using Master Mix QuantiTect SYBR Green (Qiagen), 1 µl
of template cDNA and the pairs of primers listed on Table
1. Each reaction was performed in duplicate. Results were
presented as ratios calculated with the Relative expression
software tool (REST@) application described by Plaffl et
al. [28]. Relative quantification of each target (mce) gene
was performed by using sigA as reference gene and a sub-
sequent test for significance of derived results was per-
formed by using Pair Wise Fixed Reallocation
Randomisation [29]. The value of PCR efficiency for all
transcripts was 2, as calculated following the formula: E =
10[-1/slope].

Construction of β-galactosidase fusions
DNA fragments encompassing the intergenic region
between mce3R and operon mce3, either containing or not
containing the coding sequence of mce3R, were generated
by PCR amplification with the pairs of primers
upP3mce3Rint/P3mce3Rrevint and upP3int/P3revint,

respectively. Both DNA fragments were cloned into the
HindIII or the NcoI sites of p178-lacZ, giving rise to plas-
mids pP3-lacZ and pP3-mce3R-lacZ, respectively. The
intergenic region was also amplified by PCR using primers
P3antiup/P3antilow and the DNA fragment was cloned in
plasmid pYUB178-lacZ to generate pPR3-lacZ. This last
plasmid is the antisense version of pP3-lacZ in which the
promoter of mce3R was fused to the reporter gene. These
plasmids were used to transform M. tuberculosis strains as
indicated.

Measurements of β-galactosidase activity
Determination of β-galactosidase activity in M. tuberculosis
recombinant strains was performed as previously
described [13]. Briefly, β-galactosidase activity was meas-
ured in soluble cell extract prepared from aliquots of in
vitro cultures taken at different time points. Results were
expressed in Miller units [A420 × 1000/reaction time
(min) xA600] [30].

Cultures of the murine macrophage-like cell line J774
were infected with recombinant M. tuberculosis H37Rv
strains (free of clumps) at a m.o.i. of 5. J774-infected cells
were disrupted with 1% Triton ×-100, at 4, 24 and 72 h
post-infection. β-galactosidase measurements were per-
formed on the soluble cell extract by using the Chemilu-
minescent lacZ β-galactosidase detection kit (MGT
Product M08550) and the Luminometer, Veritas 1.4
(Turner Biosystems, Inc.). β-galactosidase activity was
related to the number of bacteria as determined by bacte-
rial counting.
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