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Abstract
Background: Enterobacter sakazakii is an emergent pathogen associated with ingestion of infant
formula and accurate identification is important in both industrial and clinical settings. Bacterial
species can be difficult to accurately characterise from complex biochemical datasets and computer
algorithms can potentially simplify the process.

Results: Artificial Neural Networks were applied to biochemical and 16S rDNA data derived from
282 strains of Enterobacteriaceae, including 189 E. sakazakii isolates, in order to identify key
characteristics which could improve the identification of E. sakazakii. The models developed
resulted in a predictive performance for blind (validation) data of 99.3 % correct discrimination
between E. sakazakii and closely related species for both phenotypic and genotypic data. Three
main regions of the partial rDNA sequence were found to be key in discriminating the species.
Comparison between E. sakazakii and other strains also constitutively positive for expression of
the enzyme α-glucosidase resulted in a predictive performance of 98.7 % for 16S rDNA sequence
data and 100% for phenotypic data.

Conclusion: The computationally based methods developed here show a remarkable ability in
reducing data dimensionality and complexity, in order to eliminate noise from the system in order
to facilitate the speed and reliability of a potential strain identification system. Furthermore, the
approaches described are also able to provide valuable information regarding the population
structure and distribution of individual species thus providing the foundations for novel assays and
diagnostic tests for rapid identification of pathogens.

Background
Enterobacter sakazakii is an emergent pathogen associated

with ingestion of infant formula milk that can lead to neo-
natal meningitis, necrotising enterocolitis and sepsis [1-
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5]. The International Commission for Microbiological
Specifications for Foods [6] has ranked E. sakazakii as
'Severe hazard for restricted populations, life threatening
or substantial chronic sequelae or long duration'. There-
fore as there is no accepted gold standard methodology,
the correct definition and identification of E. sakazakii is
important for powdered infant formula manufacturers, as
well as regulators, clinicians and epidemiologists.

In 1980, Farmer and co-workers [7] defined the species
and described fifteen biogroups according to biochemical
profiles. A defining characteristic has been activity of the
α-glucosidase enzyme. Consequently selective, differen-
tial media incorporating chromogenic or fluorogenic α-
glucosides such as the indolyl substrate 5-bromo-4-
chloro-3-indolyl-α, D-glucopyranoside have been devel-
oped [8,9]. It has been reported that 100% of E. sakazakii
(n = 129) were positive for α-glucosidase in comparison
to 0% of other Enterobacter species (n = 97) [10]; however
a small number of other Enterobacteriaceae test positive for
this enzyme.

Recently 16S rDNA sequencing has revealed that commer-
cial biochemical test kits identified more than one species
as 'E. sakazakii' [11], and that there are at least four genet-
ically and biochemically distinct subgroups of E. sakazakii.
In this study we applied Artificial Neural Networks
(ANNs) [12-14] to biochemical and 16S rDNA data in
order to identify key phenotypic characteristics and nucle-
otide sequences which could improve the identification of
E. sakazakii in respect to, a) other Enterobacteriaceae, and
b) non-E. sakazakii α-glucosidase positive Enterobacte-
riaceae.

ANNs are adaptive, non linear forms of Artificial Intelli-
gence (AI) inspired by the way the human brain learns
and processes information in order to solve specific prob-
lems, such as pattern recognition and classification prob-
lems. The multi-layer perceptron (MLP) ANN is a form of
feed-forward ANN architecture which contains several lay-
ers, with each node in one layer being connected to every
node in the next by a series of weighted links. When used
with the back-propagation algorithm, this type of ANN
learns in a fashion analogous to the way learning in the
human brain is carried out, that is, by example. In
humans, learning involves minor adjustments being
made to the synaptic connections between neurons, in
ANNs, learning is achieved by updating the weights that
exist between the processing elements that constitute the
network topology.

ANNs were applied to biochemical and 16S rDNA data
derived from 282 strains of Enterobacteriaceae, including
189 E. sakazakii isolates, in order to identify key character-
istics which could improve the identification of E. sakaza-

kii. Results show that ANNs have the potential to identify
key features from the data, both for biochemical tests and
sequence data. These key features may then be used to
form the basis of novel rapid identification systems,
which have the ability to classify samples by strain and
eliminate the risk of false positive and negative results.

Results
Food, clinical and environmental isolates of E. sakazakii
were shown by 16S rDNA analysis to form four clusters. A
summary of the main cluster groups is shown in Figure 1.
The clusters that were positive for constitutive X-α-gluco-
side metabolism were the four Enterobacter sakazakii
groups, Buttiauxella noakiae, and two clusters of Enterobac-
teriaceae (groups 5 and 6 in Figure 1) that could not be
matched, either by genomic or biochemical profile, to any
currently named species.

Model development and classification analysis
A MLP ANN was used together with the back-propagation
algorithm. Inputs to the network represented biochemical
test results or sequence ID; two hidden nodes were used in
the hidden layer for mathematical feature detection and a
single output node was used to represent species class,
with a class assignment of 1 representing E. sakazakii
strains, and 2 representing all other strains. Models were
developed utilising a random sample cross validation
approach where 100 random training/test/validation sub-
models were run and evaluated. This repeated random
sampling guarantees that all samples are treated as blind
data a number of times, to ensure model generality and to
enable confidence intervals to be calculated for each sam-
ple. For each of the models a full analysis was conducted
including sensitivity analysis to determine the importance
ratio of each input. This process removed all of the inputs
singularly from the model. The error of predictions was
then measured for each of the inputs removed. The sensi-
tivity ratio was then calculated based on the performance
with and without the given input. The hypothesis here is
that if a given input is important its removal will have
strong negative effect on predictive performance. There-
fore a sensitivity ratio greater than one indicates an input
whose removal is detrimental for the model. Additionally,
the analysis of predictive performance was performed to
evaluate model accuracy, sensitivity and specificity, and
assessment of the raw ANN predictions was conducted for
the positioning of individuals within the population.

Phenotypic data
Using the phenotypic data, the models developed resulted
in a predictive performance for blind (validation) data of
99.3 % (sensitivity of 100 % and specificity of 97.6 %)
correct discrimination between E. sakazakii and closely
related species. The population distribution was also
examined by plotting the individual predictions from the
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ANN models (Figure 2). A model prediction of one indi-
cates a sample is E. sakazakii whilst a two is indicative of
another species, so as this value increases from one to two,
the more characteristic a sample is of non-E. sakazakii ori-
gin. This distribution shows the variation that is present
not only between the same strains, but also across species,
which is why correct identification of pathogens can often
be extremely difficult, with strains having the potential for
frequent mutation and change.

16S rDNA sequence data
The analysis was also repeated using 16S rDNA sequence
data to identify any areas of the sequence that could
potentially be used to differentiate between the different
species. The models developed produced predictive per-
formances for blind (validation) data to an accuracy of
once again, 99.3 % (with sensitivity and specificity values

of 99.5 and 98.9 % respectively) of samples correctly iden-
tified as E. sakazakii or other species. There were three
main regions of the sequence which were key in discrimi-
nating between the species. These regions all occur
amongst regions that vary structurally among domains
(see secondary structure Figure 3). Table 1 shows the 20
nucleotides with greatest relative importance and it is evi-
dent that they all appear to be derived from these focal
positions in the sequence.

Classification of α-glucosidase positive strains
Furthermore, the study was expanded in order to elucidate
whether the ANNs could be used to differentiate between
E. sakazakii and a number of other Enterobacteriaceae
which test positive for constitutive metabolism of X-α-glu-
coside. The same approach was used as above, with both
phenotypic tests and 16S rDNA sequencing used as inputs

Summary partial 16S rDNA sequence Neighbour Joining tree of E. sakazakii and related organismsFigure 1
Summary partial 16S rDNA sequence Neighbour Joining tree of E. sakazakii and related organisms. Bootstraps 
were derived from 1000 replicates and the Jukes-Cantor correction was applied.
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in the ANN models. Once again analysis using the ANN
based approach proved to be extremely successful. Using
the 16S rDNA sequence data as inputs, the predictive per-
formance of the ANN models was 98.7 % (92.9 % sensi-
tivity, and 100 % specificity). This improved further still
when the biochemical test data results were used as inputs
into the model. Here, 100 % of the strains were correctly
predicted into their respective classes, further highlighting
the capabilities of ANN modelling in bacterial identifica-
tion, which could potentially reduce the risk of false pos-
itive identification. The most relevant biochemical tests
are summarised in Table 2, showing percent positive
strains for E. sakazakii as well as other α-glucosidase posi-
tive and negative Enterobacteriaceae.

Discussion
Models have been developed to identify (i) key biochem-
ical tests and (ii) important areas of the DNA sequence
which can be used in the accurate discrimination of E.
sakazakii from other closely related species. Furthermore,
the study was expanded to differentiate between E. sakaza-
kii strains and other α-glucosidase positive Enterobacte-

riaceae. To date methods for the isolation and
identification of E. sakazakii have used the α-glucosidase
reaction and production of yellow pigment as presump-
tive differentiating characteristics. However these meth-
ods can result in presumptive false positives due to groups
of as yet undefined non-E. sakazakii Enterobacteriaceae
which are also positive for both of these characteristics.
Use of yellow pigment as a defining characteristic can also
result in false negatives due to the occurrence of non-pig-
mented E. sakazakii and the occasional transient nature of
this trait. While there is no single test that can be used to
differentiate E. sakazakii from other species we identified
biochemical profiles that may help to improve the likeli-
hood of correct species identification.

Deriving a population distribution (Figure 2) from the
analysis of the influence of biochemical tests in sample
classification showed samples to appear in distinct clus-
ters. This supports the interpretation of the partial 16S
rDNA clustering (Figure 1). The ANN model incorrectly
identified two of the non-E. sakazakii strains as being E.
sakazakii. The identities of these strains are highlighted in

Population distribution of samples from the biochemical test dataFigure 2
Population distribution of samples from the biochemical test data. Strains coloured blue represent E. sakazakii sam-
ples, whilst those in red represent non-E. sakazakii. The line at a predicted value of 1.5 represents the threshold for class pre-
diction. Error bars indicate 95 % confidence intervals, and labelled samples highlight those which were either misclassified or 
close to being so.
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Secondary structure: small subunit ribosomal RNA of E. sakazakii NCTC 11467Figure 3
Secondary structure: small subunit ribosomal RNA of E. sakazakii NCTC 11467. Nucleotides in green and blue rep-
resent primer sequence targets. Pink circles denote regions of importance as determined by Artificial Neural Networks. 
Nucleotide numbering follows the Reference Numbering System used for E. coli J01695 [15]. Every 10th nucleotide is marked 
with a red tick mark and every 50th nucleotide is numbered. (Structure courtesy of Doug Smith, Accugenix, DE, USA).
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Figure 2, and these samples may provide a basis for fur-
ther studies because they are being incorrectly classified as
a result of them displaying characteristics of both of the
two groups, but are being determined to be more related
to the E. sakazakii group. Alternatively, since the 16S iden-
tification is based on differences between a number of
nucleotide bases, the combinations of these is different
for different species. The ANN models search for common
elements of these bases, which are consistently repre-
sented in each class, and classifies based on these commo-
nalities. Considering this, together with the incorrectly
identified non- E. sakazakii strains, leads to the view that
there may not be one base, or a series of bases, that are
unique to E. sakazakii, and in some strains, such as those
incorrectly identified by the model, common elements
exist between E. sakazakii, and other strains.

Results from the analysis of the 16S rDNA data indicate
that the key inputs identified were present in three distinct
areas of the sequence and these areas were subsequently
all regions that varied structurally among domains (Figure
3).

Conclusion
ANNs display their potential use in reducing model
dimensionality and complexity, in order to facilitate the
speed and reliability of a potential strain identification
system. These methods are also able to provide valuable
information regarding the population structure and distri-
bution of individual species. These technologies may pro-
vide the foundations for novel assays and diagnostic tests
for rapid identification of pathogens, and subsequently
reducing the risk of incorrect diagnosis due to the occur-
rence of false positive and negative test results.

Methods
Genotypic and phenotypic data was collected for 282
strains of Enterobacteriaceae, including 189 E. sakazakii iso-
lates and 39 other α-glucosidase positive strains. Strains
were from diverse food, clinical and environmental
sources worldwide. Clinical isolates were from cases
occurring over the last 25 years. At least one original strain
from each of the biogroups described when the E. sakaza-
kii species was designated were included [7].

Phenotypic data
Biochemical characteristics were derived from commercial
test kits (API 20E and ID32E, bioMérieux UK Ltd.; Biolog
GN2, Biolog, CA; and Microbact 24E, Oxoid UK Ltd.) and
conventional manual tests as per standard protocols. Tests
were performed in triplicate on separate days. Motility
was determined at 37°C after 24 h and 48 h using motility
medium (tryptose 10 g l-1, NaCl 5 g l-1, agar 5 g l-1, pH 7.2
± 0.2. Acid production from carbohydrates was tested in
phenol red broth base (10 g l-1 peptone, 1 g l-1 yeast
extract, 5 g l-1 NaCl, 0.018 g l-1 phenol red) with addition
of filter-sterilized carbohydrate solution (final concentra-
tion 0.5%). Gas production was determined by collection
in Durham tubes. The methyl red test was performed at 48

Table 1: Top 20 nucleotides involved in classification from partial 
16S rDNA data. Regions shown in this table are highlighted in 
Figure 3.

REGION
A B C

58 180 448
64 181 462
69 182 467
72 183 468
81 192 469
84 211 471
85

Table 2: Biochemical tests for the differentiation of E. sakazakii.

Biochemical Tests E. sakazakii (n = 189) other α-glucosidase positive strains (n = 39) other Enterobacteriaceae (n = 54)

α-glucosidase 100 * 100 0
Arginine dehydrogenase 97 13 67
Citrate 99 15 80
D-saccharic acid 0 23 33
Dulcitol 8 80 28
glucose-1-phosphate 0 59 83
glucose-6-phosphate 0 46 82
Lipase 96 44 4
Methyl Red 5 95 57
Ornithine decarboxylase 91 0 74
Pyruvate 3 92 50
Raffinose 100 15 63
Sucrose 100 21 47
Voges Proskauer 96 0 44
Yellow pigment 98 90 28

* denotes percent strains from the data set which were positive for the test
Page 6 of 8
(page number not for citation purposes)



BMC Microbiology 2006, 6:28 http://www.biomedcentral.com/1471-2180/6/28
h on cultures grown in MR-VP broth (VWR,
1.05712.0500). The Voges-Proskauer test was performed
at 24 h by addition of 40% potassium hydroxide in water
and 5% 1-naphthol in ethanol to cultures grown in MR-
VP broth. Indole production was measured at 24 h by
addition of Kovacs reagent (5 g p-dimethylaminobenzal-
dehyde, 25 ml HCl, 75 ml pentanol-1-ol) or James Rea-
gent (70542 bioMérieux) to cultures grown in Peptone
Water (CM0009 Oxoid Ltd). Nitrate reduction was meas-
ured by addition of 1% sulphanilamide in 1 M HCl and
0.02% N-1 naphthylene diamine HCl in water. Zinc dust
was added to negative tubes to confirm the presence of
unreduced nitrate. Constitutive metabolism of X-α-gluco-
side was determined by formation of blue-green colonies
on media containing 5-bromo-4-chloro-3-indolyl-α, D-
glucopyranoside (Chromogenic Enterobacter sakazakii
medium (DFI formulation) CM1055, Oxoid Ltd.; and
ESIA, AES Laboratoire, France).

Comparative 16S rDNA sequencing
This was performed by Accugenix (Newark, DE, USA)
using the MicroSeq™ 500 16S rDNA Bacterial Sequencing
Kit (Applied Biosystems). DNA was prepared for PCR by
quick-heat lysis by removing one colony into a tube of
PrepMan Ultra™ (Applied Biosystems) and placed at 99°C
for 10 min. Two microlitres of genomic DNA was ampli-
fied in 50 µl of a master mixture consisting of 0.4 µM
TGGAGAGTTTGATCCTGGCTCAG and TACCGCGGCT-
GCTGGCAC primers, 200 mM deoxynucleoside triphos-
phates, PCR buffer, 0.3 U of AmpliTaq DNA polymerase,
and 10% glycerol. PCR conditions were 95°C for 10 min;
30 cycles each of 95°C for 30 s, 60°C for 30 s, and 72°C
for 45 s; and a final step at 72°C for 10 min. Purification
of the PCR product to remove excess primers and nucleo-
tides was performed using Montage SEQ96 filter plates
(Millipore). Cycle sequencing was performed with the
sequencing module, and after removal of excess dyes
using Montage SEQ96 filter plates (Millipore), the labelled
extension products were separated on an ABI 3100 16 cap-
illary genetic analyzer (Applied Biosystems). Partial
sequencing was performed for all isolates, the length of
the partial rDNA was 528 nucleotides, and in addition the
full sequence for the E. sakazakii type strain (NCTC
11467) was obtained.

The data was analysed using Bionumerics (Applied Maths,
Belgium) to construct Neighbour Joining trees, bootstraps
were derived from 1000 replicates and the Jukes-Cantor
correction applied.

The full 16S sequence was used for the representation of
the secondary structure of the small subunit ribosomal
RNA of E. sakazakii NCTC 11467. Nucleotide numbering
follows the Reference Numbering System used for E. coli
J01695 [15].

List of abbreviations
AI Artificial Intelligence

ANN Artificial Neural Network

MLP Multi-Layer Perceptron

Authors' contributions
CI performed the biochemical characterizations, collated
the test data and wrote the biochemical methods section
and text relevant to E. sakazakii. LL co-developed and per-
formed the computational analyses for the study, and
drafted the manuscript. MW provided the 16S sequencing
and wrote the 16S sequencing methods section. SF co-
ordinated and managed the project. GB co-developed the
analysis methods and co-ordinated the project. All
authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the following for the provision of strains; 
Nestle Research Center, Lausanne, Switzerland; Health Products and Food 
Branch, Health Canada; CDC, Atlanta, USA; Children's Hospital Los Ange-
les CA, USA; Northern Foods, UK; Oxoid Ltd., Basingstoke, UK; Hospital 
CЕské Budéjovice, Czech Republic; Justus-Liebig-Universität Gießen, Ger-
many; NCHT, Nottingham, UK; St. Radboud Nymegen, Netherlands. Cul-
tures from national collections were either from the NCTC, London, UK; 
the NCIMB Ltd, Aberdeen, Scotland; or the ATCC, Manassas, VA 20108 
USA

References
1. Muytjens HL, Zanen HC, Sonderkamp HJ, Kollee LA, Wachsmuth IK,

Farmer JJ: Analysis of eight cases of neonatal meningitis and
sepsis due to Enterobacter sakazakii .  J Clin Microbiol 1983,
18:115-120.

2. Lai KK: Enterobacter sakazakii infections among neonates,
infants, children, and adults: Case reports and a review of the
literature.  Medicine (Baltimore) 2001, 80:113-122.

3. van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lau-
wers S: Outbreak of necrotizing enterocolitis associated with
Enterobacter sakazakii in powdered milk formula.  J Clin Micro-
biol 2001, 39:293-297.

4. Himelright I, Harris E, Lorch V, Anderson M: Enterobacter sakazakii
infections associated with the use of powdered infant for-
mula – Tennessee, 2001.  JAMA 2002, 287:2204-2205.

5. Iversen C, Forsythe S: Risk profile of Enterobacter sakazakii, an
emergent pathogen associated with infant milk formula.
Trends Food Sci Technol 2003, 14:443-454.

6. ICMSF: International Commission on Microbiological Specifi-
cations for Foods. Micro-organisms in Foods Number 7.
Microbiological Testing in Food Safety Management.  Kluwer
Academic/Plenum Publishers; 2002. 

7. Farmer JJ, Asbury MA, Hickman FW, Brenner DJ, The Enterobacte-
riaceae Study Group: Enterobacter sakazakii, new species of
Enterobacteriaceae isolated from clinical specimens.  Int J Syst
Bacteriol 1980, 30:569-584.

8. Iversen C, Druggan P, Forsythe S: A selective differential
medium for Enterobacter sakazakii, a preliminary study.  Int J
Food Microbiol 2004, 96(2):133-139.

9. Leuschner RG, Bew J: A medium for the presumptive detection
of Enterobacter sakazakii in infant formula: Interlaboratory
study.  J AOAC Int 2004, 87(3):604-613.

10. Muytjens H, van der Ros-van de Repe J, van Druten HAM: Enzy-
matic profiles of Enterobacter sakazakii and related species
with special reference to the alpha glucosidase reaction and
reproducibility of the test system.  J Clin Microbiol 1984,
20:684-686.
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6885983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11307587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11307587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11307587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11136786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11987295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11987295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11987295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15364468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6386874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6386874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6386874


BMC Microbiology 2006, 6:28 http://www.biomedcentral.com/1471-2180/6/28
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. Iversen C, Waddington M, On S, Forsythe S: Identification and
phylogeny of Enterobacter sakazakii relative to Enterobacter
and Citrobacter species.  J Clin Microbiol 2004, 42(11):5368-5370.

12. Ball G, Mian S, Holding F, Allibone RO, Lowe J, Ali S, Li G, McCardle
S, Ellis IO, Creaser C, Rees RC: An integrated approach utilizing
artificial neural networks and SELDI mass spectrometry for
the classification of human tumours and rapid identification
of potential biomarkers.  Bioinformatics 2002, 18:395-404.

13. Lancashire LJ, Mian S, Ellis IO, Rees RC, Ball GR: Current develop-
ments in the analysis of proteomic data: Artificial neural net-
work data mining techniques for the identification of
proteomic biomarkers related to breast cancer.  Curr Proteom-
ics 2005, 2:15-29.

14. Lancashire L, Schmid O, Shah H, Ball G: Classification of bacterial
species from proteomic data using combinatorial
approaches incorporating artificial neural networks, cluster
analysis and principal components analysis.  Bioinformatics 2005,
21:2191-2199.

15. Gutell Lab Comparative RNA Web Site   [http://
www.rna.icmb.utexas.edu]
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15528745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746279
http://www.rna.icmb.utexas.edu
http://www.rna.icmb.utexas.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Model development and classification analysis
	Phenotypic data
	16S rDNA sequence data
	Classification of a-glucosidase positive strains

	Discussion
	Conclusion
	Methods
	Phenotypic data
	Comparative 16S rDNA sequencing

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

