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Abstract

Background: Comparative morphological studies and environmental sequencing surveys indicate that marine
benthic environments contain a diverse assortment of microorganisms that are just beginning to be explored and
characterized. The most conspicuous predatory flagellates in these habitats range from about 20—150 um in size
and fall into three major groups of eukaryotes that are very distantly related to one another: dinoflagellates,
euglenids and cercozoans. The Cercozoa is a diverse group of amoeboflagellates that cluster together in
molecular phylogenies inferred mainly from ribosomal gene sequences. These molecular phylogenetic studies
have demonstrated that several enigmatic taxa, previously treated as Eukaryota insertae sedis, fall within the
Cercozoa, and suggest that the actual diversity of this group is largely unknown. Improved knowledge of
cercozoan diversity is expected to help resolve major branches in the tree of eukaryotes and demonstrate
important cellular innovations for understanding eukaryote evolution.

Results: A rare tetraflagellate, Auranticordis quadriverberis n. gen. et sp., was isolated from marine sand samples.
Uncultured cells were in low abundance and were individually prepared for electron microscopy and DNA
sequencing. These flagellates possessed several novel features, such as (1) gliding motility associated with four
bundled recurrent flagella, (2) heart-shaped cells about 35—75 pm in diam., and (3) bright orange coloration caused
by linear arrays of muciferous bodies. Each cell also possessed about 2-30 pale orange bodies (usually 4-5 um in
diam.) that were enveloped by two membranes and sac-like vesicles. The innermost membrane invaginated to
form unstacked thylakoids that extended towards a central pyrenoid containing tailed viral particles. Although to
our knowledge, these bodies have never been described in any other eukaryote, the ultrastructure was most
consistent with photosynthetic endosymbionts of cyanobacterial origin. This combination of morphological
features did not allow us to assign A. quadriverberis to any known eukaryotic supergroup. Thus, we sequenced the
small subunit rDNA sequence from two different isolates and demonstrated that this lineage evolved from within
the Cercozoa.

Conclusion: Our discovery and characterization of A. quadriverberis underscores how poorly we understand the
diversity of cercozoans and, potentially, represents one of the few independent cases of primary endosymbiosis
within the Cercozoa and beyond.
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Background

Marine benthic environments contain a diverse assort-
ment of microorganisms that are still just beginning to be
explored and characterized [1,2]. The challenges associ-
ated with extracting and enumerating benthic microor-
ganisms and the extreme variation of physical and
chemical factors associated with the benthos have limited
our understanding of these ecosystems [2]. Nonetheless,
both comparative morphological studies and environ-
mental sequencing surveys have revealed a great deal of
microeukaryotic diversity within the interstitial spaces of
marine sediments [3-16]. The most conspicuous preda-
tory flagellates in these habitats range from about 20-150
pm in size and fall into three major groups of eukaryotes
that are very distantly related to one another: dinoflagel-
lates, euglenids and cercozoans.

The Cercozoa is a large and diverse group of amoeboflag-
ellates, with tubular mitochondrial cristae, that cluster
together in molecular phylogenies inferred mainly from
ribosomal gene sequences (small and large subunit
rDNA) [4,17-20]. Although a robust morphological
synapomorphy is currently lacking for the group, mem-
bers of the Cercozoa do share novel molecular traits (i.e.
molecular synapomorphies), such as the insertion of one
or two amino acid residues between the monomer tracks
of highly conserved polyubiquitin genes [17]. Nonethe-
less, molecular phylogenetic studies have demonstrated
that several enigmatic taxa, previously treated as Eukary-
ota insertae sedis, fall within the Cercozoa, such as Allan-
tion, Allas, Bodomorpha and Spongomonas [21];
Cryothecomonas [22]; Ebria [23]; Gymnophrys and Lecythium
[24]; Massisteria [25]; Metopion and Metromonas [4]; Prolep-
tomonas [26]; and Protaspis [8]. Moreover, environmental
sequencing surveys have demonstrated several cercozoan
subclades without clear cellular identities, suggesting that
the actual diversity of this group is composed of thou-
sands of uncharacterized lineages [4]. It must also be
emphasized that morphological information from cerco-
zoans, especially at the ultrastructural level, is largely
absent from the literature. Accordingly, we characterized
the ultrastructure and molecular phylogeny of a highly
unusual and rarely encountered tetraflagellate, Auranti-
cordis quadriverberis n. gen. et sp. (Cercozoa), isolated
from sand samples collected in a marine tidal flat. Uncul-
tured cells were individually isolated and prepared for
DNA extraction (performed twice on different days, n = 5
and n = 1), transmission electron microscopy (TEM, n = 2)
and scanning electron microscopy (SEM, n = 25). This
approach enabled us to describe the ultrastructure of
intracellular pigmented bodies within A. quadriverberis
that are most likely photosynthetic endosymbionts
derived from cyanobacterial prey.
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Results

General morphology and behaviour

Auranticordis quadriverberis was able to glide slowly using
four tightly bundled flagella that were oriented posteri-
orly. The cells of A. quadriverberis were also able to change
shape, albeit only slightly, and could be prominently
lobed, heart-shaped or ovoid (Figures 1A-F, H). In gen-
eral, the cells had a narrower anterior apex and an
expanded posterior end and were composed of four major
lobes (L): L1, L2, L3, and L4 (Figure 1A). L1 was smaller
than other three lobes and was separated from L2, to the
right, by a ventral depression (vd) and separated from 14,
to the left, by a ventral groove (gr) that contained the four
recurrent flagella (Figure 1A). Apart from differences in
cell shape and the effects of cell plasticity, there was also
variation in the size of different individuals, ranging from
35-75 um in diam. (n = 65). The cells were conspicuously
orange in color, caused mostly by the presence of linear
arrays of tiny orange muciferous bodies that were distrib-
uted over the entire surface of the cell (Figures 1A-B).
Microscopical observations indicated that these bodies
secrete sticky mucilage when the cells are disturbed, sug-
gesting that the bodies function for adhesion to the sub-
stratum. TEM micrographs showed that the muciferous
bodies were small compartments (780 nm in diam.) posi-
tioned underneath the cell membrane and filled with
amorphous material that was secreted as mucilaginous
strands (Figures 2D, 3B-C). The surface of A. quadriver-
beris was also corrugated and consisted of over 80 longitu-
dinal ridges that spanned from the anterior apex to the
posterior end (Figures 2A-C). The grooves between the
ridges contained numerous tiny pores through which the
mucilage from the muciferous bodies was secreted (Figure
2C). TEM sections through the cell surface also demon-
strated a single row of microtubules positioned beneath
each ridge (Figure 3E). No test or cell wall was present.

The four flagella of A. quadriverberis originated from an
anterior flagellar pocket and nestled tightly within the
ventral groove, making them nearly invisible under the
light microscope (Figures 1B, 1D-E, 1G, 2A-B, 2E, 4F).
Electron microscopy demonstrated that the flagella were
arranged in two pairs and covered with flagellar hairs or
mastigomenes (Figure 2E). Except for very slight differ-
ences in length, all four flagella were morphologically
identical and slightly longer than the cell (Figures 1B, D-
E). The flagella were also homodynamic and associated
with gliding motility along the substratum. Pseudopodia
were not observed.

Main cytoplasmic components

Auranticordis quadriverberis contained a large nucleus (15—
20 pum in diam.) situated in the anterior region of the cell
(Figures 3A, 3D). Although the position of the nucleus in
living specimens cannot be readily seen under the light
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Figure |

Light micrographs (LM) of Auranticordisquadriverberis n. gen. et sp. showing cell color, main cytoplasmic components, and varia-
tion in cell shape. A. Differential interference contrast (DIC) image focused on rows of longitudinally arranged orange mucifer-
ous bodies (arrowhead), the ventral groove (double arrowhead), lobe | (L1), a ventral depression (vd), L2, L3, and L4. B. An
inverted heart-shaped cell with visible flagella (arrow) emerging from the posterior region of the ventral groove. C. A flattened
cell showing larger pale orange bodies (putative primary endosymbionts, arrowheads) distributed in the anterior end of the
cell. D. DIC image showing the position of the ventral groove (double arrowhead) with flagella (arrow) relative to a prominent
LI and L4. E. Phase contrast micrograph demonstrating the distal end of the flagella emerging from the ventral groove. F. DIC
micrograph showing black bodies (asterisk) accumulated at the anterior end of the cell and two pale orange bodies (putative
primary endosymbionts, arrowheads). G. A squashed cell showing the anterior nucleus (N) and flagella (arrow). H. DIC micro-
graph showing a cell with prominent lobes. I. A squashed cell showing variation in the shape and size of the pale orange bodies
(putative primary endosymbionts, arrowheads). (A-l, Bar = 10 um).

Page 3 of 16

(page number not for citation purposes)



BMC Microbiology 2008, 8:123 http://www.biomedcentral.com/1471-2180/8/123

Figure 2

Scanning electron micrographs (SEM) of Auranticordis quadriverberis n. gen. et sp. A. An anterior view of the cell showing the
anterior apex (arrowhead), ventral groove (double arrowhead) and flagella (arrow) (Bar = 10 um). B. A higher magnification
view of the anterior end of the cell (arrowhead) showing the flagella (arrow) within the ventral groove (double arrowhead)
(Bar = 2 pm). C. High magnification view of the ridges showing several tiny pores (arrowheads) in the grooves (Bar = | pm).
D. High magnification view of secreted mucus (arrowheads) (Bar = 0.5 um). E. High magnification view of the ventral groove
showing all four flagella (arrows) bundled together and covered in hairs (Bar = 0.5 um).

microscope, the nucleus is visible in compressed cellsasa  nucleoli (Figures 3A, 3D, 4D-E). The nucleus was pointed
comparatively clear area (Figures 1G, 1I). TEM sections  at the anterior end and was connected to a striated band
demonstrated the nuclear envelope and a few prominent  near the basal bodies and microtubular roots (Figures 3D,
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Figure 3

Transmission electron micrographs (TEM) of Auranticordis quadriverberis n. gen. et sp. A. Low magnification view showing the
main cellular components: black bodies (b), nucleus (N), pale orange bodies (putative primary endosymbionts, PE), a degraded
PE (double arrowhead) surrounded by sac-like vesicles (asterisk), surface ridges (arrows), and the ventral depression (vd) (Bar
= 10 pum). B. Section through the surface showing a row of muciferous bodies (arrowheads) containing (orange) amorphous
material. Each muciferous body is about 500-900 nm in diameter (Bar = 0.5 um). C. High magnification view of muciferous
bodies (arrowheads) and secreted mucus (arrow) (Bar = 0.5 pm). D. Section through the anterior region of the cell showing
black bodies (b), the flagellar pocket (double arrowhead), four flagella (arrows), a nucleolus (n), a pointed nucleus (N), and the
ventral groove (gr) (Bar =5 um). E. High magnification section through the surface ridges (arrow) showing underlying micro-
tubules (arrowhead) and muciferous bodies (double arrowheads) (Bar = 0.5 um). An inset showing a magnified view of a sur-
face ridge (arrow) with a row of microtubules underneath (arrowhead) (Bar = 0.5 pum). F. Transverse section showing all four
flagella within a flagellar pocket (arrowhead) near the nuclear anterior projection (N) (Bar = | um).
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Figure 4

Transmission electron micrographs (TEM) of Auranticordis quadriverberis n. gen. et sp., showing different cytoplasmic compo-
nents. A. High magnification TEM showing a vacuolated cytoplasm (arrowheads) and fibrous material (fs) distributed beneath
the cell periphery (Bar = 0.5 um). B. High magnification view of the black inclusions (arrowheads) (Bar = 2 um). C. An ingested
bacterium found within cytoplasm of A. quadriverberis (Bar = 0.25 um). D. A section through the nucleus (N) showing nucleoli
(arrowheads) and an invaginated area (double arrowhead) (Bar = 2 um). E. High magnification TEM showing the nuclear enve-
lope (arrow), the nucleus (N), and a striated band (double arrowhead) positioned between the nuclear tip and a microtubular
root (arrowhead) (Bar = 0.5 um). F. Tangential section through the flagella (arrowheads) lying within the ventral groove (gr)
(Bar = | um). G. A putative mitochondrion positioned near the cell periphery (Bar = 0.2 um). An inset showing two putative
mitochondria (Bar = 0.5 um). H. TEM showing lipid globules (Ig) near the posterior part of the cell (Bar = | um). I. High mag-
nification view of a Golgi apparatus (Bar = 0.5 um).
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4D-E). Moreover, bundles of (non-microtubular) fibrous
material were also observed within the cytoplasm near the
cell periphery (Figure 4A).

The cells of A. quadriverberis also contained an accumula-
tion of black material near the anterior part of the cell,
lipid globules and Golgi bodies (Figures 1C, 1F, 11, 4H-
I). Although mitochondria with tubular cristae were not
definitively observed, several elongated bodies that were
highly reminiscent of acristate mitochondria were found
near the periphery of the cell (Figures 3A, 4G). The cells
also contained 2-30 pale orange bodies that were variable
in shape and usually about 4-5 pm in diam.; however,
some of these bodies were 14 um long (Figures 1C, 1F, 11,
3A, 5A-G, 6). The pale orange bodies were distributed
throughout the cell, but were most abundant in the ante-
rior region of the cell. Each pale orange body was envel-
oped by two tightly pressed inner membranes and
surrounded by sac-like vesicles (Figures 5A, 5C, 5F). The
innermost membrane invaginated into the lumen of the
body and formed several unstacked thylakoids around the
periphery (Figures 5A-C, 5E). The sac-like vesicles occa-
sionally butted together to form perpendicular partitions
outside of the two inner membranes (Figure 5F). The cen-
tral core of the pale orange bodies was devoid of mem-
branes and contained a central electron dense region
containing tailed viral particles (Figures 5D, 5G).

Molecular phylogenetic position of auranticordis
Phylogenetic analyses of a 69-taxon dataset representing
all major groups of eukaryotes showed A. quadriverberis
branching within the Cercozoa with very strong statistical
support (data not shown). This cercozoan clade, com-
prised of Chlorarachnion reptans, Cryothecomonas aestivalis,
C. longipes, Ebria tripartita, Euglypha rotunda, Heteromita
globosa and A. quadriverberis, was strongly supported in
both maximum likelihood (ML) and Bayesian analyses
(ML boostrap = 100 and Bayesian posterior probabilities
= 1.00; data not shown). A more comprehensive analysis
of 981 homologous positions in 126 cercozoan SSU
rDNA sequences, including several shorter environmental
sequences, placed A. quadriverberis near Pseudopirsonia
mucosa (a parasitic nanoflagellate of diatoms) and two
unidentified cercozoans with 1.00 Bayesian posterior
probabilities (data not shown). Accordingly, we per-
formed phylogenetic analyses of 1,571 positions in 32
cercozoan taxa that excluded the shortest environmental
sequences and included the closest relatives of A. quadriv-
erberis in the 126-taxon alignment.

Figure 7 illustrates the phylogenetic analyses of the 32-
taxon dataset. Like in the analyses of 126 taxa, the two dif-
ferent isolates of A. quadriverberis clustered with two
uncultured eukaryotes and P. mucosa (Figure 7). A subc-
lade consisting of A. quadriverberis, P. mucosa and environ-
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mental sequence AB252755 was recovered with a
posterior probability of 1.00 and 73% PhyML bootstrap
value. A more inclusive clade consisting of A. quadriver-
beris, P. mucosa and environmental sequences AB252755
and AB275058 received high statistical support (posterior
probability of 1.00 and PhyML bootstrap value of 97%)
(Figure 7). Members of this clade also shared a derived
molecular character within the context of 160 cercozoan
sequences covering representatives from all known cerco-
zoan subclades: namely, the substitution of cytosine (C)
for thymine (T) at position 324 (with reference to the
complete SSU rDNA sequence of Cercomonas sp.; Gen-
Bank accession no. AF411266, culture ATCC PRA-21) in
Helix 12, based on the predicted secondary structure of
the SSU rRNA gene in Palmaria palmata [27].

Discussion

Comparative morphology

The distinctly orange color of A. quadriverberis sets these
flagellates apart from other organisms living in the same
benthic environment. To our knowledge, similar organ-
isms have not been recorded previously [3,9-12,28]; how-
ever, the orange color of A. quadriverberis is most
reminiscent of the anoxic euglenozoan Calkinsia aureus
[29].

The presence of four recurrent flagella in A. quadriverberis
is another distinctive feature. Most cercozoans possess
two flagella, although Cholamonas cyrtodiopsidis also has
four flagella that are inserted subapically [30,31]. The flag-
ella of C. cyrtodiopsidis form two symmetrical pairs com-
prising one long and one stubby flagellum [30,31]. This
flagellar organization differs from A. quadriverberis, which
has two pairs of tightly bundled flagella originating from
the same flagellar reservoir. Cholamonas cyrtodiopsidis was
assigned to the Cercomonadida due to possession of a
microbody and kinetid architecture that is similar to some
species of Cercomonas [30,31]. Although both A. quadriv-
erberis and C. cyrtodiopsidis possess four flagella, this char-
acter state is unlikely to be synapomorphic for these
species: A. quadriverberis inhabits marine sand, whereas C.
cyrtodiopsidis inhabits the intestines of diopsid flies [30].
Moreover, the distinctive features present in one species
tend not to be shared by the other (e.g. the paranuclear
bodies found in C. ¢yrtodiopsidis are not present in A. quad-
riverberis). Because the phylogenetic position of C. cyrtodi-
opsidis has not yet been evaluated with molecular
phylogenetic data, our ability to infer the evolution of the
tetraflagellated state within the Cercozoa is limited.

The flagella of A. quadriverberis are covered by hairs, and
although this stands in contrast to the smooth flagella
described in most other cercozoans, such as Cercomonas
and Proleptomonas [31], the hairs could be homologous to
those described in the predatory soil-dwelling flagellate
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Figure 5

Transmission electron micrographs (TEM) showing the ultrastructure of putative primary endosymbionts in Auranticordis quad-
riverberis n. gen. et sp. A. Low magnification TEM showing four putative endosymbionts, each surrounded by sac-like vesicles
(sc) defined by an outer membrane (Bar = 2 um). B. High magnification TEM showing two enveloping inner membranes
(arrowheads) and thylakoids (arrows) that are continuous with the innermost enveloping membrane (Bar = 0.2 um). C. TEM
showing the thylakoids, the sac-like vesicle (sc), and a cleavage furrow indicative of division (arrowheads) (Bar = 0.5 um). D.
High magnification TEM showing the central core of an endosymbiont containing viral particles (arrowheads) (Bar = 0.5 um). E.
High magnification TEM showing a pronounced invagination of the innermost enveloping membrane (arrowhead) (Bar = 0.5
pm). F. High magnification TEM showing the membrane (arrowheads) that defines the sac-like vesicle (sc) and the two inner-
most enveloping membranes (double arrowheads) (Bar = 0.2 um). G. TEM showing viral particles (arrowhead) consisting of a

polygonal head and tail, and positioned within the core of an endosymbiont (Bar = 0.5 um). An inset showing a complete tailed
viral particle (Bar = 0.2 um).
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Figure 6

A schematic line drawing of Auranticordis quadriverberis n. gen.
et sp. The line drawing was constructed from light micro-
graphs and showing a lobed cell, rows of tiny orange mucifer-
ous bodies (small circles), four flagella within ventral groove,
a ventral depression (lightly stippled area to the left of the
flagella), and four putative primary endosymbionts (large
shaded circles).

Aurigamonas solis [16,32]. The four flagella of A. quadriver-
beris were also recurrent and homodynamic during glid-
ing motility, which is unlike the heterodynamic flagella of
most other interstitial cercozoans (e.g. Cercomonas, Heter-
omita, Katabia, Proleptomonas, and Protaspis) [8,31]. The
gliding cells of A. quadriverberis were plastic and capable of
slow changes in shape that was somewhat similar to that
found in euglenids [33]. This plasticity is probably gener-
ated by the row of microtubules locating underneath the
cell membrane (Figure 3E).

The nucleus of A. quadriverberis is difficult to see in living
cells, which is also unlike most other cercozoans (e.g.
Aurigamonas, Cercomonas, Ebria, Euglypha, Heteromita,
Protaspis, =~ Thaumatomastix, =~ and  Thaumatomonas)
[8,10,16,23,34]. The bloated shape of the cell and the
dense distribution of minute orange muciferous bodies
that subtend the entire surface of the cell obscured the

http://www.biomedcentral.com/1471-2180/8/123

nucleus. The ultrastructure of the nucleus is similar to that
of other cercozoans (e.g. contained several nucleoli)
[8,16,35-37]; however, A. quadriverberis lacked perma-
nently condensed chromosomes like those found in Cryo-
thecomonas, Ebria, and Protaspis [8,16,23,35,37,38]. The
shape of the nucleus in A. quadriverberis was indented at
one side, a feature also noticed in the nucleus of Protaspis
grandis [8], and had a prominent anterior projection ori-
ented towards the flagellar pocket. An anterior projection
was also observed in the nucleus of Cercomonas; in both
genera, the anterior projection was associated with a
broad striated band and the ventral (posterior) roots of
the anterior and posterior flagella (VP) [31,36]. However,
the characteristic microtubular cone present in Cer-
comonas [31,36] was not observed in A. quadriverberis.

The cytoplasm of A. quadriverberis contained lipid glob-
ules, Golgi bodies and muciferous bodies. The muciferous
bodies were compartments organized in linear arrays and
filled with an amorphous matrix that appeared bright
orange under the light microscope. Extrusomes like these
have also been reported in C. armigera as a minute periph-
eral concavities filled with a homogeneous matrix [37].
Other types of extrusomes that have been found in differ-
ent cercozoan species, such as trichocysts, microtoxicysts,
kinetocysts and osmiophilic bodies, [8,31,36], were
absent in A. quadriverberis. The lipid globules varied con-
siderably in size and were most abundant in the posterior
region of A. quadriverberis. These globules were reminis-
cent of those described in Protaspis [8]. Although the
mode of feeding in A. quadriverberis was not clearly
observed, evidence of ingested bacteria was observed
within its cytoplasm (Figure 4C).

The cytoplasm of A. quadriverberis was highly vacuolated
and looked similar to the cytoplasm described in Cryothe-
comonas armigera and Protaspis grandis [8,37]. The anterior
part of the cell, however, contained black bodies similar
to those that have been observed in other distantly related
eukaryotes, such as some semi-anoxic euglenids and cili-
ates. Moreover, distinct mitochondria with tubular cristae,
which are characteristic of other cercozoans, were not
found in A. quadriverberis. Putative mitochondria were,
however, observed around the cell periphery (Figure 4G),
and the lack of cristae in these organelles reflects either
degenerate mitochondria associated with a low-oxygen
environment or fixation artifact [39]. The size of the puta-
tive mitochondria ranged between 135-185 nm long,
which is smaller than the mitochondria described in most
cercozoans. For example, the mitochondria of Auriga-
monas solis are about 630 nm [16], the mitochondria of
Cercomonas are about 485 nm [36], the mitochondria of
Cryothecomonas longipes are about 280 nm [40], and the
mitochondria of P. grandis are about 500 nm [8].
Although the implementation of fluorescent stains, like
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Mitotracker, could help establish the identity of these
structures [41], this approach is limited by the scarcity of
these organisms in natural environments and the unpre-
dictability of finding them in our samples.

Putative primary endosymbionts

Several light orange bodies about 4-14 pm in diam. were
distributed within the cell and were especially abundant
towards the anterior end of the cell. Although the
ultrastructure of these pigmented bodies is novel, the
presence of thylakoid-like membranes and a central space
containing a densely stained inclusion is consistent with
three possible identities that differ by the degree of inte-
gration with the host cell: (1) the bodies are ingested
(photosynthetic) prey cells that are in the earliest stages of
being degraded, (2) the bodies are transient photosyn-
thetic endosymbionts that are continuously replenished
by kleptoplasty, or (3) the bodies are permanently inte-
grated photosynthetic endosymbionts (i.e. plastids). The
plausibility of each of these hypotheses is addressed
below.

The orange color of these bodies is reminiscent of the
plastids in some microalgae, such as dinoflagellates and
diatoms that occupy the same habitats as A. quadriverberis.
However, neither dinoflagellate theca nor diatom frus-
tules were found associated with these bodies in any TEM
sections, and the ultrastructure of the bodies was very dif-
ferent from the known ultrastructural diversity in the plas-
tids of diatoms and dinoflagellates. Some cyanobacteria
are known to have pale orange coloration that is similar
to the orange bodies within A. quadriverberis [42]. These
orange bodies were surrounded by two tightly com-
pressed inner membranes and sac-like vesicles. Whereas
typical food bodies show degrees of being digested by cel-
lular enzymes, nearly all of the pigmented bodies
observed were completely intact in all of the cells we
observed (n = 70), suggesting that they are constant fix-
tures of the host cell cytoplasm.

Primary endosymbiosis, involving a photosynthetic
prokaryote within a eukaryotic cell, results in three sur-
rounding membranes: two cyanobacterial inner mem-
branes and a third, outer phagosomal membrane. Green
algae/land plants, red algae, and glaucophytes possess pri-
mary plastids [43-45]. Two membranes surround the plas-
tids of green algae and red algae, and the third outer
phagosomal membrane is inferred to have been lost [43-
46]. Secondary endosymbiosis occurs through the engulf-
ment, integration and maintenance of either a green or
red alga by a predatory eukaryote. This process produced
the plastids of cryptomonads, haptophytes, strameno-
piles, dinoflagellates, apicomplexans, and euglenids [43-
45]. Two different lineages of cercozoans have independ-
ently acquired plastids through endosymbiosis: (1) chlo-
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rarachniophytes have secondary plastids derived from
green algae [45,47] and (2) Paulinella chromatophora has
primary plastids derived from cyanobacterial prey [48-
50].

Like in Paulinella and the cyanelles of glaucophytes, the
ultrastructure of the pigmented bodies within A. quadriv-
erberis is most consistent with the ultrastructure of free-liv-
ing cyanobacteria, suggesting an independent primary
endosymbiotic origin [44,48-52]. For instance, TEM sec-
tions through the pigmented bodies demonstrated a
mode of division that is similar to division described in
the cyanelles of Cyanophora paradoxa [53] (Figure 5C).
Moreover, the thylakoids in the endosymbionts of P. chro-
matophora, the cyanelles of glaucophytes, and coccoid
photosynthetic cyanobacteria are unstacked and arranged
concentrically around the periphery of the cell [48,54,55].
A similar arrangement was observed in the pigmented
bodies of A. quadriverberis (Figure 5A-C), although the
majority of the thylakoids projected inward towards the
core of the body. The central area within the pigmented
bodies of A. quadriverberis resembled the pyrenoids in the
cyanelles of Glaucocystis nostochinearum [55].

The thylakoid-free core of the pigmented bodies also con-
tained polygonal viral particles. TEM sections through
these particles demonstrated complete tailed phages sim-
ilar to those known to infect cyanobacteria [56-58] (Fig-
ure 5G). Viral particles similar to those described in the
pigmented bodies of A. quadriverberis have also been
described in the same region in the plastids of other
eukaryotes, such as the "polyhedral bodies" in the pri-
mary endosymbionts of P. chromatophora [48], the
cyanelles of the glaucophyte Gloeochaete wittrockiana [55],
and the free-living photosynthetic cyanobacterium Nostoc
punctiforme [54]. Two other important characters that have
been used to infer a cyanobacterial origin for primary
plastids are: (1) the presence of phycobilisomes and (2)
the presence of a peptidoglycan wall [48,49,51]. However,
as previously mentioned, neither phycobilisomes nor a
peptidoglycan layer was present in the orange bodies in A.
quadriverberis.

Conclusion

Our characterization of A. quadriverberis n. gen. et sp. dem-
onstrates several novel features within the Cercozoa, such
as four homodynamic flagella, densely distributed linear
rows of orange muciferous bodies, and putative endosym-
bionts with an enigmatic overall structure. The discovery
of this highly distinctive lineage underscores how poorly
we understand the actual cellular diversity of cercozoans
and, potentially, represents one of the few independent
cases of primary endosymbiosis within the Cercozoa and
beyond. Although endosymbioses are known to have
occurred many different times independently, the trans-
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formation of endosymbionts into organelles is considered
to be much less common [59]. In order to more confi-
dently infer the origin of the pigmented bodies in A. quad-
riverberis, experiments involving autofluorescence and the
amplification of plastid molecular markers (e.g. 16S
rDNA and psb genes) could be performed [50]. These stud-
ies will be hampered mainly by the scarcity and unpredict-
ability of finding these cells in natural samples.
Nonetheless, additional studies on A. quadriverberis and
its putative endosymbionts will enable us to better under-
stand the extent of endosymbiosis across the tree of
eukaryotes and the convergent processes associated with
the establishment and integration of endosymbionts
within eukaryotic cells.

Taxonomic descriptions
Taxonomic treatment for Auranticordis quadriverberis
Phylum Cercozoa [60]

Genus Auranticordis gen. nov. Chantangsi, Esson and
Leander 2008

Diagnosis

Uninucleate tetraflagellates; four recurrent flagella
inserted subapically and bundled together within a ven-
tral longitudinal groove; all flagella about one cell length;
cell shapes are prominently lobed, ovoid or heart-shaped;
nucleus at anterior end of cell, with nucleoli; no cell wall
or test; minute orange muciferous bodies distributed in
linear arrays over the entire cell; cytoplasm with pale
orange pigmented bodies, usually concentrated at the
anterior end; corrugated cell surface; black inclusions usu-
ally present at anterior part of the cell; locomotion by
slow gliding; cell deformations possible; marine habitat.

Type species
Auranticordis quadriverberis.

Etymology

Latin aurantium, n. orange; L. cordis, n. heart. The generic
name reflects two characteristic features of this taxon:
orange cell coloration and inverted heart-shaped cells.

Species Auranticordis quadriverberis spec. nov.
Chantangsi, Esson and Leander 2008

Description

Cell shape ovoid, prominently lobed or inverted heart-
shaped; cell size 35-75 pm long, 25-70 pm wide; four
homodynamic flagella, inserted subapically and bundled
within a ventral longitudinal groove; anterior nucleus
with nucleoli; bright orange coloration caused by linear
rows of minute orange muciferous bodies; corrugated cell
surface with about 80 longitudinal ridges; no cell wall or
test; cytoplasm with 2-30 pale orange pigmented bodies;
black inclusions usually present at anterior part of the cell;
locomotion by slow gliding. Small subunit rRNA gene

http://www.biomedcentral.com/1471-2180/8/123

sequences [GenBank:EU484393 and Gen-
Bank:EU484394].
Type locality

Tidal sand-flat at Spanish Banks, Vancouver, British
Columbia, Canada. The specimen was found during
March and May, 2007.

Hapantotype

Both resin-embedded cells used for TEM and cells on gold
sputter-coated SEM stubs have been deposited in the
Beaty Biodiversity Research Centre (Marine Invertebrate
Collection) at the University of British Columbia, Van-
couver, Canada.

Iconotype
Figures 1B, 1F, 1H and 6.

Type locality
Spanish Banks, Vancouver, BC, Canada (39°28'N, 74°15'
W).

Habitat
Marine sand.

Etymology

The etymology for the specific epithet, Latin quattuor, four;
L. verberis, n. whip. The specific epithet reflects the pres-
ence of four flagella.

Methods

Sampling and light microscopy (LM)

Sand samples were collected from Spanish Banks, Van-
couver, BC, Canada in March 2007. Organisms were
extracted from the sand samples through a 48 um mesh
using a melted seawater-ice method described by Uhlig
[61]. Briefly, 2-3 spoons of sand samples were placed into
an extraction column wrapped with a 48 um mesh. Two
to three seawater ice cubes were then put on top of the
sand samples and left to melt over several hours. The
organisms of interest were separated through the mesh
and concentrated in a Petri dish that was filled with sea-
water and placed underneath the extraction column. The
Petri dish containing the organisms was then screened
using a Leica DMIL inverted microscope. Cells were indi-
vidually isolated and placed on a slide for light micros-
copy using phase contrast and differential interference
contrast (DIC) microscopy with a Zeiss Axioplan 2 imag-
ing microscope connected to a Leica DC500 color digital
camera.

Scanning electron microscopy (SEM)

Twenty-five cells of Auranticordis quadriverberis were indi-
vidually isolated and placed into a small container cov-
ered on one side with a 10-um polycarbonate membrane
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filter (Corning Separations Div., Acton, MA, USA). The
samples were pre-fixed in the container with OsO, vapor
for 30 min at room temperature and subsequently post-
fixed for 30 min with a mixture of 8% glutaraldehyde and
4% 0Os0,, giving a final concentration of 2.5% glutaralde-
hyde and 1% OsO,. The organisms were then washed
three times in filtered seawater to remove the fixative and
dehydrated through a graded series of ethanol. Dehy-
drated samples were critical point dried with CO, using a
Tousimis Samdri 795 CPD (Rockville, MD, USA). Dried
filters containing the cells were mounted on aluminum
stubs and then sputter coated with gold (5 nm thickness)
using a Cressington high resolution sputter coater (Cress-
ington Scientific Instruments Ltd, Watford, UK). The
coated cells were viewed under a Hitachi S4700 scanning
electron microscope.

Transmission electron microscopy (TEM)

Two individual cells of Auranticordis quadriverberis were
prepared separately. Each cell was pre-fixed with 2% (v/v)
glutaraldehyde (in unbuffered seawater) at room temper-
ature for 1 h. Cells were then washed three times in fil-
tered seawater and post-fixed with 1% (v/v) OsO, (in
unbuffered seawater) for another 1 h at room tempera-
ture. Fixed cells were then washed three times in filtered
seawater and were dehydrated through a graded series of
ethanol. Infiltration was performed with acetone-resin
mixtures (acetone, 2:1, 1:1, 1:2, Epon 812 resin) and indi-
vidually flat embedded in Epon 812 resin. The resin con-
taining the cell(s) was polymerized at 65°C for one day
and sectioned with a diamond knife on a Leica EM-UC6
ultramicrotome. The sections were collected on copper,
formvar-coated slot grids and stained with uranyl acid and
lead citrate (Sato's lead method) [62,63]. TEM micro-
graphs were taken with a Hitachi H7600 transmission
electron microscope.

DNA extraction and PCR amplification

Five cells were individually isolated and washed three
times in autoclaved seawater. DNA was extracted using
the protocol provided in the Total Nucleic Acid Purifica-
tion kit by EPICENTRE (Madison, WI, USA). Polymerase
chain reaction (PCR) was performed in a thermal cycler
using puReTaq Ready-To-Go PCR beads (GE Healthcare
Bio-Sciences, Inc., Québec, Canada). The forward (PF1: 5'-
GCGCTACCTGGITGATCCTGCC-3") and reverse (R4: 5'-
GATCCTTCTGCAGGTTCACCTAC-3') primers for ampli-
fying SSU rDNA were added into the tube with the final
reaction volume of 25 pl. The thermal cycler was pro-
grammed as follows: hold at 94°C for 4 min; 5 cycles of
denaturation at 94°C for 30 sec, annealing at 45°C for 1
min, and extension at 72°C for 105 sec; 35 cycles of dena-
turation at 94 °C for 30 sec, annealing at 55 °C for 1 min,
and extension at 72 °C for 105 sec; and hold at 72 °C for
10 min. PCR products corresponding to the expected size
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were separated by agarose gel electrophoresis, cleaned
using the UltraClean™ 15 DNA Purification Kit (MO BIO
Laboratories, Inc.,, CA, USA). The cleaned DNA was
cloned into pCR2.1 vector using the TOPO TA Cloning®
kits (Invitrogen Corporation, CA, USA). Plasmids with the
correct insert size were sequenced using BigDye 3.1 and
the vector forward and reverse primers, and an internal
primer (525F: 5'-AAGTCTGGTGCCAGCAGCC-3') with
an Applied Biosystems 3730S 48-capillary sequencer.

The above processes was repeated on one additional cell
of Auranticordis quadriverberis that were sampled and iso-
lated at different times, in order to assure authenticity of
the obtained sequences. Complete sequences of the SSU
rDNA from the two different isolates were deposited into
GenBank [GenBank:EU484393 and Gen-
Bank:EU484394].

Sequence alignment and phylogenetic analyses

Sequences were assembled and edited using Sequencher™
(version 4.5, Gene Codes Corporation, Ann Arbor, Mich-
igan, USA). Acquired sequences were initially identified
by BLAST analysis. New SSU rDNA sequences derived
from two different isolated of Auranticordis quadriverberis
were aligned with ClustalW [64] using the MEGA (Molec-
ular Evolutionary Genetics Analysis) program version 4
[65] and further refined by eye using MacClade [66].
Three multiple sequence alignments were created: (1) a
69-taxon global alignment comprising sequences of repre-
sentatives from all major eukaryotic groups (1,134 unam-
biguous sites: data not shown); (2) a 126-taxon cercozoan
alignment consisting of cercozoan representatives and
extensive environmental sequences (981 unambiguous
sites: data not shown); and (3) a 32-taxon cercozoan
alignment excluding the shorter and unrelated environ-
mental sequences (1,526 unambiguous sites). All gaps
were excluded from the alignments prior to phylogenetic
analyses. The alignment files are available upon request.

MrBayes version 3.1.2 was used to perform Bayesian anal-
yses on all three datasets [67,68]. Two parallel runs were
carried out on 2,000,000 generations with the four
Markov Chain Monte Carlo (MCMC) chains - 1 cold
chain and 3 heated chains - and sampling every 50th gen-
eration (tree). The first 2,000 trees in each run were dis-
carded as burn-in. Branch lengths of the trees were saved.

Maximum likelihood analyses were performed on all
three datasets using PhyML [69]. Input trees for each data-
set were generated by BION]J with optimisation of topol-
ogy, branch lengths, and rate parameters selected. The
General Time Reversible (GTR) model of nucleotide sub-
stitution was chosen. The proportion of variable rates and
gamma distribution parameter were estimated from the
original dataset. Eight categories of substitution rates were
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selected. PhyML bootstrap trees with 100 bootstrap data-
sets were constructed using the same parameters as the
individual ML trees.

Sequence availability

The SSU rDNA nucleotide sequences included in 32-taxon
analyses for this paper are available from the GenBank
database under the following accession numbers: Allas
diplophysa [GenBank:AF411262], Auranticordis quadriver-
beris [GenBank:EU484393 and GenBank:EU484394],
Bodomorpha minima [GenBank:AF411276], Bodomorpha
sp. [GenBank:DQ211596], Cercomonas plasmodialis [Gen-

Bank:AF411268],  Cryothecomonas  aestivalis  [Gen-
Bank:AF290539], Dimorpha-like sp.
[GenBank:AF411283], Ebria tripartita [Gen-
Bank:DQ303922], Euglypha rotunda [Gen-
Bank:AJ418784], Exuviaella pusilla
[GenBank:DQ388459], Gymnophrys  cometa [Gen-

Bank:AF411284], Heteromita globosa [GenBank:U42447],
Lecythium sp. [GenBank:AI514867], Massisteria marina

[GenBank:AF174372], Metopion-like sp. [Gen-
Bank:AF411278],  Paulinella ~ chromatophora  [Gen-
Bank:X81811], Proleptomonas faecicola
[GenBank:AF411275], Protaspis grandis [Gen-
Bank:DQ303924], Pseudodifflugia cf. gracilis [Gen-
Bank:AJ418794], Pseudopirsonia mucosa
[GenBank:A]561116],  Rigidomastix-like  sp.  [Gen-
Bank:AF411279], Spongomonas minima [Gen-
Bank:AF411280], Thaumatomastix sp.

[GenBank:AF411261], thaumatomonadida environmen-
tal sample [GenBank:EF023494], Thaumatomonas colo-
niensis [GenBank:DQ211591], Thaumatomonas seravini

[GenBank:AF411259], wuncultured eukaryote [Gen-
Bank:AB252750], uncultured eukaryote [Gen-
Bank:AB252755], uncultured eukaryote
[GenBank:AB252756], uncultured eukaryote [Gen-

Bank:AB275058], and uncultured marine eukaryote [Gen-
Bank:DQ369017].
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