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Abstract

between the sRNA and the transcriptional network.

in prokaryotic model systems.

Background: Publicly available expression compendia that measure both mRNAs and sRNAs provide a promising
resource to simultaneously infer the transcriptional and the posttranscriptional network. To maximally exploit the
information contained in such compendia, we propose an analysis flow that combines publicly available expression
compendia and sequence-based predictions to infer novel sRNA-target interactions and to reconstruct the relation

Results: We relied on module inference to construct modules of coexpressed genes (sRNAs). TFs and sRNAs were
assigned to these modules using the state-of-the-art inference techniques LeMoNe and Context Likelihood of
Relatedness (CLR). Combining these expressions with sequence-based sRNA-target interactions allowed us to predict
30 novel sRNA-target interactions comprising 14 sRNAs. Our results highlight the role of the posttranscriptional network
in finetuning the transcriptional regulation, e.g. by intra-operonic regulation.

Conclusion: In this work we show how strategies that combine expression information with sequence-based
predictions can help unveiling the intricate interaction between the transcriptional and the posttranscriptional network

Keywords: sRNA, Gene, Module network, Network inference, Escherichia coli

Background

Transcriptional regulation plays a predominant role in
prokaryotic organisms. Although the transcription factor
(TF) - mediated network of Escherichia coli (E. coli) is
amongst the best documented network, recent advances
in next-generation sequencing unveiled the unprece-
dented role of sSRNA-mediated posttranscriptional regu-
lation by trans-acting sRNAs [1-3]. In E. coli more than
80 sRNA genes have been identified [4]. Most of the cur-
rently known sRNAs are trans-acting and assumed to be
dependent on the chaperone Hfq. Hfq-dependent sSRNAs
have a short and imperfect binding region with their
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mRNA targets (10-25 bases) [5] and they execute their
regulatory mechanism by direct base pairing with the
mRNA of their target genes. The outcome of this inter-
action can be negative, for example by blocking ribosome
entry (translational repression) or positive, where positive
regulation can be mediated by a plethora of possible mech-
anisms, for example by melting inhibitory secondary struc-
tures, stabilizing the transcript or by sequestration of
endonucleolytic cleavage [6,7]. Regulation is often coupled
to nuclease mediated cleavage of the mRNA [8,9]. Another
small number of posttranscriptional regulatory RNAs also
act through antisense RNA base pairing with their targets,
but in general in an Hfq independent way. This base
pairing usually involves a longer stretch of complementary
DNA. Targets of those sSRNAs are positioned at their exact
same location in the genome (cis location), but on the op-
posite DNA strand.

Although it is known that sSRNAs are involved in a
complex regulation network, it is still unclear how this
sRNA-mediated posttranscriptional network relates to
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the TF-mediated regulatory network. Publicly available
expression compendia that measure both mRNAs and
sRNAs provide useful information to infer such interac-
tions. Modi et al.,, 2011 [10] have already exploited the
potential of network inference to compile an updated
sRNA-regulatory network of E. coli using a well-known
network inference approach CLR [11]. Compared to their
work we relied on an alternative module inference frame-
work (rather than a single gene based approach) to sim-
ultaneously assign TFs and sRNAs to target genes. In
addition, we combined interactions inferred from ex-
pression compendia with sequence-based predictions to
infer novel SRNA-target interactions. This integrative suite
allowed us to both infer the SRNA-target network and to
reconstruct the relation between the sSRNA and the tran-
scriptional network.

Results

Overview of the analysis flow

The analysis flow used to reconstruct the combined
transcriptional-sSRNA network from the expression com-
pendium is depicted in Figure 1. We first inferred a mod-
ule network from the expression compendium (Panel A
and B). A module consists of a set of genes that is co-
expressed, and the conditions under which these genes
are co-expressed. Because genes in a module behave simi-
larly, we assume they might be co-regulated either at the
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transcriptional or post-transcriptional level. Possible TFs
or sRNAs that could explain their co-expression behav-
ior were assigned to each of the obtained modules using
expression-based network inference methods that assess
whether there exists a similarity in the profile of the as-
signed TF/sRNA and that of the genes in the module to
which the TF/sRNA is assigned. Because it has been shown
that network inference approaches differing in their under-
lying principles often give complementary predictions [12],
we used a combination of two different methods (LeMoNe
[13] and CLR [11]) to make our final predictions.

Expression-based inference methods cannot distinguish
whether the regulators affect the modules to which they
are assigned in a direct versus an indirect way, i.e. whether
the assigned regulators directly interact with the target
genes in the modules to affect their regulation or whether
they affect another regulator which on its turn physically
interacts with the targets in the module. To infer for the
assigned sRNAs direct from indirect modes of regulation,
we complemented the expression-based inferences with
sequence-based information (Panel C): direct interactions
as summarized in the sRNA-target interaction network
(Panel D) were inferred by identifying genes in the module
that contained a region in their sequence that was com-
plementary to a region present in an sRNA assigned to
the module (results obtained from IntaRNA [14] and Tar-
getRNA [15,16]).
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Figure 1 Reconstructing the combined transcriptional-sRNA network. An expression compendium compiled from publicly available
microarray data is used as input (showed in Panel A). Using this compendium coexpression modules were constructed by means of biclustering.
To each of those modules a regulatory program was assigned using either LeMoNe or CLR (Panel B). For genes in the modules we tested
whether they contained a region in their sequence that shows complementarity to any of the sSRNA sequences assigned to the module (Panel C).
Integration of both the module network (modules with their regulatory programs) and the sequence-based predictions results in a final sSRNA-target
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Module inference

To infer modules, we relied on a previously developed glo-
bal biclustering algorithm (ISA [17,18]). With ISA, we
identified 78 modules in our dataset of which 57 were
functionally enriched. All 78 modules contained at least
one predicted sRNA target (based on IntaRNA and Tar-
getRNA predictions (see Methods)) and 21 modules con-
tained an experimentally validated sRNA target. For
several modules which showed a clear functional overrep-
resentation, SRNA targets within the module had a func-
tion related to the functional category assigned to the
module (see below for a more detailed description of
those modules). An overview of the modules is given in
Additional file 1: Table S1: Characteristics of module
network as reconstructed by CLR and LeMoNe. 37 out
of the 108 experimentally verified SRNA targets ended up
in a module, while the remaining SRNA targets remained
unclustered. In some cases, e.g. for OmrA, OmrB, OxyS,
DsrA, GevB targets of the same sSRNA, were clustered to-
gether. For the other cases it seems that targets, despite
being regulated by the same sRNA exhibit a profoundly
different expression pattern (Additional file 2: Table S2:
overview of the sRNAs in different modules). This indi-
cates an intricate interaction between the sSRNAs and the
TF-mediated transcriptional network.

Assigning a regulatory program

To map the interaction between the transcriptional and
the posttranscriptional network, we reconstructed a mod-
ule network by assigning to each of the modules a regula-
tory program that consists of a combination of sSRNAs and
TFs. Because a module expression profile is more robust
than a single gene profile, we assigned regulatory programs
to modules rather than to single genes (here referred to as
module networks). To this end, we used two previously
described inference tools that exploit expression informa-
tion to reconstruct networks, CLR and LeMoNe [12,19].
Both tools assume that the expression profile of the regu-
lator is a proxy for its activity. They thus assign a regulator
to a module if the expression profiles of both entities show
a relation. The first method, LeMoNe [13] is inherently
module-based: it assigns a regulatory program to preg-
rouped gene sets (or module). LeMoNe first partitions for
the selected gene set in a module, the conditions according
to different levels of over (under) expression (multivariate
distribution). Then it assigns to each module those regula-
tors for which the expression profiles best fits all or part of
the condition partitions in the module. CLR [11], on the
other hand assigns a regulatory program based on the de-
gree of mutual information between the expression profile
of a regulator and that of each possible target gene. Al-
though initially developed as a direct inference method that
assigns a regulatory program on a gene by gene basis, we
apply CLR here to assign a regulatory program at module
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level (see Methods). As input for both CLR and LeMoNe
we used the gene selection of the 78 ISA modules, but in-
stead of only using the conditions selected in the module,
we used all conditions in the compendium to perform the
regulatory assignments as both CLR and LeMoNe can
weigh the conditions ‘according’ to their relevance for the
assignment of the regulatory program. An overview of the
assignment of a regulatory program to the different mod-
ules is shown in Additional file 1: Table S1.

Complementarity between CLR and LeMoNe

Both CLR and LeMoNe assign a score to the TF/sRNA
module assignments. To set the threshold for CLR, we
used the FDR-based strategy described in the original
paper [11]. For LeMoNe we relied on a previously opti-
mized threshold [19]. These criteria resulted in assigning
on average 2-3 regulators (with a regulator being defined
as a TF or sSRNA) per module for CLR (159 assignments
comprising 75 regulators) and 1-2 for LeMoNe, (165 as-
signments comprising 89 regulators). To four modules no
regulators were assigned, given the defined thresholds.

Figure 2 gives an overview of the TF and sRNA assign-
ments by either LeMoNe or CLR to the different modules
(Panel A). Figure 2 panel B and C summarizes quantita-
tively the complementarity between LeMoNe and CLR for
respectively the TFs and sRNAs. Because in principle the
same regulator (TF/sRNA) can be assigned to different
modules, the number of assignments is larger than the
number of assigned regulators. The complementarity be-
tween both methods is therefore displayed both from the
perspective of the assignments and of the assigned num-
ber of TFs.

For TFs a total of 190 assignments, covering 84 TFs
were made of which 127 assignments covering 71 TFs
were made by LeMoNe and 109 assignments covering
49 TFs were made by CLR. Of the total number of assign-
ments, 46 assignments covering 26 different TFs were
consistent between CLR and LeMoNe. For about 39 as-
signments made by either CLR or LeMoNe covering 17
different TFs, the assignments were confirmed by target
enrichment analysis: that is the module to which the TF
was assigned indeed was overrepresented in known targets
(according to RegulonDB) of the assigned TF (Figure 2
Panel A). 66.7% of these assignments that were confirmed
by target enrichment analysis can be found in the intersec-
tion of targets predicted by both methods.

For the sRNAs, a total of 71 assignments for 30 different
sRNAs were made. Of the 38 assignments for 18 sRNAs
made by LeMoNe and the 50 assignments for 26 sRNAs
made by CLR, 17 assignments for 10 SRNAs were consist-
ently predicted by both algorithms. For 3 cases (one as-
signment for MicF (predicted by CLR), one assignment
for Spf (predicted by CLR), and one assignment for RyhB
(predicted by LeMoNe and CLR)), the module to which
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Figure 2 TFs/sRNA to module assignments by LeMoNe and CLR. Panel A: Assignments for TFs (according to the results in Additional file 1:
Table S1). a1: relation between TF assignments and modules. Pink: TFs. Purple: modules, with a higher degree of shading corresponding to a
smaller sized module. Red square: enrichment in targets of the assigned TF. Blue lines: assignments uniquely made by CLR. Gray lines:
assignments uniquely made by LeMoNe. Orange lines: assignments made by both methods. Bold face lines: assignment confirmed by target
enrichment analysis. a2: complementarity in the assignments made by CLR and LeMoNe from the assignment point of view. Gray: assignments
uniquely made by LeMoNe. Blue: assignments uniquely made by CLR. Orange: assignments made by both methods. a3: complementarity in the
assignments made by CLR and LeMoNe from the TF point of view. Gray: number of TFs uniquely assigned by LeMoNe. Blue: number of TFs
uniquely assigned by CLR. Orange: number of TFs assigned by both methods. Panel B: Assignments for sSRNAs (according to the results in
Additional file 1: Table S1). b1: relation between sRNA assignments and modules. Legend as in Panel A a1 except for Green: sRNAs. Bold face line:
the module to which the sRNA was assigned also contains a predicted or an experimentally verified target of the assigned sRNA. b2:
complementarity in the assignments made by CLR and LeMoNe from the assignment point of view. Legend as in Panel A a2. b3:
complementarity in the assignments made by CLR and LeMoNe from the sRNA point of view. Legend as in Panel A a3.

-

the SRNA was assigned also contained at least one exper- either a predicted or an experimentally verified target for
imentally verified target of this assigned sRNA. 21 out of the assigned sRNA, indicating that probably in the other
the 43 modules to which an sSRNA was assigned, contained  cases the assigned sRNAs are involved in the indirect rather



Ishchukov et al. BMC Microbiology 2014, 14:14
http://www.biomedcentral.com/1471-2180/14/14

than the direct regulation of the genes in the module e.g.
by regulating the TFs that were assigned to the module ra-
ther than by regulating the genes in the module itself.

Regarding the complementarity between LeMoNe and
CLR, results show that both methods tend to make more
predictions for TFs than for sSRNAs which indicates that
the signal in the dataset is more pronounced for TFs
than for sRNAs. This is to be expected as the probes in
the used array platforms were designed to measure pro-
tein coding genes (and thus TFs), but not SRNAs. sRNAs
are in general represented by very few probes and not
necessarily on all platforms (see Methods). Other differ-
ences between the results obtained by either method can
be explained by the method’s specificities. In general,
CLR performs well if the profile of the assigned regula-
tor matches the profile of the module for a minimal
number of conditions of any type (it tests a global simi-
larity rather than a condition specific profile). LeMoNe
on the other hand assigns more importance in finding a
fit between the expression profile of the regulator and
that of the module for those condition partitions that
are homogenous. The latter can contain a large part of
the conditions in the dataset (in which case the inter-
action would also be recovered by CLR) or it can be re-
stricted to only a subset of the conditions (in which case
the interaction would only be recovered by LeMoNe).
However, LeMoNe’s ability to assign regulators that only
match part of the conditions in the dataset comes at
the expense of also penalizing more small mismatches
between the profiles of the regulators and those of the
modules for the condition partitions of importance. So
even if the global profile seems to match quite well (high
CLR score), such mismatches can result in low LeMoNe
scores. Both properties can explain why for the same
thresholds used on both TFs and sRNAs, LeMoNe tends
to find more unique assignments for TFs than for SRNAs
compared to CLR (for which the opposite is true): be-
cause for TFs the signal is rather robustly measured,
LeMoNe can also assign regulators for which the ex-
pression profile only matches the module’s profile for a
subset of the conditions, whereas CLR can not assign
those regulators, explaining why LeMoNe assigns rela-
tively more TFs than CLR. However, in the case of
sRNAs, the expression signal is much less robustly
measured and small mismatches in the expression pro-
file of the regulator and that of the module become a
major limitation for LeMoNe. This results in CLR be-
ing able to assign more sRNAs than LeMoNe under
those conditions.

The most reliable assignments of regulators (TF or SRNA)
to modules evidently consist of the predictions that were
made by both LeMoNe and CLR (indicated in bold in the
Additional file 1: Table S1). A selection of interesting mod-
ules is described in more detail below.
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sRNA-target interaction network

To derive from the sRNA-module assignments the un-
derlying sRNA-target network, we defined as potential
targets of a certain SRNA those module genes that also
contained in their upstream regions a putative recogni-
tion site of the sRNA assigned to the module (based on
the union of IntaRNA and TargetRNA). This resulted in
30 different sSRNA-target interactions (corresponding to
33 sRNA-target assignments) comprising 14 sRNAs (out
of the 72 for which we tried to make an assignment)
regulating 30 genes (Figure 3).

Recently, Modi et al. [10] have also applied CLR to
predict novel sRNA-target interactions for 24 sRNAs
(which are all contained in the set we used in our ana-
lyses). Our approach is intrinsically quite different from
the one of Modi et al. [10] in its experimental set up:
whereas Modi et al. [10] assigns sSRNAs to single genes, we
assign sSRNAs to modules (module-base inference). In
addition both approaches, ours and the one of Modi et al.
[10] use slightly different parameter settings for running
CLR and the sequence-based sSRNA-target predictions. We
compared to what extent the results of our approach cor-
responded to those of Modi et al. [10] (Additional file 3:
Table S3).

Whereas we integrate sequence-based predictions with
the module-based sRNA assignments to infer the direct
sRNA-target interaction network (Figure 3 and Additional
file 3: Table S3 column f), Modi et al. [10] in their study
used expression profile-based sSRNA assignments to con-
struct an sSRNA-target interaction network which is thus
composed of both direct and indirect targets. The original
number of predictions made by Modi et al. [10] based on
expression data only is shown column ¢ of the table in the
Additional file 3: Table S3. To make the results of both
networks more comparable, we removed from the predic-
tions of Modi et al. [10] the indirect interactions using the
sequence-based prediction approach adopted in their ori-
ginal paper (column d).

Results on a benchmark dataset show that both methods
ours and the one of Modi et al. [10] perform poorly in re-
covering true benchmark interactions and have a very low
sensitivity. When considering the targets of Modi et al.
[10], predicted based on high scoring CLR assignments,
benchmark interactions could be recovered for 5 sRNAs
(Additional file 3: Table S3 column e) (MicF (1 target)),
GadY (1 target), GevB (2 target), RyhB (1 targets)). Of
those, three benchmark interactions (MicF, RyhB, GadY)
were retained if the target was also required to contain a
recognition site for the respective SRNA (column e be-
tween brackets). We had a similarly low sensitivity (col-
umn h between brackets) and could also only recover the
known MicF target from the benchmark. Comparing col-
umns d and g of Additional file 3: Table S3, containing re-
spectively the number of direct SRNA targets predicted by
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Figure 3 sRNA-target interaction network as inferred by the network inference procedure. sRNAs are indicated as diamonds and the
targets of the associated sRNAs are indicated in circles. In the picture we show both targets predicted by our analysis (in red, circle or sector) and
those present in our current benchmark set (in blue sector or in a circle) to illustrate the extent to which our targets overlap with the benchmark.
Targets of the benchmark predicted by Modi et al. [10] are indicated in green (circle or sector). For both Modi et al. [10] and our approach we

used those predictions obtained by combining the network-based assignments with the sequence-based predictions.
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Modi et al. [10] and our study by combining expression
and sequence data shows that both methods predict novel
targets for a very different set of SRNAs. Besides for MicF
and RyhB for which both our method and Modi et al. [10]
can predict targets, Modi et al. [10] predicts targets for
GcevB whereas we do not. In contrast, with our approach
we were able to predict targets for OxyS, GadY, RyeA,
PsrD, SroD, Tpke70, SroA, IsrB and C0343 that were not
detected by Modi et al. [10] (the last 7 SRNAs were not
analyzed by Modi et al. [10]). This indicates the comple-
mentarity between single gene and module-based ap-
proaches [12].

Description of interesting modules

An overview of the modules can be found in Additional
file 1: Table S1. The more detailed content of the modules,
together with their regulatory program can be found at
Additional file 4: Module Overview.

Module 6

Module 6 (Figure 4 panel A) is a rather large module be-
ing overrepresented for genes involved in iron transport
and iron-sulfur cluster assembly. Two regulators, one TF
(IscR) and one sRNA (RyhB) were assigned to this module

with a high reliability (as their assignment was confirmed
by both LeMoNe and CLR): IscR, a sulfur-cluster contain-
ing TE, known to regulate the expression of operons that
encode components of a pathway of iron-sulfur cluster
assembly, iron-sulfur proteins, anaerobic respiration en-
zymes and biofilm formation [20,21]. Module 6 contains
two known targets being regulated by IscR (the operons
nrdHIEF and sufABCDES, involved in iron-sulfur cluster
assembly [22]). Interestingly, the regulator IscR belongs to
a polycistronic mRNA iscRSUA known to be regulated by
the sRNA RyhB which was also assigned to this module.

This assignment of RyhB was further confirmed by that
fact that the module contained one known target of RyhB
(shiA) [23]. In addition to this known target we also have
one predicted RyhB target in the module, sufB (Figure 4
panel B), which is a component of the SufBC,D Fe-S clus-
ter assembly scaffold complex [24] that is responsible for
the synthesis of Fe-S clusters [24-26].

Down-regulation of proteins involved in assembly of Fe-S
clusters by RyhB would make sense given the known func-
tion of RyhB during Fe homeostasis: RyhB is known to
reduce iron consumption under low-iron conditions by
downregulating expression of iron-containing proteins
[27-29] and the Fur regulon, of which also several genes
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(See figure on previous page.)

predicted target IscR and IscS.

Figure 4 Module 6 and its regulatory program. Panel A: the regulatory program assigned to this module. The module to which the
regulatory program was assigned; yellow indicates high expression levels and blue refers to low expression levels of genes in the module. The
genes correspond to the genes present in the original module discovered by ISA. Conditions present in the original ISA module are indicated by
a horizontal bar. As both LeMoNe and CLR use all conditions when assigning their respective regulatory program, we indicated also the
additional compendium conditions that were relevant for assigning the respective regulatory programs. Genes in the module correspond to likely
targets of the assigned regulators. Targets indicated by a square correspond to known targets of the assigned TF (s). Targets indicated by empty
triangle correspond to predicted targets of the assigned sRNA, targets indicated by filled triangle correspond to known targets of the assigned
SRNA. Panel B: sRNA-target interaction as predicted by the sequence-based analysis for both known and predicted targets of the sRNAs assigned
to the module. Indicated sequence positions refer to the location of the recognition sequence relative to the translation start of the gene the
SRNA is predicted to interact with (if ATG is indicated in red). If the ATG is indicated in black it refers to the start codon of a neighboring gene. In
this case the underlined ATG corresponds to the start codon of IscS as the target site of RyhB is located in the intergenic region between the

are present in the module and which is known to have a
central role in iron metabolism. In addition the direct
binding of RyhB to sufB seems likely as the interacting
region identified in RyhB is located in an unstructured
region and overlaps with the binding region of previ-
ously detected targets (see Additional file 1: Table S1).

Interestingly, both the ISC assembly system (iscRSUA
operon), which is responsible for Fe-S cluster production
under normal conditions and the SUF assembly system
(sufABCDES operon) responsible for Fe-S cluster produc-
tion under oxidative stress conditions are encoded by poly-
cistronic operons [30]. The polycistronic iscRSUA mRNA
to which also IscR, the regulator assigned to the module
belongs, is known to be processed by RyhB by inducing
a cleavage of the operonic transcript between iscR and
iscSUA [31]. Our predicted interaction between RyhB
and sufB, the second gene of the sufABCDES operon
suggests that RyhB would also interact with the suf
ABCDES operon through an intraoperonic regulation
mechanism [31].

Module 17

Module 17 contains 31 genes most of which relate to
membrane encoded transport systems. The module was
predicted to be regulated by the TFs MalT, of which also
the targets were found to be enriched in this module,
CueR and YgiV. For the latter TFs no known targets
were found in the module. For the sSRNA MicF assigned
to this module, one of its known targets, ompF, belongs
to the module [9]. Although the module does not con-
tain any other predicted targets of MicF, we found evi-
dence of a MicF recognition site upstream the coding
region of the ygiV, a TF also assigned to the module.
The recognition size is located in the region from —102
to =52 bp upstream of ygiV; a region that comprises the
short intergenic region between ygiW and ygiV; and the C
terminal end of the coding region of ygiW. The region on
MicFE, predicted to bind with ygiV, although being quite
large partially overlaps with the unstructured 5'end of
MicF to which also the known MicF target OmpF binds
(see Additional file 4: Modules overview). YgiV is known

as a repressor of McbR (also known as YncC), a regulator
of biofilm formation [32].

Also interesting is the assignment of the sRNA IsrB with
unknown function to the same module. IsrB in E. coli has
no documented targets yet, but its genomic location over-
laps with the coding regions of azu-genes, a set of inner
membrane encoding genes with unknown function. A link
between IsrB and membrane encoded functions is plausible
viewing the large subset of membrane related functional-
ities in this module. However, relying on our sequence-
based sRNA target prediction, no direct target of IsrB was
found to be present in this module so IsrB could be in-
volved in the indirect regulation of this module (e.g. by
regulating other regulators that on their turn regulate the
genes in the module).

Module 58

Module 58, mainly expressed under stationary growth
contains genes involved in acid response, amino acid
starvation (purine salvage, amino acid uptake) and induc-
tion of microaerobiosis (represented by Ecocyc enrichment
analysis). Three regulators were assigned to Module 58,
GadE, CueR and the sSRNA Gady, all of which are known
targets of RpoS [33]. Module 58 was also found to be
enriched in direct targets of GadE (see Additional file 1:
Table S1), indicating that the assignment of GadE as a
regulator to module 58 is true. GadE, the central activator
of the acid response system controls genes involved in the
maintenance of pH homeostasis through its direct targets
involved in the glutamate-dependent acid resistance sys-
tem (here represented by gadA and gadBC genes) and is
involved in multidrug efflux (mdtE, mdtF) through con-
trolling the expression of the TFs, GadW and GadX both
related to acid resistance (of which only GadW was found
in the module) [34]).

The sRNA GadY which is highly expressed during entry
into stationary phase and regulated by low pH [35] is re-
lated to the GadE dependent acid response through an in-
tricate network of interactions with GadW (also in module
58) and GadX (according to Regulon DB).
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A last regulator assigned to module 58 was CueR “Cu
efflux regulator”, which was also predicted to be a target
of GadY using our sequence-based predictions. CueR,
regulates genes related to the primary copper homeosta-
sis system in response to the presence of copper, silver,
or gold ions [36]. None of the known CueR targets re-
lated to its function in Cu** homeostasis were found in
module 58. However, CueR being a target of GadY and
also being assigned as a regulator to module 58 points to-
wards a connection between Cu®* and pH homeostasis, a
link that has been suggested before. Yamamoto et al., for
instance, showed that pH changes affect the genome-wide
transcription pattern of copper-balance genes in the pres-
ence of CuSO, [37].

Besides CueR, module 58 contained three additional
predicted targets of GadY (assuming that genes belong-
ing to a module with an assigned sRNA as regulator that
also contain a recognition sequence of that sSRNA in their
upstream region are direct targets of the sSRNA). A first
one, CbpA has a functionality related to the one of DnaJ
and functions as a co-chaperone with DnaK. A second
one, PoxB is pyruvate oxidase and the last one XdhA-
XdhB-XdhC is a putative heterotrimericxanthine dehydro-
genase [38]. How their functionalities link to the role of
Gady is less clear. GadY is known to be an antisense bind-
ing SRNA that acts on its cis encoded target GadX. So far
GadX is the only characterized target of GadY. However,
it cannot yet be excluded that GadY would have additional
targets encoded elsewhere on the genome [39], the more
because GadY has been shown to share the Hfq binding
property of transacting sSRNAs [33]. The fact that the re-
gions to which GadY would bind in its predicted targets
CueR, DnaJ and PoxB are located quite far upstream of
their respective annotated TSSs could explain why such
non-conventional targets have largely been overlooked by
computational predictions.

Module 8

Module 8 contains pathways which relate to oxidative
membrane stress (osmotic stress response, efflux pumps,
membrane remodeling). Three regulators have been as-
signed to this module by LeMoNe: MarA, Fur and OxyS.
MarA, is a “multiple antibiotic resistance” regulator of
which indeed part of its known regulon was found in
the module. MarA is an outer membrane porin involved
in the efflux of several hydrophobic and amphipathic
molecules and is known to be involved in resistance to
antibiotics and oxidative stress [40]. The module indeed
contains MarA targets such as TolC, an outer membrane
porin. Although the Fur regulon members are not well
represented in this module, the autoregulated TF Fur has
not only been assigned to the module, but also belongs to
the module itself, further supporting its assignment. Be-
sides its well documented role in iron homeostasis, Fur is
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also known to be involved in oxidative stress responses by
downregulating iron uptake systems [41].

Next to these TFs also the SRNA OxyS known to play
a regulatory role in the oxidative stress response [42]
was assigned to this module. Three targets regulated by
OxyS were predicted with our approach and were found
in module 8, implying that OxyS regulates together with
MarA the genes in module 8: RimK, a ribosomal protein
S6 modification protein belonging to the ybjC-nfsA-
rimK-ybjN operon, an operon which indeed is known to
be regulated by (Rob/MarA/SoxS) and OxyR. So, the
additional regulation of rimK (intraoperonic promotor
site) by OxyS is plausible. InaA, a second predicted tar-
get of OxyS present in module 8 is pH-inducible protein
involved in stress response [43,44]. A third target of OxyS
which we could predict is mltC, a membrane-bound lytic
murein transglycosylase C, known to be induced by oxida-
tive stress via SoxS [45].

Module 20
Module 20 contains genes belonging to pathways involved
in transport, oxidative stress response (Mar and Sox op-
erons) and gluconate, ascorbate utilization. SoxR which
was assigned to the module is also part of the module.
The regulator IcIR also assigned to the module is known
to regulate the glyoxylate bypass operon [46,47].
According to our predictions, the SRNA assigned to this
module RyfA, which has no assigned function yet would
have one predicted target in the module, i.e. ZnuC, the
ATP-binding component of an ABC transporter involved
in high-affinity zinc uptake (ZnuABC). znuC transcripts
were shown to disappear or markedly decreased at 5 min
after zinc addition [37]. Such quick induction or repression
of the zinc-responsive genes upon increasing environmen-
tal zinc levels suggests a regulation mechanism mediated
by sRNAs. Some of the enzymes being expressed in the
module are indeed known to depend upon a Zn>* contain-
ing active site (e.g. UlaE [48]). In literature we found an
indirect relation between SoxS and RyfA through the regu-
lation of the predicted target ZnuC. SoxS is known to in-
crease the expression of the zinc uptake system ZnuACB
in E. coli, although no direct binding of SoxS to the pro-
moter of znuACB has been observed [49].

Module 61

Module 61 (44 genes) contains genes related to oxidation-
reduction, electron transport and energy generation. Three
TFs, AdiY and YahA were assigned to this module by
LeMoNe and one CdaR by CLR. To our knowledge the
role of YahA, a c-di-GMP-specific phosphodiesterase is yet
unknown (YahA contains an EAL domain close to an
N-terminal putative DNA-binding domain). AdiY was pre-
viously shown to be strongly upregulated after a rapid de-
crease in external pH [50]. Its known target, the arginine
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decarboxylase system (adi) is known to be induced in
rich medium, under anaerobic conditions, and at low pH
[50,51] conditions under which genes present in the mod-
ule are also known to be expressed. CdaR, regulates genes
involved in the uptake and metabolism of galactarate and
glucarate and is also found to be one of the regulators for
which the targets are enriched in the module. Besides
these TFs also Tpke70 a sSRNA of approximately 40 nt in
length with yet unknown function was assigned to this
module [52]. Module 61 also contains two predicted tar-
gets of Tpke70 that is NapG and NapD (predicted using
sequence-based methods) both parts of the periplasmic
nitrate reductase system in E. coli [53-55].

Methods

Microarray compendium

The E. coli compendium used in this study consisted of
348 contrasts taken from an initial compendium of 610
contrasts, covering 4311 genes and 78 sRNAs and profil-
ing a diverse set of conditions such as (an)aerobic growth,
growth in ethanol, different pH levels, various E. coli
strains included, etc. In an initial test we used the full
compendium to generate our results (610 contrasts). We
noted that a subset of 262 contrasts (row 19 in Additional
file 5: Table S4), corresponding to the previous compen-
dium of [11] did not exhibit a large variability across con-
ditions and did therefore bias our results. That is why we
excluded this dataset for further analysis (resulting in a
total of 348 remaining contrasts). The final compendium
was composed of 31 experiments performed on 21 Affy-
metrix platforms AffymetrixGene Chip E. coli Antisense
Genome Array [Ecoli_ASv2], 12 AffymetrixGeneChip
E. coli Genome 2.0 Array [E_coli_2] (Additional file 5:
Table S4: Description of expression compendium). The
platform design files did not yet contain probe annotation
for sRNAs, but some of the ‘intergenic’ probes corre-
sponded to regions containing sRNAs. By blasting the
probe sequences against a more recent annotation of the
E. coli genome, we could link 1331 (1323 probes for
sRNAs from Additional file 6: Table S5: Probe Informa-
tion) probes to 72 sSRNAs that were covered by all 3 Affy-
metrix platforms (a detailed list with probe annotation
can be found in the supplementary information Additional
file 6: Table S5).

sRNA target prediction

sRNA target prediction was based on IntaRNA [14] and
TargetRNA [15]. For both IntaRNA and TargetRNA, we
searched for sRNA interaction sites in a region close to
the start codon (ranging from 50 bp upstream to the ATG
until -150 downstream from the ATG as this range showed
to have the best sensitivity in recovering known sRNA-
target interactions). For both algorithms the seed length
was set to 8 nucleotides. Other settings had default values
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TargetRNA was performed without scores accounting for
GU pairs, without thermodynamic information and without
orthology information).

Target predictions were considered selected stringently
if they were in the top 25 list of both methods (stringent
selection criterium). If they were only predicted in the
top 25 list of one of the two methods, they were consid-
ered less reliable (and we referred to this as the non-
stringent selection criterium). Using the stringent selection
criteria approximately 12% of the known targets for sSRNAs
could be retrieved with an average PPV of 19%. With the
non-stringent criteria these numbers are respectively 18%
with a PPV of 1%. However, as we could recover so few
benchmark interactions with the stringent criterium, we
relied on the non-stringent criterium, assuming that we
would compensate for the lower PPV by integrating the
sequence-based predictions with those obtained from
the expression-based assignments (Additional file 7:
Performance tests to optimize sequence-based sRNA-
target predictions). For a full list of predictions we refer
to Additional file 8: Table S6: Predictions of sSRNA tar-
gets based on intaRNA and TargetRNA.

To identify putative interactions between TFs and sRNAs
assigned to the same modules, we screened the sequences
of the assigned regulators for recognition sites of the SRNAs
assigned to the same module in a region near the start
codon. Here we used a more relaxed screening to identify
putative interactions that is we extended the screened re-
gion from -150 bp upstream to the ATG to 200 down-
stream from the ATG and screened an additional region
near the transcript end (200 bp upstream of the stopcodon
to the stopcodon).

To further validate the sequence-based predictions of
the most promising sSRNA-target interactions (those de-
scribed in the main text), 1) we tested to what extent the
location of the recognition region of sRNA-target inter-
actions in the respective sSRNAs overlapped with an un-
structured regions [56] and, with the binding region of
previously described targets of the same sRNAs, 2) we
tested to what extent the location of the recognition re-
gion of the respective SRNA-target interactions in the tar-
get sequences were positioned relative to the start codon
and transcription start positions of those targets. Results
of this analysis are displayed Additional file 4: Module
overview.

Module detection

Modules (biclusters) were generated by running ISA [17,18]
obtained from ISA website (http://www2.unil.ch/cbg/index.
php?title=ISA) on the E. coli expression compendium men-
tioned above, using default thresholds on the minimum
number of genes (3) and on the minimum number of con-
ditions (2). The ctrh parameter for checking convergence
was set to be 50. The default number of 100 random seeds
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needed to initiate the global biclustering were generated
using generate.seeds(). Running ISA on the E. coli compen-
dium resulted in 78 modules.

Inferring module networks

To assign a regulatory program to the 78 modules, we
used two previously described inference methods CLR
[11] and LeMoNe [12,19]. As input for both CLR and
LeMoNe we used the gene selection of the 78 ISA mod-
ules, but instead of only using the conditions selected in
the module, we used all conditions in the compendium
to perform the regulatory assignments as both CLR and
LeMoNe. Both tools require as input a regulator list to
reconstruct the regulatory program. To this end we com-
piled a list of 311 potential regulators (transcription fac-
tors and sRNA regulators) from RegulonDB release 8.1
(RegulonDB version 7.0) [57], Ecocyc [58], RFAM [59],
and literature (see Additional file 9: Table S7: List of Regu-
lators). These regulators consisted of 170 annotated TFs
(RegulonDB), 69 predicted transcription factors predicted
(Ecocyc), 72 annotated sRNAs (RFAM), covering about
50% of all TFs in E. coli [60] and 30% of all estimated
sRNAs (based on the analysis of all the non-coding tran-
scripts in E. coli [61] ). LeMoNe was obtained from
source website (http://bioinformatics.psb.ugent.be/software/
details/lemone). It is an unsupervised, module-based method
that assigns regulators (TFs or sRNAs) to a an expression
module (here our ISA modules) by first fitting a multivari-
ate normal distribution to the expression profiles of all
genes in the module such that the module conditions are
regrouped in partitions with a coherent expression value
(being either over or underexpressed according to a multi-
variate normal distribution that fits all genes in the mod-
ule). It subsequently searches for the set of regulators for
which the expression profiles best fit to part or all of the
condition partitions in the module. LeMoNe was run
with the default parameter settings. Regulators assigned
by LeMoNe were ranked according to their regulator score
(we only withheld regulators which had a score higher than
100). In our previous work we showed that this threshold
value was shown to be well suited for assigning TFs as reg-
ulators to modules in E. coli [19]. CLR was obtained from
the developer [11]. CLR was run with default parameter
settings except for the statistical mode settings (we selected
NORMAL mode which is recommended on larger net-
works). CLR was initially developed as a direct inference
method [12], that assigns a regulator to an individual gene
if the expression profiles of the gene and its assigned regu-
lator show a sufficiently high mutual information. CLR was
initially not developed to explicitly exploit modularity. To
be able to use CLR also at module level, we calculated for
each module its mean expression profile (over all condi-
tions of the compendium). We assigned regulators to
both individual gene expression profiles and module mean
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profiles. We observed that CLR was able to more confi-
dently assign regulators to the mean module profiles than
to the individual gene expression profiles (op scoring as-
signments made by CLR almost always involved mean
module profiles when we used as input to CLR a mix of
mean profiles and the profiles of the individual genes).
This indicates that using modules instead of individual
profiles helps reducing the noise and makes the assign-
ments more robust. As a final threshold for CLR we se-
lected a cut-off that corresponds to an FDR < 0.05 using
the FDR (false discovery rate) calculation described in the
original paper.

Calculating functional enrichment
Functional enrichment was based on GO (category Bio-
logical process) [62] using a hypergeometric test and using
false discovery rate (FDR, based correction for multiple test-
ing (Benjamini and Hochberg correction), as implemented
in BinGO [63]. Categories overrepresented with a signifi-
cance level <0.05 were withheld. Testing whether coexpres-
sion modules were enriched for known targets of TFs
(according to RegulonDB) was also based the hypergeo-
metric test with FDR correction (p <0.05 were considered
significant). Because of the low number of known sRNA
targets, the enrichment value of expression modules in
sRNA targets was unreliable and therefore replaced by indi-
cating for each expression module the number of known or
predicted targets it contained for the assigned sRNA.
Ecocyc pathways functional enrichment was based on
pathways description [58] using a hypergeometric test and
using false discovery rate (FDR, ie. the expected propor-
tion of false positives among the positively identified tests),
based correction for multiple testing (Benjamini and
Hochberg correction, build-in Genecodis tool [64]). Cat-
egories overrepresented with a significance level <0.001
were withheld.

Benchmarks

We compiled a benchmark of 118 experimentally verified
sRNA-target interactions in E. coli covering 25 different
sRNAs (both Hfq-dependent and non Hfq-dependent)
from curated databases (RegulonDB [55], Ecocyc [58])
and literature. A full table of curated interactions can be
found on the supplementary table (Additional file 10:
Table S8: Description of our benchmark of known sRNA-
target interactions). This benchmark is an updated version
of the one described in Modi et al. [10] with more recently
validated interactions [65-68].

Compared to Modi et al. [10] our benchmark contained
71 additional interactions for 25 sRNAs (containing known
interactions for 5 sSRNAs that were not covered by Modi
et al. [10], and 65 additional interactions for 20 sSRNAs that
were covered in the initial benchmark of Modi et al. [10]).
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Comparison with the predicted sRNA network of Modi

et al. 2011

The CLR based predictions made by Modi et al. [10] were
derived from its supplementary file (st02.doc). Sequence-
based predictions on sRNA-target interactions were not
available as such from the original paper. To generate these
predictions in a way that was described in the original
paper we did the following: we used the TargetRNA [69]
with the same default settings [15] mentioned also above,
but including a default setting for the seed length (9 nucle-
otides), sSRNA sequences were used from the source Tar-
getRNA server [69], or, if not available on this server from
RFAM or Ecocyc. We searched for sSRNA recognition sites
in a region close to the start codon, ranging from -30 bp
upstream of the ATG to 20 bp downstream of the ATG.
Target predictions were considered selected stringently if
they had a p-value less than 0.01. Predictions on sRNA-
target interactions prior to and after the sequence-based
filtering were compared for both our analysis and the ana-
lysis of Modi et al. [10] on our updated benchmark dataset
(Additional file 3: Table S3).

Discussion

This work studied the relation between the transcrip-
tional and the posttranscriptional network by applying
two complementary module-based inference frameworks
LeMoNe and CLR to simultaneously assign TFs and sSRNAs
to coexpression modules. In general, we observed that in
contrast to targets of the same TE targets of the same
sRNA rarely show a similar coexpression behavior, indicat-
ing that the level of posttranscriptional regulation has been
evolved towards an additional layer of regulation that is
largely involved in finetuning gene-specific expression be-
havior. This is further confirmed by the observation that
for several of our novel detected SRNA-target interactions,
the recognition region of the interaction is located within
an operon (e.g. MicF—ygiV, RyhB—sufB, GadY-xdhC), point-
ing towards an extended role of these SRNAs in intraopero-
nic regulation [70]. We also observed that in contrast to
TFs, sRNAs assigned to a module were most frequently
only involved indirectly in the regulation of the module
genes that is by modulating the expression of the TF re-
sponsible for the coexpression behavior of the genes in the
module.

Combining sequence-based target predictions with the
module-based sRNA assignments allowed us to draw a pre-
dicted sRNA-target interaction network. A similar SRNA-
target reconstruction was recently performed by Modi et al.
[10] using CLR in a non-module based setting. Our ap-
proach is intrinsically different from the single gene based
approach applied by Modi et al. [10]. In a module-based ap-
proach one assumes that different genes in the same mod-
ule all support the inferred interactions, which should
contribute to the reliability of the assignments, but might
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come at the expense of missing interactions with genes that
will not end up in a module which might be recovered by a
single gene based approach [12]. Secondly, rather than pre-
senting the interactions inferred through the expression
data as a final SRNA-target interaction network as was done
in Modi et al. [10] we combined the expression-based infer-
ence with a sequence-based inference. Because of these dif-
ferences in the number of interactions, it is not trivial to
compare the results of our analysis and the one of Modi
et al. [10] directly. Applying also a sequence-based filtering
to distinguish direct from indirect targets on the results of
Modi et al. [10] indicated that for both methods the recov-
ery of known interactions is still very limited. At this stage
this does not say much about the quality of the novel pre-
dicted interactions, but rather indicates the limitation of the
currently available expression compendia that are mainly
compiled from expression arrays that were not yet designed
to measure sRNAs.

Conclusion

In this work we show the potential of combining network-
based inference with sequence-based prediction techniques
for identifying sSRNA-target interactions and for studying
the intricate relation between the transcriptional and the
posttranscriptional network. Such integrative data-analysis
techniques can be expected to become increasingly at-
tractive as more specialized compendia measuring sim-
ultaneously protein coding genes and sRNAs will become
available.
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